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The Pell Equation x2 − Py2 = Q
Ahmet Tekcan, Arzu Özkoç, Canan Kocapınar, Hatice Alkan

Abstract—Let p be a prime number such that p ≡ 1(mod 4), say
p = 1 + 4k for a positive integer k. Let P = 2k + 1 and Q = k2.
In this paper, we consider the integer solutions of the Pell equation
x2−Py2 = Q over Z and also over finite fields Fp. Also we deduce
some relations on the integer solutions (xn, yn) of it.

Keywords—Pell equation, solutions of Pell equation.

I. PRELIMINARY FACTS ON DIOPHANTINE AND PELL
EQUATIONS.

A Diophantine equation is an indeterminate polynomial
equation that allows the variables to be integers only. Dio-
phantine problems have fewer equations than unknown vari-
ables and involve finding integers that work correctly for all
equations. In more technical language, they define an algebraic
curve, algebraic surface or more general object, and ask about
the lattice points on it. The word Diophantine refers to the
Hellenistic mathematician of the 3rd century, Diophantus of
Alexandria, who made a study of such equations and was
one of the first mathematicians to introduce symbolism into
algebra. The mathematical study of Diophantine problems
Diophantus initiated is now called Diophantine analysis. A lin-
ear Diophantine equation is an equation between two sums of
monomials of degree zero or one. While individual equations
present a kind of puzzle and have been considered throughout
history, the formulation of general theories of Diophantine
equations was an achievement of the twentieth century. For
example, the equation ax + by = 1 is known the linear
Diophantine equation. In general, the Diophantine equation
is the equation given by

ax2 + bxy + cy2 + dx+ ey + f = 0. (1)

Also for n = 2, there are infinitely many solutions (x, y, z)
of the Diophantine equation xn + yn = zn. For larger values
of n, Fermat’s last theorem (see [4]) states that no positive
integer solutions x, y, z satisfying the equation exist. In [18],
[19], [21], we considered some specific Diophantine equations
and their integer solutions.

Let D �= 1 be a positive non-square integer and N be any
fixed positive integer. Then the Diophantine equation

x2 −Dy2 = ±N (2)

is known as Pell equation and is named after John Pell (1611-
1685), a mathematician who searched for integer solutions to
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equations of this type in the seventeenth century. Ironically,
Pell was not the first to work on this problem, nor did
he contribute to our knowledge for solving it. Euler (1707-
1783), who brought us the ψ-function, accidentally named the
equation after Pell, and the name stuck. For N = 1, the Pell
equation

x2 −Dy2 = ±1 (3)

is known as the classical Pell equation and was first studied by
Brahmagupta (598-670) and Bhaskara (1114-1185), (see [1]).
Its complete theory was worked out by Lagrange (1736-1813),
not Pell. It is often said that Euler (1707-1783) mistakenly
attributed Brouncker’s (1620-1684) work on this equation to
Pell. However the equation appears in a book by Rahn (1622-
1676) which was certainly written with Pell’s help: some
say entirely written by Pell. Perhaps Euler knew what he
was doing in naming the equation. Baltus [2], Kaplan and
Williams [5], Lenstra [6], Matthews [7], Mollin (also Poorten
and Williams) [8], Stevenhagen [10] considered some specific
Pell (and Diophantine) equations and their integer solutions
(Further details on Pell equations can be found in [2], [3],
[9]).

The Pell equation in (3) has infinitely many integer solutions
(xn, yn) for n ≥ 1. The first non-trivial positive integer so-
lution (x1, y1) (in this case x1 or x1 + y1

√
D is minimum)

of this equation is called the fundamental solution, because
all other solutions can be (easily) derived from it. In fact, if
(x1, y1) is the fundamental solution of x2 − Dy2 = 1, then
the n-th positive solution of it, say (xn, yn), is defined by the
equality

xn + yn
√
D = (x1 + y1

√
D)n (4)

for integer n ≥ 2. (Furthermore, all nontrivial solutions
can be obtained considering the four cases (±xn,±yn) for
n ≥ 1). There are several methods for finding the fundamental
solution of Pell’s equation x2 − Dy2 = 1 for a positive
non-square integer D, e.g., the cyclic method known in India
(12-th century), or the slightly less efficient but more regular
English method (17-th century) which produce all solutions of
x2 −Dy2 = 1. But the most efficient method for finding the
fundamental solution is based on the simple finite continued
fraction expansion of

√
D. We can describe it as follows: Let

[a0; a1, a2, · · · , ar, 2a0]

be the simple continued fraction of
√
D, where a0 = �√D�.

Let p0 = a0, p1 = 1 + a0a1, q0 = 1 and q1 = a1. In general

pn = anpn−1 + pn−2 (5)
qn = anqn−1 + qn−2
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for n ≥ 2. Then the fundamental solution of x2 −Dy2 = 1 is

(x1, y1) =

⎧⎨
⎩

(pr, qr) if r is odd

(p2r+1, q2r+1) if r is even.

On the other hand, in connection with (2) and (3), it is well
known that if (X1, Y1) and (xn−1, yn−1) are integer solutions
of x2 − Dy2 = ±N and x2 − dy2 = 1, respectively, then
(Xn, Yn) is also a positive solution of x2 − Dy2 = ±N ,
where

Xn +DYn = (xn−1 +Dyn−1)(X1 +DY1) (6)

for n ≥ 2.

II. THE PELL EQUATION x2 − Py2 = Q.

In [11], [12], [13], [14], [15], [16] and [17], we considered
some specific Pell equations and their integer solutions. Also
we deduced some recurrence relations on the integer solutions
(xn, yn) of these Pell equations.

In the present paper, we consider the very specific Pell
equation and its integer solutions. P and Q be two non-zero
integers and let D = P 2 − 4Q be the discriminant such that
D �= 0. In [22], we defined a new sequence A = An(P,Q)
with parameters P and Q defined by A0 = 0, A1 = 1 and
An = PAn−1−QAn−2 for n ≥ 2 and derived some algebraic
identities on it. Also we showed that every prime number
p ≡ 1(mod 4) can be written of the form P 2 − 4Q. Indeed,
let p = 1+4k. Then the quadratic equation P 2− 4D = p has
a solution for

P = 2k + 1 and Q = k2. (7)

In this work, we will consider the Pell equation

x2 − Py2 = Q (8)

over Z and also over finite fields Fp, where P and Q is defined
in (7). Note that for p = 5, we have k = 1 and hence P = 3
and Q = 1. So (8) becomes x2−3y2 = 1 which is the classical
Pell equation. For the other values of p > 5, the Pell equation
x2 −Py2 = Q is not a classical Pell equation. So we have to
consider these two conditions.

Theorem 2.1: Let p = 5, then for the classical Pell equation
x2 − 3y2 = 1, we have

1) The continued fraction expansion of
√
3 is [1; 1, 2].

2) The fundamental solution is (x1, y1) = (2, 1).
3) Define the sequence {(xn, yn)}, where(

xn
yn

)
=

(
2 3
1 2

)n (
1
0

)
(9)

for n ≥ 1. Then (xn, xn) is a solution of x2 − 3y2 = 1.
4) The solutions (xn, yn) satisfy xn = 2xn−1+3yn−1 and

yn = xn−1 + 2yn−1 for n ≥ 2.
5) The solutions (xn, yn) satisfy the recurrence relations

xn = 3(xn−1 + xn−2)− xn−3

yn = 3(yn−1 + yn−2)− yn−3

for n ≥ 4.

6) The n−th solution (xn, yn) can be given by

xn
yn

=
[
1; (1, 2)n−2, 1, 3

]
(10)

for n ≥ 2, where (1, 2)n−2 means that there are n − 2
successive terms “1, 2”.

Proof: 1) It is easily seen that
√
3 = [1; 1, 2].

2) The fundamental (minimal) solution of x2 − 3y2 = 1 is
(x1, y1) = (2, 1) since 22 − 3.11 = 1.

3) We prove the theorem by induction on n. Let n = 1.
Then (

x1
y1

)
=

(
2 3
1 2

)(
1
0

)
=

(
2
1

)

which is the fundamental solution. Let us assume that this
equation is satisfied for n− 1, that is, x2n−1 − 3y2n−1 = 1. We
will show that it is also satisfied for n. Clearly we deduce that

(
xn
yn

)
=

(
2 3
1 2

)n (
1
0

)

=

(
2 3
1 2

)(
2 3
1 2

)n−1 (
1
0

)

=

(
2 3
1 2

)(
xn−1

yn−1

)

=

(
2xn−1 + 3yn−1

xn−1 + 2yn−1

)
. (11)

Hence

x2n − 3y2n = (2xn−1 + 3yn−1)
2 − 3(xn−1 + 2yn−1)

2

= 4x2n−1 + 12xn−1yn−1 + 9y2n−1

−3x2n−1 − 12xn−1yn−1 − 12y2n−1

= x2n−1 − 3y2n−1

= 1.

So (xn, yn) is also a solution of x2n − 3y2n = 1.
4) It is clear from (11) that xn = 2xn−1 + 3yn−1 and

yn = xn−1 + 2yn−1 for n ≥ 2.

5) We only prove by induction that xn = 3(xn−1+xn−2)−
xn−3. Let n = 4. Then from (9) we get x1 = 2, x2 = 7, x3 =
26 and x4 = 97. So

x4 = 3(x3 + x2)− x1 = 3(26 + 7)− 2 = 97,

that is, xn = 3(xn−1 + xn−2) − xn−3 is true for n = 4. Let
us assume that this relation is satisfied for n− 1, that is,

xn−1 = 3(xn−2 + xn−3)− xn−4. (12)

Then from (11) and (12), we obtain xn = 3(xn−1 + xn−2)−
xn−3 for n ≥ 4.

6) Similarly it can be shown by induction on n that the
n−th solution (xn, yn) can be given by

xn
yn

=
[
1; (1, 2)n−2, 1, 3

]
(13)

for n ≥ 2.
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Example 2.1: Some integer solutions of x2 − 3y2 = 1 are(
x1
y1

)
=

(
2 3
1 2

)(
1
0

)
=

(
2
1

)
(
x2
y2

)
=

(
2 3
1 2

)2 (
1
0

)
=

(
7
4

)
(
x3
y3

)
=

(
2 3
1 2

)3 (
1
0

)
=

(
26
15

)
(
x4
y4

)
=

(
2 3
1 2

)4 (
1
0

)
=

(
97
56

)
(
x5
y5

)
=

(
2 3
1 2

)5 (
1
0

)
=

(
362
209

)
(
x6
y6

)
=

(
2 3
1 2

)6 (
1
0

)
=

(
1351
780

)
.

Also

7

4
= [1; 1, 3]

26

15
= [1; 1, 2, 1, 3]

97

56
= [1; 1, 2, 1, 2, 1, 3]

362

209
= [1; 1, 2, 1, 2, 1, 2, 1, 3]

1351

780
= [1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 3].

Now we consider the the Pell equation x2 − Py2 = Q for
p > 5.

Theorem 2.2: Let p > 5, then for the Pell equation x2 −
Py2 = Q, we get

1) The fundamental solution is (x1, y1) = (k + 1, 1).
2) The continued fraction expansion of

√
P is

√
P =

⎧⎨
⎩

[t; 2t] if p = 2t2 + 1
[t; t, 2t] if p = 2t2 + 3
[t− 1; 1, t− 2, 1, 2t− 2] if p = 2t2 − 5.

3) Define the sequence {(xn, yn)}, where(
xn
yn

)
=

(
k + 1 2k + 1
1 k + 1

)n (
1
0

)
(14)

for n ≥ 1. Then x2n − Py2n = Qn for n ≥ 1.
4) The solutions (xn, yn) satisfy

xn = (k + 1)xn−1 + (2k + 1)yn−1

yn = xn−1 + (k + 1)yn−1

for n ≥ 2.

Proof: Recall that P = 2k + 1 and Q = k2. So we have
x2 − (2k + 1)y2 = k2.

1) The fundamental solution is (x1, y1) = (k + 1, 1) since
(k + 1)2 − (2k + 1).12 = k2 + 2k + 1− 2k − 1 = k2.

2) Let p = 2t2+1 for some positive integer t. Then we get

4k + 1 = 2t2 + 1 ⇔ k =
t2

2

and hence P = 2k + 1 = t2 + 1. It is easily seen that
√
t2 + 1 = t+ (

√
t2 + 1− t) = t+

1

(
√
t2+1−t)

= t+
1

√
t2+1+t

1

= t+
1

2t+ (
√
t2 + 1− t)

.

So
√
P = [t; 2t]. Similarly it can be shown that if p = 2t2+3,

then
√
P = [t; t, 2t] and if p = 2t2 − 5, then

√
P = [t −

1; 1, t− 2, 1, 2t− 2].
3) We prove it by induction on n. Let n = 1. Then(
x1
y1

)
=

(
k + 1 2k + 1
1 k + 1

)(
1
0

)
=

(
k + 1
1

)

which is the fundamental solution. Let us assume that the
equation x2 − Py2 = Qn is satisfied for n − 1, that is,
x2n−1 − Py2n−1 = Qn−1. For n, we obtain(

xn
yn

)
=

(
k + 1 2k + 1
1 k + 1

)n (
1
0

)

=

(
k + 1 2k + 1
1 k + 1

)(
xn−1

yn−1

)

=

(
(k + 1)xn−1 + (2k + 1)yn−1

xn−1 + (k + 1)yn−1

)
. (15)

So

x2n − Py2n = [(k + 1)xn−1 + (2k + 1)yn−1]
2

−(2k + 1)[xn−1 + (k + 1)yn−1]
2

= (k + 1)2x2n−1 + 2(k + 1)(2k + 1)xn−1yn−1

+(2k + 1)2y2n−1

−(2k + 1)x2n−1 − 2(2k + 1)(k + 1)xn−1yn−1

−(2k + 1)(k + 1)2y2n−1

= x2n−1[(k + 1)2 − (2k + 1)]

+y2n−1[(2k + 1)2 − (2k + 1)(k + 1)2]

= k2[x2n−1 − (2k + 1)y2n−1]

= k2(Qn−1)

= k2(k2)n−1

= k2n

= Qn.

Therefore x2n − Py2n = Qn as we claimed.

Example 2.2: 1) Let t = 6. Then p = 2t2 + 1 = 73 is a
prime and k = 18. So we have the Pell equation x2− 37y2 =
324. Note that

√
37 = [6, 12]. The fundamental solution is

(x1, y1) = (19, 1) and for(
x2
y2

)
=

(
19 37
1 19

)2 (
1
0

)
=

(
398
38

)
(
x3
y3

)
=

(
19 37
1 19

)3 (
1
0

)
=

(
8968
1120

)
(
x4
y4

)
=

(
19 37
1 19

)4 (
1
0

)
=

(
211832
30243

)
(
x5
y5

)
=

(
19 37
1 19

)5 (
1
0

)
=

(
5143984
786544

)
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we have x2n − 37y2n = 324n, and etc.

2) Let t = 23. Then p = 2t2 + 3 = 1061 is a prime and
k = 265. So we have the Pell equation x2 − 531y2 = 70225.
Note that

√
531 = [23; 23, 46]. The fundamental solution is

(x1, y1) = (265, 1) and for(
x2
y2

)
=

(
71287
532

)
(
x3
y3

)
=

(
19244834
212799

)
(
x4
y4

)
=

(
5232122113
75849368

)
(
x5
y5

)
=

(
1432020496466
25408054001

)

we have x2n − 531y2n = 70225n, and etc.

3) Let t = 9. Then p = 2t2 − 5 = 157 is a prime and
k = 39. So we have the Pell equation x2 − 79y2 = 1521.
Note that

√
79 = [8, 1, 7, 1, 16]. The fundamental solution is

(x1, y1) = (40, 1) and for
(
x2
y2

)
=

(
40 79
1 40

)2 (
1
0

)
=

(
1679
80

)
(
x3
y3

)
=

(
40 79
1 40

)3 (
1
0

)
=

(
73480
4879

)
(
x4
y4

)
=

(
40 79
1 40

)4 (
1
0

)
=

(
3324641
268640

)
(
x5
y5

)
=

(
40 79
1 40

)5 (
1
0

)
=

(
154208200
14070241

)

we have x2n − 79y2n = 1521n, and etc.

III. THE PELL EQUATION x2 − Py2 = Q OVER Fp

In [20], we considered the Pell Equations x2 − ky2 = N
and x2 + xy − ky2 = N over finite fields Fp. In this section,
we will consider the integer solutions of x2 − Py2 = Q over
finite fields Fp. Let

Dp = {(x, y) ∈ Fp × Fp : x2 − Py2 ≡ Q(mod p)}.
Then we can give the following theorem.

Theorem 3.1: For the Pell equation x2−Py2 = Q, we have

#Dp =

{
p+ 1 if p ≡ 5(mod 8)
p− 1 if p ≡ 1(mod 8).

Proof: Let p ≡ 5(mod 8). If y = 0, the the quadratic
equation x2 ≡ k2(mod p) has two solutions x = k and x =
p − k. If x = 0, then the quadratic equation −(2k + 1)y2 ≡
k2(mod p) has no solution y. Now let Sp = Fp −{k, p− k}.
Then there are p−1

2 elements x in Sp such that x2−Q
P is a

square. Let x2−Q
P = u2 for some u �= 0. Then we get y2 ≡

u2(mod p) and hence y = u and y = −u, that is, there
are two integer solutions (x, u) and (x, p − u). So there are
2(p−1

2 ) = p− 1 solutions. We see as above that this equation

has also two solutions (k, 0) and (p−k, 0). So x2−Py2 = Q
has p− 1 + 2 = p+ 1 integer solutions.

Similarly it can be shown that if p ≡ 1(mod 8), then x2 −
Py2 = Q has p− 1 integer solutions.
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