
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:8, 2010

1149

On Cross-Ratio in some Moufang-Klingenberg
Planes

Atilla Akpinar and Basri Celik

Abstract—In this paper we are interested in Moufang-Klingenberg
planes M(A) defined over a local alternative ring A of dual numbers.
We show that a collineation of M(A) preserve cross-ratio. Also, we
obtain some results about harmonic points.
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I. INTRODUCTION

In the Euclidean plane, Desargues established the funde-
mantal fact that cross-ratio (a concept originally introduced by
Pappus of Alexandria c.300 B.C) is invariant under projection
[4, p. 133]. For this reason, cross-ratio is one of the most
important concepts of projective geometry.

In this paper we deal with the class (which we will denote by
M(A)) of Moufang-Klingenberg (MK) planes coordinatized
by a local alternative ring

A := A (ε) = A + Aε

(an alternative field A, ε /∈ A and ε2 = 0) introduced by
Blunck in [8]. We will show that a collineation of M(A)
given in [2] preserves cross-ratio. Moreover, we will obtain
some results related to harmonic points. For more information
about some well-known properties of cross-ratio in the case
of Moufang planes or MK-planes M(A), respectively, it can
be seen the papers of [10], [5], [9] or [8], [1].

The paper is organized as follows: Section 2 includes some
basic definitions and results from the literature. In Section 3
we will give a collineation of M(A) from [2] and we show
that this collineation preserves cross-ratio. Finally, we obtain
some results on harmonic points.

II. PRELIMINARIES

Let M = (P,L,∈,∼) consist of an incidence structure
(P,L,∈) (points, lines, incidence) and an equivalence relation
‘∼’ (neighbour relation) on P and on L, respectively. Then
M is called a projective Klingenberg plane (PK-plane), if it
satisfies the following axioms:

(PK1) If P,Q are non-neighbour points, then there is a
unique line PQ through P and Q.

(PK2) If g, h are non-neighbour lines, then there is a unique
point g ∩ h on both g and h.

(PK3) There is a projective plane M∗ = (P∗,L∗,∈) and
an incidence structure epimorphism Ψ : M → M∗, such that
the conditions

Ψ(P ) = Ψ(Q) ⇔ P ∼ Q, Ψ(g) = Ψ(h) ⇔ g ∼ h
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hold for all P,Q ∈ P, g, h ∈ L.

A point P ∈ P is called near a line g ∈ L iff there exists
a line h ∼ g such that P ∈ h.

Let h, k ∈ L, C ∈ P, C is not symmetric to h and k. Then
the well-defined bijection

σ := σC (k, h) :
{
h→ k
X → XC ∩ k

mapping h to k is called a perspectivity from h to k with
center C. A product of a finite number of perspectivities is
called a projectivity.

An incidence structure automorphism preserving and re-
flecting the neighbour relation is called a collineation of M.

A Moufang-Klingenberg plane (MK-plane) is a PK-plane
M that generalizes a Moufang plane, and for which M∗ is a
Moufang plane (for the exact definition see [3]).

An alternative ring (field) R is a not necessarily associative
ring (field) that satisfies the alternative laws

a (ab) = a2b, (ba) a = ba2,∀a, b ∈ R.

An alternative ring R with identity element 1 is called local
if the set I of its non-unit elements is an ideal.

We are now ready to give consecutively two important
lemmas related to alternative rings.

Lemma 2.1: The subring generated by any two elements of
an alternative ring is associative (cf. [12, Theorem 3.1]).

Lemma 2.2: The identities

x (y (xz)) = (xyx) z
((yx) z)x = y (xzx)
(xy) (zx) = x (yz)x

which are known as Moufang identities are satisfied in every
alternative ring (cf. [11, p. 160]).

We summarize some basic concepts about the coordinatiza-
tion of MK-planes from [3].

Let R be a local alternative ring. Then M(R) = (P,L,∈
,∼) is the incidence structure with neighbour relation defined
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as follows:

P = {(x, y, 1) : x, y ∈ R}
∪{(1, y, z) : y ∈ R, z ∈ I}
∪{(w, 1, z)| : w, z ∈ I},

L = {[m, 1, p] : m, p ∈ R}
∪{[1, n, p] : p ∈ R, n ∈ I}
∪{[q, n, 1] : q, n ∈ I}

[m, 1, p] = {(x, xm+ p, 1) : x ∈ R}
∪ {(1, zp+m, z) : z ∈ I}

[1, n, p] = {(yn+ p, y, 1) : y ∈ R}
∪ {(zp+ n, 1, z) : z ∈ I}

[q, n, 1] = {(1, y, yn+ q) : y ∈ R}
∪ {(w, 1, wq + n) : w ∈ I}

and

P = (x1, x2, x3) ∼ (y1, y2, y3) = Q⇔
xi − yi ∈ I (i = 1, 2, 3)),∀P,Q ∈ P

g = [x1, x2, x3] ∼ [y1, y2, y3] = h⇔
xi − yi ∈ I (i = 1, 2, 3)),∀g, h ∈ L.

Now it is time to give the following theorem from [3].

Theorem 2.1: M(R) is an MK-plane, and each MK-plane
is isomorphic to some M(R).

Let A be an alternative field and ε 	∈ A. Consider A :=
A(ε) = A + Aε with componentwise addition and multipli-
cation as follows:

(a1 + a2ε) (b1 + b2ε) = a1b1 + (a1b2 + a2b1) ε,

where ai, bi ∈ A for i = 1, 2. Then A is a local alternative
ring with ideal I = Aε of non-units. The set of formal inverses
of the non-units of A is denoted as I−1. Calculations with the
elements of I−1 are defined as follows [7]:

(aε)−1 + t := (aε)−1 := t+ (aε)−1

q (aε)−1 :=
(
aq−1ε

)−1

(aε)−1
q :=

(
q−1aε

)−1

(
(aε)−1

)−1

:= aε,

where (aε)−1 ∈ I−1, t ∈ A, q ∈ A \ I. (Other terms are not
defined.). For more information about A and its relation to
MK-planes, the reader is referred to the papers of Blunck [7],
[8]. In [8], the centre Z (A) is defined to be the (commutative,
associative) subring of A which is commuting and associating
with all elements of A. It is Z (A) := Z (ε) = Z+Zε, where
Z = {z ∈ A :za = az, ∀a ∈ A} is the centre of A. If A is
not associative, then A is a Cayley division algebra over its
centre Z.

Throughout this paper we assume charA 	= 2 and we
restrict ourselves to the MK-planes M(A)

Blunck [8] gives the following algebraic definition of the
cross-ratio for the points on the line g := [1, 0, 0] in M(A).

(A,B;C,D) := (a, b; c, d)

=<
(
(a− d)−1 (b− d)

)(
(b− c)−1 (a− c)

)
>

(Z,B;C,D) :=
(
z−1, b; c, d

)
=<

(
(1 − dz)−1 (b− d)

)(
(b− c)−1 (1 − cz)

)
>

(A,Z;C,D) :=
(
a, z−1; c, d

)
=<

(
(a− d)−1 (1 − dz)

)(
(1 − cz)−1 (a− c)

)
>

(A,B;Z,D) :=
(
a, b; z−1, d

)
=<

(
(a− d)−1 (b− d)

)(
(1 − zb)−1 (1 − za)

)
>

(A,B;C,Z) :=
(
a, b; c, z−1

)
=<

(
(1 − za)−1 (1 − zb)

)(
(b− c)−1 (a− c)

)
>,

where A = (0, a, 1), B = (0, b, 1), C = (0, c, 1), D = (0, d,
1), Z = (0, 1, z) are pairwise non-neighbour points of g and
< x >= {y−1xy : y ∈ A}.

In [7, Theorem 2], it is shown that the transformations

tu (x) = x+ u;u ∈ A
ru (x) = xu;u ∈ A \ I

i (x) = x−1

lu (x) = ux =
(
ir−1

u i
)
(x) ; u ∈ A \ I

which are defined on the line g preserve cross-ratios. In [6,
Corollary (iii)], it is also shown that the group generated
by these transformations, which is denoted by Λ, equals to
the group of projectivities of a line in M(A). The elements
preserving cross-ratio of the group Λ defined on g will act a
very important role in the proof of Theorem 3.1.

We give the following result from [1, Theorem 8]. This
result states a simple way for calculation of the cross-ratio of
the points on any line in M(A).

Theorem 2.2: Let {O,U, V,E} be the basis of M(A)
where O = (0, 0, 1), U = (1, 0, 0), V = (0, 1, 0), E = (1, 1, 1)
(see [3, Section 4]). Then, according to types of lines, the
cross-ratio of the points on the line l can be calculated as
follows:

If A,B,C,D Z are the pairwise non-neighbour points

(a) of the line l = [m, 1, k], where A = (a, am+k, 1), B =
(b, bm + k, 1), C = (c, cm + k, 1), D = (d, dm + k, 1)
are not near to the line UV = [0, 0, 1] and Z = (1,m+
zp, z) is near to UV ;

(b) of the line l = [1, n, p], where A = (an+ p, a, 1), B =
(bn+ p, b, 1), C = (cn+ p, c, 1), D = (dn+ p, d, 1) are
not neighbour to V and Z = (n+ zp, 1, z) ∼ V ;

(c) of the line l = [q, n, 1], where A = (1, a, q + an), B =
(1, b, q+ bn), C = (1, c, q+ cn), D = (1, d, q+ dn) are
not neighbour to V and Z = (z, 1, zq + n) ∼ V ;
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then

(A,B;C,D) = (a, b; c, d)
(Z,B;C,D) =

(
z−1, b; c, d

)
(A,Z;C,D) =

(
a, z−1; c, d

)
(A,B;Z,D) =

(
a, b; z−1, d

)
(A,B;C,Z) =

(
a, b; c, z−1

)
.

We can give an important theorem, from [1, Theorem 9],
about cross-ratio.

Theorem 2.3: In M(A), perspectivities preserve cross-rati-
os.

Now we give a definition in M(A), well known from the
case of Moufang planes [10]. In M(A), any pairwise non-
neighbour four points A,B,C,D ∈ l are called as harmonic
if (A,B;C,D) =< −1 > and we let h(A,B,C,D) represent
the statement: A,B,C,D are harmonic.

III. ON CROSS-RATIO IN M(A).

In this section we will give a collineation of M(A), from
[2]. Next, we show that the collineation preserve cross-ratios.
Now we start with giving the collineation of M(A), where
w, z, q, n ∈ A:For any s /∈ I, the map Js transforms points
and lines as follows:

(x, y, 1) → (
ys−1, xs, 1

)
(1, y, zε) → (

1, sy−1s, s(y−1z)
)
if y /∈ I

(1, y, zε) → (
s−1ys−1, 1, s−1z

)
if y ∈ I

(wε, 1, zε) → (1, sws, sz)

and

[m, 1, k] → [
sm−1s, 1,− (km−1

)
s
]
if m /∈ I

[m, 1, k] → [
1, s−1ms−1, ks−1

]
if m ∈ I

[1, nε, p] → [sns, 1, ps]
[qε, nε, 1] → [

sn, s−1q, 1
]
.

Now we are ready to give the following

Theorem 3.1: The collineation Js preserve cross-ratio.
Proof: Let A,B,C,D and Z be the points with the

property given in the statement of Theorem 2.2. Then, it is
obvious that

(A,B;C,D) = (a, b; c, d)
(Z,B;C,D) =

(
z−1, b; c, d

)
(A,Z;C,D) =

(
a, z−1; c, d

)
(1)

(A,B;Z,D) =
(
a, b; z−1, d

)
(A,B;C,Z) =

(
a, b; c, z−1

)
,

where z ∈ I. In this case we must find the effect of ϕ to the
points of any line where ϕ is the collineations Js.

Let ϕ =Js. If l = [m, 1, k], then

ϕ(X) = ϕ(x, xm+ k, 1)
= ((xm+ k)s−1, xs, 1)

ϕ(Z) = ϕ(1,m+ zk, z)
= (1, s(m+ zk)−1s, s((m+ zk)−1z))

for m+ zk /∈ I

ϕ(Z) = ϕ(1,m+ zk, z)
= (s−1(m+ zk)s−1, 1, s−1z),

for m+ zk ∈ I

ϕ (l) =
[
sm−1s, 1,− (km−1

)
s
]
for m /∈ I

ϕ (l) =
[
1, s−1ms−1, ks−1

]
for m ∈ I.

In this case, from (a) of Theorem 2.2, the cross-ratio of the
points of [sm−1s, 1,− (km−1

)
s] is as follows:

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D))
= ((am+ k) s−1, (bm+ k) s−1;
(cm+ k) s−1, (dm+ k) s−1)
=σ (a, b; c, d)
(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D))

= (
(
s
(
(m+ zk)−1

z
))−1

, (bm+ k) s−1;

(cm+ k) s−1, (dm+ k) s−1)
= σ

(
z−1, b; c, d

)
,

where σ = rm−1 ◦ t−k ◦rs ∈ Λ. From (b) of Theorem 2.2, the
cross-ratio of the points of

[
1, s−1ms−1, ks−1

]
is as follows:

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D))
= (as, bs; cs, ds) =σ (a, b; c, d)
(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D))
= (z−1s, bs; cs, ds) =σ

(
z−1, b; c, d

)
,

where σ = rs−1 ∈ Λ.
If l = [1, n, p], then

ϕ (X) = ϕ (xn+ p, x, 1) = (xs−1, (xn+ p)s, 1)
ϕ (Z) = ϕ (n+ zp, 1, z) = (1, s(n+ zp)s, sz)

and

ϕ (l) = [sns, 1, ps] .

In this case, from (a) of Theorem 2.2, the cross-ratio of the
points of [sns, 1, ps] is as follows:

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D))
= (as−1, bs−1; cs−1, ds−1) =σ (a, b; c, d)
(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D))
= (z−1s−1, bs−1; cs−1, ds−1) =σ

(
z−1, b; c, d

)
,

where σ = rs ∈ Λ. If l = [q, n, 1], then

ϕ (X) = ϕ (1, x, q + xn) = (1, sx−1s, s(x−1(q + xn)))
for x /∈ I

ϕ (X) = ϕ (1, x, q + xn) = (s−1xs−1, 1, s−1(q + xn))
for x ∈ I

ϕ (Z) = ϕ (z, 1, zq + n) = (1, szs, s(zq + n))
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and

ϕ (l) =
[
sn, s−1q, 1

]
.

In this case, from (c) of Theorem 2.2, the cross-ratio of the
points of

[
sn, s−1q, 1

]
is as follows:

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D))
=
(
sa−1s, sb−1s; sc−1s, sd−1s

)
=σ (a, b; c, d) ,
(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D))
=
(
szs, sb−1s; sc−1s, sd−1s

)
=σ

(
z−1, b; c, d

)
,

where σ = i ◦ ls−1 ◦ rs−1 ∈ Λ. Consequently, by considering
other all cases we get

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D)) = (a, b; c, d)
(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D)) =

(
z−1, b; c, d

)
(ϕ (A) , ϕ (Z) ;ϕ (C) , ϕ (D)) =

(
a, z−1; c, d

)
(ϕ (A) , ϕ (B) ;ϕ (Z) , ϕ (D)) =

(
a, b; z−1, d

)
(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (Z)) =

(
a, b; c, z−1

)

for collineation ϕ. Combining the last result and the result of
(1), the proof is completed.

Now we are ready to give the other results of the paper.
On A we give the following theorem, an alternate definition
of harmonicty and given for an alternative ring A with
charA 	= 2.

Theorem 3.2: Let a, b, c, d ∈ A. Then h (a, b, c, d) if and
only if

1) if a, b, c, d ∈ A, 2(a− b)−1 = (a− c)−1 + (a− d)−1.
2) if a = z−1, 2(d− c)−1 + (c− b)−1 = z ∈ I.
3) if b = z−1, 2(c− d)−1 + (d− a)−1 = z ∈ I.
4) if c = z−1, 2(b− a)−1 + (d− b)−1 = z ∈ I.
5) if d = z−1, 2(a− b)−1 + (c− a)−1 = z ∈ I.

Proof: 1. From the definition of cross-ratio,

h (a, b, c, d) =
(
(a− d)−1 (b− d)

)(
(b− c)−1 (a− c)

)
= −1.

By direct computation (with Lemma 2.1),

(a− d)−1 (b− d) = − (a− c)−1 (b− c)
(a− d)−1 (b− a+ a− d) = − (a− c)−1 (b− a+ a− c)
(a− d)−1 (b− a) + 1 = − (a− c)−1 (b− a) − 1
2 = − (a− c)−1 (b− a) − (a− d)−1 (b− a)
2 (a− b)−1 = (a− c)−1 + (a− d)−1

.

2. From the definition of cross-ratio,

h
(
z−1, b, c, d

)
=
(
(1 − dz)−1 (b− d)

)(
(b− c)−1 (1 − cz)

)
= −1.

By direct computation (Lemma 2.1),

(b− c)−1 (1 − cz) = − (b− d)−1 (1 − dz)
(b− c)−1 (1 − cz) = − (b− d)−1 (1 − cz + cz − dz)
(b− c)−1 (1 − cz) = − (b− d)−1 (1 − cz)
− (b− d)−1 ((c− d) z)(
(b− c)−1 + (b− d)−1

)
(1 − cz) = − (b− d)−1 ((c− d) z)

(b− c)−1 + (b− d)−1 = −
(
(b− d)−1 ((c− d) z)

)
(1 + cz)

(b− c)−1 + (b− d)−1 = − (b− d)−1 ((c− d) z)
(b− d) (b− c)−1 + 1 = − (c− d) z
(b− c+ c− d) (b− c)−1 + 1 = − (c− d) z
2 + (c− d) (b− c)−1 = − (c− d) z
2 (c− d)−1 + (b− c)−1 = −z
2 (d− c)−1 + (c− b)−1 = z ∈ I,

where zz = 0 since z ∈ I.
3. The proof is same the proof of 2.
4. From the definition of cross-ratio,

h
(
a, b, z−1, d

)
=
(
(a− d)−1 (b− d)

)(
(1 − zb)−1 (1 − za)

)
= −1.

By direct computation (Lemma 2.1),

(1 − zb)−1 (1 − za) = − (b− d)−1 (a− d)
(1 + zb) (1 − za) = − (b− d)−1 (a− b+ b− d)
1 + zb− za = − (b− d)−1 (a− b) − 1
2 + z (b− a) = − (b− d)−1 (a− b)
2(b− a)−1 + z = (b− d)−1

2(b− a)−1 + (d− b)−1 = z ∈ I,

where (1 − zb)−1 = 1 + zb and zz = 0.
5. The proof is same the proof of 4.

Now, we give the following theorem, given as without proof
in [10] for A.

Theorem 3.3: On A, the followings is valid:

1) h
(
0, a, 0−1, a

2

)
2) h

(
a, b, 0−1, a+b

2

)
3) h

(
a,−a, 0−1, 0

)
4) h

(
1,−1, a, a−1

)
5) h

(
a2, 1, a,−a)

Proof: 1. By the definition of cross-ratio, since
(
0, a, 0−1,

a

2

)
=
(
0 − a

2

)−1 (
a− a

2

)
=

−2
a

a

2
= −1,

then h
(
0, a, 0−1, a

2

)
.

2. By the definition of cross-ratio, since
(
a, b, 0−1,

a+ b

2

)
=

(
a− a+ b

2

)−1(
b− a+ b

2

)

=
(
a− b

2

)−1(
b− a

2

)
= −1,
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then h
(
a, b, 0−1, a+b

2

)
.

3. By the definition of cross-ratio, since
(
a,−a, 0−1, 0

)
= (a− 0)−1 (−a− 0) = −1,

then h
(
a,−a, 0−1, 0

)
.

4. By the definition of cross-ratio, since
(
1,−1, a, a−1

)
=

((
1 − a−1

)−1 (−1 − a−1
))

(
(−1 − a)−1 (1 − a)

)

=
((
a−1 − 1

)−1 − (1 − a−1
)−1

a−1
)

(
(−1 − a)−1 + (1 + a)−1

a
)

=
((
a−1 − 1

)−1 − (a (1 − a−1
))−1

)
(
(−1 − a)−1 +

(
a−1 (1 + a)

)−1
)

=
((
a−1 − 1

)−1 − (a− 1)−1
)

(
− (1 + a)−1 +

(
a−1 + 1

)−1
)

= (a−1 − 1)−1(a−1 + 1)−1 − (1 + a)−1

− (a− 1)−1
((
a−1 + 1

)−1 − (1 + a)−1
)

=
(
a−1 − 1

)−1 (
a−1 + 1

)−1 − (a−1 − 1
)−1

(1 + a)−1 − (a− 1)−1 (
a−1 + 1

)−1

+ (a− 1)−1 (1 + a)−1

=
((
a−1 + 1

) (
a−1 − 1

))−1

− ((1 + a)
(
a−1 − 1

))−1

− ((a−1 + 1
)
(a− 1)

)−1

+ ((1 + a) (a− 1))−1

=
(
a−1a−1 − a−1 + a−1 − 1

)−1

− (a−1 − 1 + 1 − a
)−1

− (1 − a−1 + a− 1
)−1

+ (a− 1 + aa− a)−1

=
(
a−1a−1 − 1

)−1 − (a−1 − a
)−1

− (−a−1 + a
)−1

+ (−1 + aa)−1

=
(
a−1

(
a−1 − a

))−1 − (a−1 − a
)−1

+
(
a−1 − a

)−1 − (a (a−1 − a
))−1

=
(
a−1 − a

)−1
a− (a−1 − a

)−1
a−1

=
(
a−1 − a

)−1 (
a− a−1

)
= −1,

then h
(
1,−1, a, a−1

)
.

5. By the definition of cross-ratio, since
(
a2, 1, a,−a) =

((
a2 + a

)−1
(1 + a)

)(
(1 − a)−1 (

a2 − a
))

=
(
((a+ 1) a)−1 (1 + a)

)(
(1 − a)−1 ((a− 1) a)

)

=
(
a−1 (a+ 1)−1 (1 + a)

)(
(1 − a)−1 (a− 1) a

)

= a−1 (−a)
= −1,

then h
(
a2, 1, a,−a).
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