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Alternative to M-Estimates in Multisensor
Data Fusion

Nga-Viet Nguyen, Georgy Shevlyakov, and Vladimir Shin

Abstract—To solve the problem of multisensor data fusion under
non-Gaussian channel noise. The advanced M-estimates are known
to be robust solution while trading off some accuracy. In order to
improve the estimation accuracy while still maintaining the equivalent
robustness, a two-stage robust fusion algorithm is proposed using
preliminary rejection of outliers then an optimal linear fusion. The
numerical experiments show that the proposed algorithm is equivalent
to the M-estimates in the case of uncorrelated local estimates and
significantly outperforms the M-estimates when local estimates are
correlated.
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I. INTRODUCTION

DATA fusion [1] refers to a family of techniques that
combine data from multiple local sources to achieve

inferences being potentially more efficient and more accurate
than what can be achieved by using a single source. To cope
with outliers in non-Gaussian channel noise, advanced robust
methods such as M-estimate based methods can be applied
with some trade-off of accuracy. The challenge is how to
improve this accuracy while still maintaining the robustness.

The nature of multisensor data fusion is that there are a
number of sensors physically distributed around an environ-
ment that can extend in a large area. Each sensor has its
own local processor that optimally estimates an object using
sensor measurements prior to communication then only local
estimates need to be transfered to and processed by the central
processor [1], [2].

In this fusion architecture, many methods are available for
the fusion of the local estimates. Most of them result in the
linear fusion of sensor estimates (see [1]–[4] and references
therein). Obviously, linear fusion well-defined under some
restrictive conditions is useful to reduce the computation load
at the fusion center. However, it is a well-known fact that linear
(with respect to observations) methods drastically fail in the
presence of outliers in the data and/or under heavy-tailed noise
distributions and, in this case, they should be substituted by
their robust analogs such as the advanced M-estimates [5]–
[10].

On the other hand, it is unreasonable to fully refuse classical
linear methods optimal in regular conditions and relatively
easy in implementation. On the contrary, it is desirable to
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Fig. 1. Distributed multisensor data fusion system with noisy channels

make these classical tools resistant to possible deviations from
the restrictive initial assumptions about noise distributions.
Hence, in this work, a combination of a classical optimal
fusion method and a rejection rule of outliers is presented and
it is showed that this alternative method to M-estimates can
indeed replace M-estimates, especially in the case of correlated
local estimates.

II. OPTIMAL ESTIMATION FUSION

Our problem is illustrated in Fig. 1. The unknown constant
parameter is locally observed by different sensors, each pro-
ducing its own local estimate. All local estimates are then sent
to the central processor where they are fused to obtain a more
accurate estimate [1], [2].

A. Local Estimates

The popular fusion scheme in Fig. 1 uses a network of N
distributed sensors to estimate an unknown constant vector
parameter θ ∈ Rp. Each sensor produces a noisy vector
measurement:

yi = hi(θ) + vi, i = 1, . . . , N, (1)

where yi ∈ Rmi , hi(·) is a known measurement function relat-
ing the unknown parameter to the ith sensor measurement, and
vi is the measurement error vector, assumed to be Gaussian
with zero mean and known covariance matrix. The essential
thing is that the observation model given by (1) is a regression
model, linear or non-linear, and there exist many methods, e.g.,



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:10, 2010

1536

the maximum likelihood, the least squares, with linearization
when necessary etc., solving the problem of estimation of an
unknown parameter θ [11].

Now, the simplest version of model (1) is considered with
a scalar parameter θ ∈ R common for all the observations
yi, i = 1, . . . , N . In this case, the local estimates take the
following form:

θ̂i = θ + ei, i = 1, . . . , N, (2)

where ei = θ̂i − θ are the local estimate errors assumed to
be Gaussian with zero means and known covariance matrix
C = [σij ].

B. Optimal Linear Fusion Formula

Let channel noises ni, i = 1, . . . , N be independent random
variables with zero means and finite variances σ2

ni
. It is also

assumed that channel noises are independent of local sensor
estimate errors ei, i = 1, . . . , N . Hence, the channel outputs
obtained at the central processor can be written as:

zi = θ̂i+ni = θ+ei+ni = θ+ζi, ζi = ei+ni, i = 1, . . . , N,
(3)

the covariance matrix C̃ = [σ̃ij ] of the channel output errors
{ζi}N1 has the entries:

σ̃ij = σij , i �= j, and σ̃ii = σii + σ2
ni

= σ2
i + σ2

ni
. (4)

Thus, the channel outputs {zi}N1 can be considered equivalent
to the local estimates with known covariance matrix C̃, and
the well-known optimal linear fusion (LF) formula [12] can
be adapted to this problem:

θ̂LF =

N∑
i=1

ai zi,

N∑
i=1

ai = 1. (5)

where a1, . . . , aN are the scalar weights minimizing the mean-
square criterion J = E

[
(θ − θ̂LF )

2
]
. The explicit formula for

the optimal weights is given by:

a = (1T
N C̃

−11N )−1C̃−11N , (6)

where a = [a1 . . . aN ]T and 1N = [1 . . . 1]T ∈ RN . The
fusion error variance J is equal to J =

∑N
i,j=1 ai aj σ̃ij .

III. NON-GAUSSIAN CHANNEL NOISES AND ROBUST
FUSION

The specific of real-life fusion networks is such that, in
general, there is no reliable information about channel noise
distributions and their moments; the underlying noise distri-
butions are not Gaussian and may vary in a wide range from
light- to heavy-tailed forms; and even, if the assumptions of
Gaussianity hold, there may be outliers and gross errors in
channel noises. Apparently, under the conditions of uncertainty
of noise distribution models, the usage of the linear fusion
formula (5) is still not justified and appropriate. Thus, the
aforementioned cases when the linear fusion can be used are
more likely to be exceptions than a rule.

A. Non-Gaussian Noise Model

In this research, Tukey’s gross-error model of contaminated
Gaussian noise distribution [5] is used as follows:

fni(x) = (1− εi)N (x; 0, σni) + εi N (x; 0, λi σni), (7)

i = 1, . . . , N,

where N (x;μ, σ) = (2π)−1/2σ−1 exp
{−(x− μ)2/(2σ2)

}
is the Gaussian density, 0 ≤ εi < 1/2, λi ≥ 1 are the
parameters of contamination.

Tukey’s model given in (7) describes the data samples as
the mixture of the data from the two Gaussian distributions of
”good” and ”bad” data. The contamination parameter ε gives
the probability of occurrence of outliers in the data. This model
has been chosen for the following two reasons.

First, it is a standard model widely used in studies on
robustness [5], [6]. Since the distributions of the main bulk of
data and outliers can be described by the first and second term
of (10), respectively, different types of outliers can be easily
considered in the test by shifting the distribution location and
scale.

Second, in this model, the contamination parameter ε can be
considered as the probability of occurrence of outliers in the
data sample with the number of outliers distributed according
to the binomial law. An extended survey on the applicability of
Tukey’s model to description of the real-life data, in particular
on the frequency of gross errors, is given in [6].

B. M-Estimates of Location

An M-estimate of location θ̂ satisfies the following estimat-
ing equation:

N∑
i=1

ψ(zi − θ̂) = 0, (8)

where ψ(u) is a score function [5]. Here the following score
functions are considered:
Huber’s linear bounded score function [5]:

ψH(u) =

{
u, for 0 ≤ |u| ≤ c (c > 0)
c sign(u), for c ≤ |u| (9)

and Hampel’s redescending three-part score function [6]:

ψ25A(u) =

⎧⎪⎪⎨
⎪⎪⎩

u, for 0 ≤ |u| ≤ a
a sign(u), for a ≤ |u| ≤ b

a rH−|u|
rH−b sign(u), for b ≤ |u| ≤ rH

0, for rH ≤ |u|
(10)

with 0 < a ≤ b < rH <∞.
The simplest way of solving (8) is based on the so-called

one-step M-estimates [6]:

θ̂ = θ̂(0) + σ̂(0)

∑N
i=1 ψ(

zi−θ̂(0)

σ̂(0)
)∑N

i=1 ψ
′( zi−θ̂(0)

σ̂(0)
)
, (11)

where θ̂(0) and σ̂(0) are the initial estimates of location and
scale. These one-step estimates form the first step of the
Newton-Raphson iterative procedure fortunately having the
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same behaviour as their fully iterated versions (for details,
see [6, p.6]). As the initial estimates of location and scale,
the highly robust sample median θ̂(0) = med(zi) and the
median absolute deviation σ̂(0) = 1.483MAD(zi), where
MAD(zi) = med(|zi −med(zi)|), are used.

IV. PROPOSED TWO-STAGE ROBUST ESTIMATION FUSION

In the distributed multisensor fusion system with noisy
channels in Fig. 1, the information for fusion is given by the
channel outputs z1, . . . , zN , which are represented as the sum
of an unknown scalar parameter θ and channel output errors
{ζi}N1 : zi = θ + ζi, i = 1, . . . , N .

In this work, a two-stage robust fusion (TSRF) algorithm
is proposed based on the preliminary rejection of the outliers
from the channel output data with the subsequent application
of conventional estimation procedures to the rest of observa-
tions. Thus, ths refers to the initial key sense of any robust
procedure: the initial data are assumed to consist of two
different kinds, ”good” (regular, satisfying our assumptions)
and ”bad” (outliers, outputs distorted by gross errors), and the
goal is to distinguish the ”bad” from the ”good” with the final
inference basing mostly on the ”good” data.

The first stage of this fusion algorithm, namely, the rejection
rule, is formulated as follows: reject all the channel outputs
zi such that

|zi −med(z)| > KMAD(z), (12)

where med(z) is the sample median

med(z) =

⎧⎪⎨
⎪⎩

z(l+1), N = 2 l + 1,

z(l) + z(l+1)

2
, N = 2 l;

(13)

MAD(z) is the median absolute deviation

MAD(z) = med (|z −med(z)|) ; (14)

K is a free parameter to be adjusted to the data, henceforth
called the gate factor. The sample median and the median
absolute deviation are highly robust estimates of location and
scale, respectively [6].

In the second stage, the fusion formula (5) is applied to
the remaining channel outputs. Let N∗ be their number, C̃
becomes C̃∗ (with the asterisk sign) after removing their
columns and rows corresponding to discarded channel outputs.
Then the fusion formula and its related equations can be
rewritten as follows:

θ̂TSRF =
N∗∑
i=1

ai zi,
N∗∑
i=1

ai = 1,

a = (1T
N∗ C̃∗−1

1N∗)−1C̃∗−1
1N∗ (15)

where a = [a1 . . . aN∗ ]T , C̃∗ = [σ̃ij ]
N∗

i,j=1 with 1N∗ =

[1 . . . 1]T in RN∗
.

Although the remaining outputs being the central order
statistics of the sample become strongly dependent between
each other, the covariance matrix C̃∗ is concisely used in (15)

as a modification of C̃ given by (4). We do this, firstly, for sake
of preserving the low-complexity structure of the TSRF, and
secondly, because of the principal unavailability of information
about channel output distributions in real-life problems.

The pseudo-code of TSRF is written as follows:

Algorithm 1 TSRF algorithm
Require: N ; z1, . . . , zN ;C;σn;K
Ensure: Estimation of θ
C̃ {from (4)}
MAD(z) ⇐ med(|z −med(z)|)
j ⇐ 0
for i = 1 to N do

if |zi −med(z)| ≤ KMAD(z) then
j ⇐ j + 1
I∗zj ⇐ i {Index of remaining element zi}

end if
end for
C̃∗ ⇐ discard(C̃, I∗z )
z∗ ⇐ discard(z, I∗z )
a ⇐ (1TN∗ C̃∗−1

1N∗)−1C̃∗−1
1N∗ {a = [a1 . . . aN∗ ]}

θ̂TSRF ⇐ ∑N∗

j=1 ajz
∗
j

V. NUMERICAL EXPERIMENTS

A. Experimental Setup

To compute the fusion mean square error (MSE), the Monte
Carlo method is used with 5000 repetitions. The system of N
local sensors is divided into the two approximately equal-in-
size groups: one of size N1 has higher accuracy, the other of
size N2 consists of local sensors with larger estimate error
variances: σ2

1 = 0.1 and σ2
2 = 1, respectively.

In our Monte Carlo experiment, pseudo-random numbers
are generated so that the correlation between local estimates
is predetermined by the correlation matrix chosen as follows:

R(N×N) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · 0 ρ11 · · · ρ1N2

...
. . .

...
...

. . .
...

0 · · · 0 ρN21 · · · ρN2N2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

with ρij = 0.5(1 − |i − j|/N2) for i �= j and ρij = 1 for
i = j. Thus, it is assumed that the sensors of higher accuracy
are uncorrelated, the sensors of lower accuracy are correlated,
and that there is no correlation between the sensors of these
two groups.

To compare the performance of fusion estimates, the fusion
efficiency is used:

eff =
MSEML

MSE
(17)

defined as the ratio of the mean square errors of the maximum
likelihood (ML) and the fusion estimates, respectively.

ML estimate θ̂ML is an optimal method, computable only
when the probability density function (pdf) of each channel
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Fig. 2. Tuning the TSRF-algorithm. Total number of sensors: N = 31;
numbers and variances of sensors of higher accuracy: N1 = 16, σ2

1
= 0.1,

of lower accuracy: N2 = 15, σ2

2
= 1; channel noise variance: σ2

n = 1;
contamination parameters: ε = 0.2, λ = 1–8.

output is known. Hence, a fusion estimate can be compared
with ML estimate for evaluation. The computation of ML
estimate is described as follows.

From (3) we have:

zi = θ + ei + ni. (18)

Then, the assumed pdf of each channel output is:

fzi(θ̂) = (1−εi)N (θ̂,
√
σ2
ei + σ2

ni
)+εiN (θ̂,

√
σ2
ei + λ2iσ

2
ni
),

(19)
where:

N (θ̂, σθ) =
1√
2πσθ

e
−1

2σ2
θ

(zi−θ̂)2

. (20)

Finally, θ̂ML is obtained when:

L(θ̂) =
N∏
i=1

(fzi(θ̂)) →Max. (21)

B. Tuning Gate Factor

The proposed two-stage algorithm is determined by the
choice of the gate factor K. Fig. 2 exhibits the fusion
efficiency with respect to K under different values of the
contamination parameter λ. The experiment shows that, over a
wide range of contamination, a reasonable choice of the gate
factor is provided with K = 3.

The results displayed in Fig. 3 also confirm this choice.
The curves corresponding to each value of the gate factor K
gradually drop while it increases until K = 3 and rise while
it passes this value and tends to infinity. The performance of
the TSRF with the chosen K = 3 is slightly worse than the
performance with larger values of the gate factor when λ = 1
(under Gaussian noise) or with small contamination. Paying
for this trade-off, the TSRF achieves higher performance for
a wide range of contamination parameters.
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Fig. 3. Performance of TSRF algorithm under contaminated Gaussian noise.
Total number of sensors: N = 31; numbers and variances of sensors of
higher accuracy: N1 = 16, σ2

1
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= 1;

channel noise variance: σ2
n = 1; contamination parameters: ε = 0.2, λ =
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C. Comparison with M-Estimates

In this part, the proposed TSRF algorithm is compared with
the well-known advanced robust M-estimates defined by Hu-
ber’s and Hampel’s score functions described in Section III-B.

These two estimates (shortly called the Huber and Hampel
estimates) are tested under contaminated Gaussian channel
noise with the same range of contamination parameters as in
the previous subsection. The recommended parameters are:
c = 0.862 for the Huber estimate [5] (the optimal choice for
the ε-contaminated Gaussian distribution with ε = 0.2) and
a = 1.31, b = 2.039, rH = 4 for the Hampel estimate [6]
(the best in the Princeton experiment [13]).

At first, the case of uncorrelated local estimates is con-
sidered. This condition assures the best performance for M-
estimates. Fig. 4 shows that TSRF is comparable to the M-
estimtes. The proposed algorithm is even more accurate for
big values of λ. To be more specific, let us take λ = 4 to
divide the total range of λ into small λ range and big λ range.
Huber estimate is the best in small λ range and TFRF is the
best in big λ range.

So, for uncorrelated local estimates, TSRF can just be equiv-
alent to M-estimates; however, it really shows the advantage
in the case of correlated local estimates. In Fig. 5, TSRF is
now chosen as the reference for calculating relative efficiency,
M-estimates are therefore compared to TFRF: they are more
accurate if the relative efficiency is greater than 1, and vis
versa. However, this experiment shows that this value is only
around 0.8, meaning that TFRF outperforms the M-estimates
in this case.

VI. CONCLUSION

The problem of multisensor data fusion was considered with
non-Gaussian channel noise. The well-known advanced M-
estimates were applied, resulting in a robust fusion method.
In order to improve the estimation accuracy while maintaining
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an equivalent robustness, the TSRF algorithm was proposed
using a preliminary rejection of outliers then an optimal
linear fusion. The numerical experiments show that TSRF
is equivalent to the M-estimates in the case of uncorrelated
local estimates and significantly outperformed the M-estimates
when local estimates are correlated.

ACKNOWLEDGMENT

This work was suppoted by Basic Science Research Pro-
gram through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and Tech-
nology (No.2010-0009925) and the Basic Research Project
through a grant provided by GIST in 2010.

REFERENCES

[1] Yunmin Zhu, Multisensor Decision and Estimation Fusion, Kluwer,
Boston, MA, 2002.

[2] Yunmin Zhu, Enbin Song, Jie Zhou, and Zhisheng You, “Optimal di-
mensionality reduction of sensor data in multisensor estimation fusion,”
Signal Processing, IEEE Transactions on, vol. 53, no. 5, pp. 1631–1639,
May 2005.

[3] Yaakov Bar-Shalom and Xiao-Rong Li, Multitarget-multisensor Track-
ing: Principles and Techniques, YBS Publishing, Storrs, CT, 1995.

[4] Vladimir Shin, Younghee Lee, and Tae S. Choi, “Generalized Millman’s
formula and its application for estimation problems,” Signal Process.,
vol. 86, no. 2, pp. 257–266, 2006.

[5] Peter J. Huber, Robust Statistics, Wiley, New York, 1981.
[6] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel,

Robust Statistics: The Approach Based on Influence Functions, Wiley,
New York, 1986.

1 2 3 4 5 6 7 8
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fu
si

on
 R

el
at

iv
e 

Ef
fic

ie
nc

y 
(to

 T
FR

F)

Contamination parameter 

 

 

TFRF (K=3)

Huber
Hampel
Median

λ

Fig. 5. M-estimates in comparison with TSRF for correlated local estimates.
Total number of sensors: N = 31; number of sensors and their variance for
the higher accuracy group: N1 = 16, σ2

1
= 0.1, for the lower accuracy

group: N2 = 15, σ2

2
= 1; channel noise variance σ2

n = 1; contamination
parameters: ε = 0.2, λ = 1–8.

[7] S.A. Kassam and H.V. Poor, “Robust techniques for signal processing:
A survey,” Proceedings of the IEEE, vol. 73, no. 3, pp. 433–481, March
1985.

[8] Georgy L. Shevlyakov and Nikita O. Vilchevski, Robustness in Data
Analysis: Criteria and Methods, VSP, Utrecht, 2002.

[9] U. K. Bhargava and R. L. Kashyap, “Robust parametric approach for
impulse response estimation,” Acoustics, Speech and Signal Processing,
IEEE Transactions on, vol. 36, no. 10, pp. 1592–1601, 1988.

[10] D. D. Lee, R. L. Kashyap, and R. N. Madan, “Robust decentralized
direction-of-arrival estimation in contaminated noise,” Acoustics, Speech
and Signal Processing, IEEE Transactions on, vol. 38, no. 3, pp. 496–
505, 1990.

[11] George A. F. Seber and Alan J. Lee, Linear Regression Analysis, Wiley,
New York, 2003.

[12] Vladimir Shin, Georgy Shevlyakov, and Kiseon Kim, “A new fusion
formula and its application to continuous-time linear systems with
multisensor environment,” Comput. Stat. Data Anal., vol. 52, no. 2,
pp. 840–854, 2007.

[13] D. F. Andrews, P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers,
and J. W. Tukey, Robust Estimates of Location, Princeton University
Press, Princeton, 1972.


