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Abstract—Recently, the findings on the MEG iterative scheme 

has demonstrated to accelerate the convergence rate in solving any 
system of linear equations generated by using approximation 
equations of boundary value problems. Based on the same scheme, 
the aim of this paper is to investigate the capability of a family of 
four-point block iterative methods with a weighted parameter, ω such 
as the 4 Point-EGSOR, 4 Point-EDGSOR, and 4 Point-MEGSOR  in 
solving two-dimensional elliptic partial differential equations by 
using the second-order finite difference approximation. In fact, the 
formulation and implementation of three four-point block iterative 
methods are also presented. Finally, the experimental results show 
that the Four Point MEGSOR iterative scheme is superior as 
compared with the existing four point block schemes. 
 

Keywords—MEG iteration, Second-order finite difference, 
Weighted parameter.  

I. INTRODUCTION 
N solving science and engineering problems via numerical 
methods, there are many discretization techniques can be 

taken into account such as finite element, finite difference, 
finite volume, and boundary element methods, which can be 
used to discretize and to construct approximation equations 
for approximating the proposed problems. Then these 
approximation equations will be used to generate the 
corresponding systems of linear equations. Due to the large 
scale of linear systems, many studies on various iterative 
methods have been proposed to speed up the convergence rate 
in solving any system of linear equations. Therefore, Young 
[9, 10, 11, 12],  Hackbusch [28] and Saad [26] have already 
elaborated and discussed the concept of  various iterative 
methods. In addition, Evans [5] has also initiated 4 point block 
iterative methods  via the Explicit Group (EG) iterative 
method for solving large linear system. Based on this method, 
further investigations have been extensively conducted by 
Ibrahim and Abdullah [3], Evans and Yousif [6, 7], Yousif 
and Evans [27] for demonstrating the capability of block 
iterative methods. Apart from this concept, Hadjidimos [4] has 
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proposed the point iterative method together with two 
accelerated parameters, which is known as the Accelerated 
OverRelaxation (AOR) method. Later Martins et al. [21] have 
extended this work by the combination between the EG 
iterative method together with the AOR method and called as 
the Explicit Group AOR (EGAOR) method for solving elliptic 
partial differential equations. They stated that the 4 point-
EGAOR method is superior compared to the existing point 
AOR method.  

Besides those methods, the discovery on the concept of the 
half-sweep iterative method has been inspired by  Abdullah 
[1] via Explicit Decoupled Group (EDG) iterative method in 
solving two-dimensional Poisson equations. The main 
advantage of this concept is that the half-sweep iterative 
method includes the reduction technique in order to reduce the 
computational complexity of linear systems generated from 
corresponding approximation equations. Following to this 
concept, Othman and Abdullah [16] have extended the basic 
idea of the concept to introduce the Modified Explicit Group 
(MEG) iterative method based on the quarter-sweep approach. 
They pointed out that this method is one of most efficient 
block iterative methods in solving any system of linear 
equations as compared with EG and EDG iterative methods. 
Due to the advantages of MEG iterative method, the main 
purpose of this paper is to investigate the capability of a 
family of four-point block iterative methods with a weighted 
parameter, ω such as the 4 Point-EGSOR, 4 Point-EDGSOR, 
and 4 Point-MEGSOR for solving the two-dimensional 
elliptic partial differential equations based on the second-order 
finite difference approximation equations. For comparison, 
these three four-point block iterative methods will be tested to 
solve three example problems for the two-dimensional.  

To indicate the capability of three four-point block iterative 
methods, let us consider the two-dimensional elliptic partial 
differential equations as follows: 
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subject to the Dirichlet boundary conditions: 
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where ( )y,xf  is a known function. The coefficients ( )y,xr , 
( )y,xs , and ( )y,xt  are functions which only  involve 

variables x and y. To approximate problem (1) via finite 
difference schemes, there are various ways to discretize Eq. 
(1) in order to construct approximation equations. Before 
imposing various discretization techniques for full-, half-, and 
quarter-sweep cases, let us consider uniformly node points as 
shown in Fig. 1. Then the solution domain, D in Fig. 1 needs 
to be partitioned uniformly in both x and y directions with a 
fixed mesh size, h which is defined in Eq. (2) as follows 
 ( )

⎭
⎬
⎫+==

−
=Δ=Δ 1nM,h

M
abYx  .  (2) 

Again, let us indicate these notations  ihxi = , and 
( )M,,,,j,ijhy j L210==  where ( )jij,i y,xUU = , 

( )jij,i y,xrr = , ( )jij,i y,xss = , ( )jij,i y,xtt = , and 

( )jij,i y,xff = . 

 

           
         (a)                                                      (b) 
 

 
                                     (c) 

 
Fig. 1 (a), (b) and (c) The distribution of uniform node points for the 

full-, half-, and quarter-sweep cases respectively at m = 8 

II. SECOND-ORDER QUARTER-SWEEP FINITE DIFFERENCE 
APPROXIMATION 

Since four-point block iterative methods such as the 4 
Point-EGSOR, 4 Point-EDGSOR, and 4 Point-MEGSOR are 
categorised as linear solvers, problem (1) firstly needs to be 
approximated by approximation equations. For simplicity, the 
next discussion will be restricted to construct second-order 

finite difference approximation equations for full-, half- or 
quarter-sweep cases. Then the formulation of 4 Point-EGSOR, 
4 Point-EDGSOR, and 4 Point-MEGSOR iterative methods 
will be derived to be used in solving corresponding linear 
systems generated from second-order finite difference 
approximation equations. For implementation of these block 
iterative methods, the finite grid networks as shown in Fig. 1 
are used as a guideline on how to implement point block 
iterations by using the natural ordering strategy. 

Eventually, other than second-order finite difference 
schemes being considered to approximate problem (1)  at the 
point ( )ji y,x , some researchers have suggested high order 

(Rosser [13]; Gupta et al. [20]) schemes to derive high-order 
finite difference approximation equations. In fact, 
investigation of nine-point finite difference stencils has been 
also conducted in forming various nine-point schemes such as 
fourth-order standard nine-point stencil [22], fourth-order 
rotated nine-point stencil [24], and fourth-order spark nine-
point stencil [25]. Both low and high order schemes will result 
in their linear system with different properties of their 
coefficient matrix.  

As mentioned in the first paragraph, second-order finite 
difference schemes will be considered to derive the full-, half-
, and quarter-sweep five-point approximation equations for 
problem (1). Using second-order central difference schemes, 
the full-, and quarter-sweep five-point approximation 
equations for problem (1) can be shown respectively as:  
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 For formulating and implementing the 4 Point-EDGSOR 
iterative method, the five-point rotated finite difference 
approximation equation needs to constructed by rotating the i-
plane axis and the j-plane axis clockwise by 45o. Then the 
five-point rotated finite difference approximation equation can 
be easily shown as [22] 
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  (5) 

Again, illustration of the computational molecules for Eqs. 
(3), (4), and (5) based on five-point finite difference schemes 
can be seen in Fig. 2. 
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Fig. 2 Computational molecules in case of (a) the full-sweep,  (b) the 

half-sweep, and (c) the quarter-sweep cases 
 

By considering  interior  node  points   ( )j,i   of type     as 
shown in Fig. 1, formulation and implementation of 4 Point-
EGSOR, 4 Point-EDGSOR and 4 Point-MEGSOR iterative 
methods will be applied onto these interior node points until 
the criterion of convergence test is satisfied. Afterwards 
calculations of approximate solution for the remaining points 
of other type will be obtained directly by using direct methods 
(Abdullah [1]; Abdullah & Ali [2]; Ibrahim & Abdullah [3]; 
Yousif & Evans [27]; Othman & Abdullah [14, 15, 16]; 
Sulaiman et al. [18, 19]). Basically, the execution times for 
the half- and quarter-sweep iterative schemes may be reduced 
faster than the full-sweep case. Actually, this is due to both 
iterations have about half and quarter of the entire node points 
respectively. 

III. FORMULATION AND IMPLEMENTATION OF THE 4 POINT-
MEG ITERATIVE METHOD 

As being explained in this first section, the advantage of 
family of four-point block iterative methods with a weighted 
parameter, ω  mainly on 4 Point-EGSOR, 4 Point-EDGSOR, 
and 4 Point-MEGSOR will be examined in solving for 
problem (1).  From the previous studies (Young 1954, 1971, 
1972, 1976; Sulaiman et al. [15,16]), this parameter, ω has 
been known to speed up the convergence rate of  iterative 
methods in solving any linear system.  

In order to develop formulation of 4 point-MEGSOR 
iterative method, the basic concept of this method needs to be 
explored. According to Othman and Abdullah (2000), the 4 
Point-MEG iterative method has been developed based on 
second-order quarter-sweep finite difference approximation 
equation for solving two-dimensional Poisson equation. Later 
Othman et al. [17] and Sulaiman et al. [19] have extensively 
extended and applied the concept of quarter-sweep iteration to 
various problems. Based on the same concept together with 
the weighted parameter, ω, formulation of 4 point-MEGSOR 
iterative method will be presented.  For simplicity, let any four 
point group be considered to form a (4x4) linear system given 
as  (Othman & Abdullah [16]; Othman et al. [17]) 
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where, 
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Then let the linear system (6) be rewritten as follows: 

 
~~
SUA =  (7) 

where, 
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Now by considering the inverse matrix of system (7), we 
can show that the 4 Point-MEG iterative scheme can be 
generally expressed as: 
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Fig. 3 Implementation of the 4 Point-MEGSOR at the solution 

domain at m=16 
 
Then by adding the weighted parameter, ω into the scheme 
(8), the formulation of the 4 Point-MEGSOR can be easily 
defined as: 
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where the value of ω is in the range of  [ )21, .  If ω = 1, this 
method will be the special case of the existing 4 Point-MEG 
method.  Based on  Fig. 3, it can be seen that several 
completed group of four points based on interior node points 
of type      were presented.  For the case of remaining same 

node points near the right and top boundaries, however, there 
exist several ungroup points scheme. According to Abdullah 
and Evans (1989), these ungroup points can be treated as a 
group of two points and the single point schemes shown in 
Fig. 3. For comparison, other two four-point block iterative 
methods such as the 4 Point-EGSOR and the 4 Point-
EDGSOR methods will be also formulated and then 
implemented.  

IV. NUMERICAL RESULTS 
In this section, there are three problems, which are 

categorized as two-dimensional elliptic partial differential 
equations in order to demonstrate the effectiveness of the 4 
Point-MEGSOR scheme using the quarter-sweep five-point 
finite difference approximation equation in Eq. (4) for 
problem (1). For comparison, three measurement parameters 
such as the number of iterations, execution time and maximum 
absolute error will be considered. In all three problems, the 
iterations of all methods were stopped, when the absolute 

error tolerance, 1010−=ε  was achieved. The following three 
two-dimensional were being used to conduct some numerical 
experiments of 4 Point-EGSOR, 4 Point-EDGSOR, and 4 
Point-MEGSOR methods as follows: 
 

Example 1 (Abdullah [1]) 
The following 2D Poisson equation was being used to 

conduct some numerical experiments of 4 Point-EGSOR, 4 
Point-EDGSOR, and 4 Point-MEGSOR methods: 

 ( ) .1y,x0,eyx
y

U
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U xy22
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2
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2
≤≤+=
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∂
+
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∂  (10) 

Then boundary conditions and the exact solution of the 
problem (10) are defined by:  

 .1y,x0,e)y,x(U xy ≤≤=  (11) 
All results of numerical experiments for example 1, 

obtained from implementation of four-point block iterative 
methods with or without the weighted parameter, ω are 
tabulated in Tables I and II at different values of mesh sizes, 
M. 

Through the observation in Tables I and II, it clearly shows 
that the four point block iterative methods with the weighted 
parameter, ω are superior as compared to the corresponding 
block iterative methods without ω. However in terms of using 
ω, it can be seen that numbers of iterations decreased 
approximately 41.50-49.16% and 16.41-17.51% respectively 
correspond to 4 Point-MEGSOR  and 4 Point-EDGSOR 
methods compared to 4 Point-EGSOR method. In fact, the 
execution time against the mesh size for both 4 Point-
MEGSOR and 4 Point-EDGSOR methods are much faster 
about 60.00-71.22% and 16.24-25.71% respectively than 4 
Point-EGSOR method.  
 
 
 
 
 

 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:2, 2010

262

 

 

TABLE I 
COMPARISON OF  NUMBER OF ITERATIONS K, EXECUTION TIME (IN SECONDS) 
AND  MAXIMUM ABSOLUTE ERRORS OF THE 4 POINT-EG, 4 POINT-EDG, AND 

4 POINT-MEG  ITERATIVE METHODS FOR EXAMPLE 1 
No. of iterations 

Mesh grid Method 
 100 200 300 400 500 
4 EG 8894 32753 69990 119756 181461 
4 EDG 6779 25000 53473 91562 138823 
4 MEG 2401 8894 19082 32753 49761 

Execution Time (Seconds) 
Mesh grid Method 

(r opt) 100 200 300 400 500 
4 EG 7.80 94.41 462.76 1315.25 3175.65 
4 EDG 4.04 53.67 255.64 770.36 1836.09 
4 MEG 1.24 13.53 63.47 185.08 447.42 

Maximum Absolute Errors 
Mesh grid Method 

(r opt) 100 200 300 400 500 
4 EG 2.88e-7 1.52e-7 4.32e-7 7.97e-7 1.26e-6 
4 EDG 1.66e-5 4.02e-6 1.55e-6 5.88e-7 3.58e-7 
4 MEG 1.27e-6 2.89e-7 9.20e-8 1.52e-7 2.83e-7 

 
TABLE II 

COMPARISON OF  NUMBER OF ITERATIONS K, EXECUTION TIME (IN SECONDS) 
AND  MAXIMUM ABSOLUTE ERRORS OF THE 4 POINT-EGSOR, 4 POINT-

EDGSOR, AND 4 POINT-MEGSOR  ITERATIVE METHODS FOR EXAMPLE 1 
No. of iterations 

Mesh grid Method 
(r opt) 100 200 300 400 500 
4 EGSOR 297 582 865 1143 1423 
4 EDGSOR 245 482 723 952 1186 
4 MEGSOR 151 297 506 585 728 

Execution Time (Seconds) 
Mesh grid Method 

(r opt) 100 200 300 400 500 
4 EGSOR 0.35 1.76 5.69 12.60 24.32 
4 EDGSOR 0.26 1.37 4.50 9.90 20.37 
4 MEGSOR 0.14 0.60 2.00 3.70 7.00 

Maximum Absolute Errors 
Mesh grid Method 

(r opt) 100 200 300 400 500 
4 EGSOR 3.15e-7 7.86e-8 3.49e-8 1.93e-8 1.24e-8 
4 EDGSOR 1.66e-5 4.15e-6 1.85e-6 1.04e-6 6.63e-7 
4 MEGSOR 1.28e-6 3.16e-7 1.40e-7 7.89e-8 5.02e-8 

 
Example 2 (Evans [5]) 
Some numerical experiments were conducted in solving the 

following 2D Helmholtz equation:  
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x

U

x

U 1026 22
2

2

2

2
≤≤+ρ−=ρ−

∂

∂
+

∂

∂     (12) 

Then boundary conditions and the exact solution of the 
problem (12) are defined by: 

.y,x,yx)y,x(U 102 22 ≤≤+=            (13) 
All results of numerical experiments for example 2, 

obtained from implementation of four-point block iterative 
methods with or without the weighted parameter, ω are 
tabulated in Tables III and IV at different values of mesh 
sizes, m for a fixed 025.=ρ . 

Similarly from Tables III and IV, the findings for  all three 
four-point block iterative methods with the weighted 
parameter, ω show that numbers of iterations for the 4 Point-
MEGSOR  and 4 Point-EDGSOR methods have declined by 
47.72-49.53% and 17.04-20.28% respectively compared to 4 
Point-EGSOR method. Again, the execution times for 4 Point-
MEGSOR and 4 Point-EDGSOR methods are much faster 

approximately 64.29-74.34-72.35% and 27.97-36.02% 
respectively than 4 Point-EGSOR method. 
 

TABLE III 
COMPARISON OF  NUMBER OF ITERATIONS K, EXECUTION TIME (IN SECONDS) 
AND  MAXIMUM ABSOLUTE ERRORS OF THE 4 POINT-EG, 4 POINT-EDG, AND 

4 POINT-MEG  ITERATIVE METHODS FOR EXAMPLE 2 AT Ρ=25 
No. of iterations 

Mesh grid Method 
 100 200 300 400 500 
4 EG 4032 14860 31787 54439 82556 
4 EDG 3070 11334 24269 41594 63113 
4 MEG 1091 4032 8653 14860 22588 

Execution Time (Seconds) 
Mesh grid Method 

(r opt) 100 200 300 400 500 
4 EG 3.20 39.30 197.90 577.62 1355.29 
4 EDG 2.04 26.69 134.62 394.44 958.27 
4 MEG 0.53 6.01 28.78 84.68 200.35 

Maximum Absolute Errors 
Mesh grid Method 

(r opt) 100 200 300 400 500 
4 EG 2.22e-8 8.93e-8 2.01e-7 3.58e-7 5.59e-7 
4 EDG 1.67e-8 6.70e-8 1.51e-7 2.68e-7 4.19e-7 
4 MEG 5.46e-9 2.22e-8 5.02e-8 8.93e-8 1.40e-7 

 
TABLE IV 

COMPARISON OF  NUMBER OF ITERATIONS K, EXECUTION TIME (IN SECONDS) 
AND  MAXIMUM ABSOLUTE ERRORS OF THE 4 POINT-EGSOR, 4 POINT-

EDGSOR, AND 4 POINT-MEGSOR  ITERATIVE METHODS FOR EXAMPLE 2 AT 
Ρ=25 

No. of iterations 
Mesh grid Method 

(r opt) 100 200 300 400 500 
4 EGSOR 212 417 624 822 1027 
4 EDGSOR 169 336 501 665 852 
4 MEGSOR 107 218 316 417 519 

Execution Time (Seconds) 
Mesh grid Method 

(r opt) 100 200 300 400 500 
4 EGSOR 0.28 1.43 4.72 10.41 19.95 
4 EDGSOR 0.19 1.03 3.02 6.74 13.46 
4 MEGSOR 0.10 0.45 1.34 2.72 5.04 

Maximum Absolute Errors 
Mesh grid Method 

(r opt) 100 200 300 400 500 
4 EGSOR 5.77e-10 7.60e-10 1.39e-9 2.02e-9 2.48e-9 
4 EDGSOR 3.52e-10 9.85e-10 9.01e-10 1.84e-9 8.75e-11 
4 MEGSOR 1.56e-10 1.05e-10 8.70e-10 7.60e-10 2.91e-10 

 
Example 3 (Ali & Ling [23]) 
The following two-dimensional steady convection-diffusion 

equation was being used to conduct some numerical 
experiments of 4 Point-EGSOR, 4 Point-EDGSOR, and 4 
Point-MEGSOR methods as follows 

( ) ( )

( ) ( )( ) .y,x,eyRexRe

x
Uy,xs

x
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U

xy 1011 22

2

2

2

2

≤≤−++=

∂
∂

+
∂
∂

+
∂

∂
+

∂

∂

         (14) 

Then boundary conditions and the exact solution of the 
problem (14) are defined by  

.y,x,e)y,x(U xy 10 ≤≤=                 (15) 
with  ( ) yRey,xr −=  and  ( ) xRey,xs = . The Reynolds 
number, Re is a scalar. 

All results of numerical experiments for example 3, 
obtained from implementation of four point block iterative 
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methods with or without the weighted parameter, ω are 
tabulated in Tables V and VI at different values of mesh sizes, 
m for a fixed 010.Re = . 

Inline with the results for examples 1 and 2, the observation 
in Table VI has shown that numbers of iterations for the 4 
Point-MEGSOR and 4 Point-EDGSOR methods have 
declined by 48.28-50.00% and 18.07-20.89% respectively 
compared to 4 Point-EGSOR method. Again, the execution 
times for 4 Point-MEGSOR and 4 Point-EDGSOR methods 
are much faster approximately 63.64-72.35% and 48.49% 
respectively than 4 Point-EGSOR method. 
 

TABLE V 
COMPARISON OF  NUMBER OF ITERATIONS K, EXECUTION TIME (IN SECONDS) 
AND  MAXIMUM ABSOLUTE ERRORS OF THE 4 POINT-EG, 4 POINT-EDG, AND 

4 POINT-MEG  ITERATIVE METHODS FOR EXAMPLE 3 AT RE = 10 
No. of iterations 

Mesh grid Method 
 100 200 300 400 500 
4 EG 6012 22251 47708 81846 124287 
4 EDG 4576 16964 36404 62493 94949 
4 MEG 1617 6012 12935 22251 33866 

Execution Time (Seconds) 
Mesh grid Method 

(r opt) 100 200 300 400 500 
4 EG 6.40 87.15 422.68 1270.32 2978.93 
4 EDG 2.62 37.30 182.94 558.72 1320.89 
4 MEG 1.10 9.91 46.09 137.12 322.50 

Maximum Absolute Errors 
Mesh grid Method 

(r opt) 100 200 300 400 500 
4 EG 1.91e-6 5.01e-7 3.01e-7 5.03e-7 7.94e-7 
4 EDG 1.33e-5 3.26e-6 1.32e-6 5.93e-7 2.69e-7 
4 MEG 7.61e-6 1.91e-6 8.61e-7 5.01e-7 3.47e-7 

 
TABLE VI 

COMPARISON OF  NUMBER OF ITERATIONS K, EXECUTION TIME (IN SECONDS) 
AND  MAXIMUM ABSOLUTE ERRORS OF THE 4 POINT-EGSOR, 4 POINT-

EDGSOR, AND 4 POINT-MEGSOR  ITERATIVE METHODS FOR EXAMPLE 3 RE 
= 10 

No. of iterations 
Mesh grid Method 

(r opt) 100 200 300 400 500 
4 EGSOR 286 553 819 1106 1353 
4 EDGSOR 229 449 671 875 1085 
4 MEGSOR 147 286 418 553 688 

Execution Time (Seconds) 
Mesh grid Method 

(r opt) 100 200 300 400 500 
4 EGSOR 0.33 1.92 6.13 14.19 26.62 
4 EDGSOR 0.17 1.11 3.61 8.31 16.03 
4 MEGSOR 0.12 0.61 1.82 3.94 7.36 

Maximum Absolute Errors 
Mesh grid Method 

(r opt) 100 200 300 400 500 
4 EGSOR 1.90e-6 4.77e-7 2.12e-7 1.19e-7 7.67e-8 
4 EDGSOR 1.34e-5 3.34e-6 1.48e-6 8.34e-7 5.33e-7 
4 MEGSOR 7.61e-6 1.91e-6 8.48e-7 4.77e-7 3.05e-7s 

V. CONCLUSION 
For the proposed problems, the formulation and 

implementation of the 4 Point-MEG iterative method with or 
without the weighted parameter, ω by using the second-order 
five-point finite difference schemes have been derived to form 
the corresponding approximation equations as shown in Eq. 
(4). From observation of all experimental results by imposing 
the SOR technique, it can be also observed that the number of 

iterations and the execution time for all four point block 
iterative methods such as EGSOR, EDGSOR and MEGSOR 
have been declined tremendously as compared with the 
corresponding block iterative methods without weighted 
parameter, ω. Overall, the 4 Point-MEGSOR method is 
superior to the 4 Point-EGSOR and EDGSOR methods in 
terms of a number of iterations and the execution time. This is 
due to the reduction technique applied to the 4 Point-
MEGSOR method which reduces approximately 75% of its 
computational complexity as compared to the 4 Point-EGSOR 
method. In fact, these conclusions are inline with the results of 
Othman and Abdullah [16]. The approximate solutions for all 
methods are in good agreement.  

For future works, the capability of 4 Point-MEGSOR 
should be investigated for solving other multi-dimensional 
partial differential equations (Evans [5]; Evans & Sahimi [8]; 
Ibrahim & Abdullah [3]) and being used as a smoother in 
multigrid solvers (Hackbusch [28]; Othman & Abdullah [14, 
15]). Also, further studies for various point block iterative 
methods can be also examined (Yousif & Evans [27]; Martins 
et al. [21]). 
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