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Abstract—The present study investigates numerically the 

phenomenon of vortex-shedding and its suppression in two-
dimensional mixed convective flow past a square cylinder under the 
joint influence of buoyancy and free-stream orientation with respect 
to gravity.  The numerical experiments have been conducted at a 
fixed Reynolds number (Re) of 100 and Prandtl number (Pr) of 0.71, 
while Richardson number (Ri) is varied from 0 to 1.6 and free- 
stream orientation, α, is kept in the range 0o≤ α ≤ 90o, with 0o 
corresponding to an upward flow and 90o representing a cross-flow 
scenario, respectively.  The continuity, momentum and energy 
equations, subject to Boussinesq approximation, are discretized using 
a finite difference method and are solved by a semi-explicit pressure 
correction scheme.  The critical Richardson number, leading to the 
suppression of the vortex-shedding (Ric), is estimated by using 
Stuart-Landau theory at various free-stream orientations and the 
neutral curve is obtained in the Ri-α plane.   The neutral curve 
exhibits an interesting non-monotonic behavior with Ric first 
increasing with increasing values of α upto 45o and then decreasing 
till 70o.  Beyond 70o, the neutral curve again exhibits a sharp 
increasing asymptotic trend with Ric approaching very large values 
as α approaches 90o.  The suppression of vortex shedding is not 
observed at α = 90o (cross-flow).  In the unsteady flow regime, the 
Strouhal number (St) increases with the increase in Richardson 
number.  
 

Keywords—bluff body, buoyancy, free-stream orientation, 
vortex-shedding.  

I. INTRODUCTION 
LUID flow past a bluff body experiences separation that 
produces counter-rotating low-pressure vortices on the 

downstream side of the bluff body. Depending on the flow 
parameters, the vortices remain stable leading to a steady flow 
or are shed periodically from either side of the bluff body 
leading to a time-periodic flow.  The study of bluff body 
wakes is important from the point of view of applications in 
aerodynamics, wind engineering, design of long spanned 
bridges, and towering structures etc. The periodic force 
loading on the structure, generated due to alternate shedding 
of vortices, induces structural vibration and noise leading to 
catastrophic affects. 

The methods that are employed for controlling vortex-
shedding from bluff bodies can be broadly categorized as, (i) 
passive and (ii) active control methods.  Attaching a splitter 
plate to the downstream side of the bluff body and 
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streamlining the structures helps in reducing vortex-shedding.  
Sharp-edged helical strakes are widely used to control the 
vortex-shedding from chimney stacks, towers, suspended 
pipes and cables. Introduction of a control cylinder in the 
wake of a bluff body, to control the phenomenon of vortex-
shedding, is another example of passive control approach [1]-
[5]. 

Active control strategies attempt to control vortex-shedding 
from bluff bodies by generating forces in the flow that alter 
the flow dynamics.   Control via generation of body forces of 
thermal or electromagnetic origin in the flow, is an example of 
active control strategy.  Rotation and oscillatory motion of 
bluff bodies represent another type of active control approach 
for controlling the phenomenon of vortex-shedding.  The 
present study focuses on the control of vortex-shedding by 
heating the bluff-body.  It is well known that the density 
differences in the fluid caused by thermal effects generate 
buoyancy forces in the fluid in the presence of an externally 
imposed body force field like gravity.  These buoyancy forces 
affect the flow dynamics in a complex manner by regulating 
both (a) particle linear momentum and (b) the particle 
vorticity (baroclinic effect).  It is also known that if the 
buoyancy effects are sufficiently large in comparison to the 
fluid inertia, the vortex-shedding can be suppressed [6]-[14], 
[16], [17]. 

Most of the earlier studies on mixed convective flow past 
bluff-bodies have considered either the cross-flow 
configuration or the configuration in which the buoyancy 
forces are aligned with the direction of the free-stream 
(opposing / aiding).  Further, either the circular cylinder or the 
square cylinder has been considered as the representative 
bluff-body geometry.  The case of square cylinder is much 
more complicated than the circular cylinder owing to the 
sensitivity of the flow dynamics to the free-stream orientation 
even in the forced convective flow regime. 

The generic problem of two-dimensional mixed convective 
flow past a heated / cooled square cylinder involving the 
effects of free-stream orientation and buoyancy together has 
received very little attention.  Fig. 1 depicts a square cylinder 
kept in a free-stream approaching with a velocity of U∞  at an 
orientation specified by the angle ‘α’.  The temperature 
difference between the body and the fluid gives rise to 
buoyancy effect in the presence of gravity force.  The 
buoyancy force would act in positive y-direction, if the 
temperature of the body is higher than the surrounding fluid 
and vice-versa.  The flow dynamics in the generic scenario is 
characterized by five dimensionless parameters given as, 

 

A. Rashid and N. Hasan 

Vortex-Shedding Suppression in Mixed 
Convective Flow past a Heated Square Cylinder 

F 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:6, 2011

1053

 

 

i) Reynolds number (Re) = 0/U d υ∞  

ii) Richardson number (Ri) = 2( ( ) ) /sg T T d Uβ ∞ ∞−  
iii) Prandtl number (Pr) = 0 0/υ κ  
iv) Free stream orientation with respect to gravity = α   
v) Cylinder orientation with respect to the x-axis = φ 

It is worth mentioning that for the forced flow, α and φ, cease 
to act as independent parameters and rather any one of them 
can be used to fix the cylinder orientation with respect to the 
free-stream.  In the above dimensionless numbers, ‘U∞ ’ is the 
free stream velocity, ‘ d ’ is the characteristic length scale of 
the body, ‘ g ’ is the gravitational intensity, ‘ β ’ is the 
coefficient of volume expansion, ‘ sT ’ is the uniform cylinder 
temperature, ‘ T∞ ’ is the free-stream fluid temperature, 0υ  and 

0κ  are the kinematic viscosity and thermal diffusivity at some 
reference temperature 0T  which is chosen to be the free 
stream fluid temperature T∞ . 

 
Fig. 1 Definition of the geometry and integration domain of two-

dimensional flow past a square cylinder 
 

The phenomenon of vortex-shedding (and its suppression) 
for two-dimensional mixed convective flows has been studied 
mostly in the context of square and circular cylinders.    
Sharma and Eswaran [13] studied numerically the two-
dimensional mixed convective flow and heat transfer 
characteristics around a square cylinder maintained at a 
constant temperature for α = 0o.  They considered the effect of 
heating (Ri > 0, aiding buoyancy) as well as cooling (Ri < 0, 
opposing buoyancy) with the values of Ri varied in the range 
(-1, 1) at (Re = 100, Pr = 0.7, φ = 0o).  The vortex-shedding 
suppression or the disappearance of the Karman vortex street 
was found to occur at a critical Richardson number of 0.15. 

Sharma and Eswaran [14] studied the effect of channel-
confinement of various degree (blockage ratio of 10%, 30%, 
and 50%) on the two-dimensional upward flow (α = 0o) and 

heat transfer characteristics around a heated/cooled square 
cylinder by considering the aiding/opposing buoyancy by 
varying the values of Ri in the range (-1, 1) at (Re = 100, Pr = 
0.7 and φ = 0o).  It was shown that with increasing blockage 
ratio, the minimum heating (critical Ri) required for the 
suppression of vortex-shedding decreases up to a certain 
blockage ratio (= 30%), but thereafter increases.  At a constant 
blockage ratio (= 30%), the value of Ri at which vortex-
shedding is suppressed increases with Re. 

Bhattacharyya and Mahapatra [15] studied numerically the 
influence of buoyancy on vortex shedding and heat transfer 
from a two-dimensional square cylinder exposed to a 
horizontal stream (α = 90o, φ = 0o) for (100 ≤ Re ≤1400, 0 ≤ 
Ri ≤ 1) at Prandtl number of 0.72.  They found that the 
centerline symmetry of the wake was lost and the cylinder 
experiences a mean downward lift when the buoyancy effect 
was considered.  Vortex-shedding suppression was not 
observed for any value of Ri. 

Singh et al. [16] investigated experimentally the wakes 
behind heated circular and square cylinders by schlieren-
interferometry for (α = 0o, φ = 0o).  The disappearance of 
vortex-shedding was observed at Ri = 0.122 for Re = 94 and 
at Ri = 0.157 for Re = 110 for a circular cylinder.  The critical 
Ri values for a square cylinder were reported equal to 0.107, 
0.121, 0.140, 0.155, and 0.171 for Re = 87, 94, 103, 109, and 
118, respectively.   

Kakade et al. [17] studied experimentally the joint influence 
of buoyancy and orientation of a square cylinder (φ) on 
vortex-shedding and wake characteristics at α = 0o for (Re = 
56, 87, and 100, Ri = 0.031-0.291 and 0 ≤ φ ≤ 45o).  They 
showed that at a Reynolds number of 56 and an incidence 
angle of 0o, vortex-shedding was absent at all Richardson 
numbers.  At Reynolds numbers of 87 and 100 and Ri ≠ 0, 
regular vortex-shedding was observed for all incidence angles.  
However at higher Richardson numbers, vortex-shedding was 
suppressed.   

The present study reports the phenomenon of vortex-
shedding suppression past a square cylinder in two-
dimensional mixed convective laminar flow regime, under the 
joint influence of buoyancy and free-stream orientations (α) 
with respect to gravity.  The numerical experiments have been 
conducted at Re = 100, Pr = 0.71 and φ = 0o.  The free-stream 
orientations and Ri are varied in the ranges of 0o ≤ α ≤ 90o and 
0 ≤ Ri ≤ 1.6.  At each value of α, a series of computations are 
carried out in the unsteady flow regime near the critical point 
(vortex-shedding suppression point) and the equilibrium 
amplitudes of oscillations of the periodic flow are utilized to 
estimate the critical values of the Richardson number Ri by 
employing the Stuart-Landau theory.  In this manner, neutral 
curve in the (Ri- α) plane, separating the steady and unsteady 
flow regimes is obtained.  In the unsteady flow regime, the 
shedding frequency or the Strouhal number is estimated for 
different combinations of Ri and α. 
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II. MATHEMATICAL FORMULATION 
In the present study the flow field is taken to be two-

dimensional, unsteady, viscous and laminar.  The effects of 
buoyancy are accounted via the Boussinesq approximation 
(Tritton [18]).  Generalized curvilinear (body-fitted) 
coordinates are employed.  The governing equations of mass, 
momentum and energy in non-dimensional form, subjected to 
Boussinesq approximation in Cartesian coordinates 
transformed into body fitted coordinates (Warsi et al. [19]) are 
given as follows, 
Continuity: 

0
y y x x

u v
J J J J
η ξ η ξ

ξ η ξ η
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

− + − + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
     (1) 

x – Momentum: 
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    (2) 

y – Momentum: 

2 2 2

2 2

1 2
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  (3) 

Energy Equation: 

2 2 2

2 2

1 .
Re Pr

2

U U

A B C P Q

ξ ηθ θ θ
τ ξ η

θ θ θ θ θ
ξ η ξ ηξ η

∂ ∂ ∂
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∂ ∂ ∂

⎛ ⎞∂ ∂ ∂ ∂ ∂
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%%
      (4) 

In the above equations,  and U Uξ η  are the dimensionless 
velocities in ξ and η directions, defined as, 

y x
U u v

J J
η ηξ ⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 
y x

U u v
J J
ξ ξη ⎛ ⎞ ⎛ ⎞

= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.    (5) 

The terms A, B, C and J   are defined as, 
2 2

2

y x
A

J
η η⎛ ⎞+

= ⎜ ⎟⎜ ⎟
⎝ ⎠

, 2

x x y y
B

J
ξ η ξ η+⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 
2 2

2

y x
C

J
ξ ξ⎛ ⎞+

= ⎜ ⎟⎜ ⎟
⎝ ⎠

, and 

( )J x y x yξ η η ξ= −                 (6) 

In order to convert the basic equations to non-dimensional 
form, the following scales are selected: 

i) Length scale = edge of square cylinder ≡  ‘ d ’. 
ii) Velocity scale = free-stream speed ≡  ‘U∞ ’. 
iii) Time scale =‘ /d U∞ ’. 

The changes in fluid temperature and pressure scale as 
( sT T∞− ) and 2

0Uρ ∞  respectively, and the dimensionless 
temperature and pressure are accordingly defined as, 

s

T T
T T

θ ∞

∞

−
=

−
,   2

0

p pp
Uρ

∞

∞

−
=              (7) 

The extra diffusion terms in (2)-(4) involving P%  and Q%  
arises due to the transformation of the laplacian diffusion term 
into generalized curvilinear coordinates (Warsi et al. [19]).  
These terms are related to the transformation metrics as, 

2 Pξ∇ = % , 2 Qη∇ = %                 (8) 

III. NUMERICAL DETAILS 
In this section the grid structure, numerical scheme and 

boundary conditions are presented. 

A. Grid Structure 
Elliptic grid generation technique is used to develop an O- 

type grid.  Elliptic grid generation is one of the several 
methods used to generate structured grids for odd geometries.  
The simplest elliptic grid is the one governed by the Laplace’s 
equation i.e. 

2 20, 0∇ = ∇ =ξ η                (9) 
In order to generate the grid, the infinite physical domain is 

truncated by an artificial boundary.  The geometry of the 
artificial boundary surrounding the cylinder is taken to be a 
concentric circle of a diameter that is large compared to that of 
the cylinder.  The truncated physical x-y domain is then 
mapped on the rectangular domain in the ξ-η computational 
plane using well established techniques [19].  
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Fig. 2(a) Structured Grid (241x325) in physical x-y plane 
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Fig. 2(b) Magnified view of grid near the cylinder surface 

 
Equations (9) are inverted and discretized on a uniform grid 

in the computational plane to obtain the grid in the physical 
plane.  Therefore, for the laplacian grids employed, the 
terms P%  and Q% , according to (8), are taken to be zero in (2)-
(4). 

Fig. 2 (a) shows the typical structured grid of 241x325 and 
Fig. 2 (b) the magnified view of the grid near the cylinder 
surface. 

B. Numerical Scheme 
The governing equations are discretized on a colocated, 

non-staggered body fitted grid by employing finite difference 
type of spatial discretization.  A semi-explicit, pressure 
correction scheme [20], [21] is employed for advancing the 
discrete solution in time from a given set of initial conditions.  
The diffusion terms were treated explicitly in [20], [21], 
however in the present study the diffusion terms are treated 
implicitly in the predictor step of pressure correction scheme, 
permitting the use of much larger time steps than permitting 
by a fully explicit treatment.  The concept of momentum 
interpolation of Rhie and Chow [22] is utilized in order to 
avoid grid scale pressure oscillations that can result, owing to 
the decoupling of the velocity and pressure at a grid point in a 
colocated arrangement.  The scheme is conceptually similar to 
the SMAC algorithm [23]-[25]. 

C. Boundary and Initial Condition 
At the surface of the cylinder the no-slip and no penetration 

condition is applied for velocity components.  The cylinder is 
taken to be at a uniform but elevated temperature Ts.  
Mathematically, these conditions in non dimensional form are 
expressed as, 

0u v= = , 1.0θ = .                (10) 
At infinitely large distance from the cylinder the free-

stream condition exists.  Mathematically, 

( )ˆ ˆos= = +
ur ur
V U c i sin jα α , 0θ =           (11) 

The conditions specified in (11) cannot be employed on the 
entire artificial boundary at relatively short distances.  
Therefore numerical boundary conditions must be employed 
at the artificial boundary.  In order to apply the numerical 
boundary conditions, the artificial boundary is divided into 
two halves, i) the inflow portion and ii) the outflow portion on 
the basis of the direction of the local normal velocity. 

At the inflow portion, the velocity and temperature are 
specified as in (11).  For pressure the normal momentum 
equation is employed.  

At the outflow portion, for velocities, the proposed 
numerical boundary conditions at the outflow portion by 
Hasan et al. [21] are employed.  These conditions permit the 
placement of artificial boundary at relatively short distances 
from the body without significantly affecting the flow 
dynamics.  For temperature a convective boundary condition 
(Orlanski [26]) is applied which is given as, 

0cUθ θ
τ η

∂ ∂
+ =

∂ ∂
,                 (12) 

where, cU  is the local normal fluid velocity. 
For pressure the traction-free boundary condition (Gresho 

[27]), Cheng and Armfield [25]) is utilized. It is given as, 
1

Re

nUp
n

∂
=

∂
.                  (13) 

In the above equation n  is the local normal and nU  is the 
local normal velocity. 

IV. NUMERICAL ASPECTS AND VALIDATION STUDIES 
In this section the effects of grid size, time step, location of 

artificial boundary, are presented to demonstrate the 
sensitivity of the computations on these numerical aspects.  
Further, the accuracy of the computed data is demonstrated 
with the help of validation exercises in which the global 
parameters like drag, Nusselt number are compared with the 
data available in literature.  From the application point of 
view, the effect of flow past bluff body is perceived in terms 
of gross quantities like forces exerted by the fluid on the 
object and the total heat transfer rate between the body and the 
fluid. For the two dimensional problem considered, the gross 
quantities are, Lift or transverse force, Drag or stream wise 
force and Total heat transfer rate. In a non-dimensional 
framework, these gross quantities are expressed in a 
dimensionless manner as follows, 

i) Lift coefficient, ( ) sin cosL Y xC C Cα α= −  
ii) Drag coefficient, ( )D X YC C sin C cosα α= +  

iii) Nusselt number, ( )( ) / (4 )sNu Q k T T∞= −  

Where, 2 2(2 ) / ( ), (2 ) / ( )X X Y YC F U bd C F U bdρ ρ∞ ∞= =  
In the above equations ,X YF F  and Q  are the stream wise 
force, transverse force and heat transfer.  The quantity Q  is 
expressed on a unit span basis of the cylinder. 
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A. Grid Size and time step 
The effect of grid size is studied for the forced flow regime 

by fixing the far boundary at a distance of 40d from the center 
of the cylinder at (Re = 100, Pr = 0.71, α = 0o, φ = 0o) and a 
time step of 0.001 dimensionless units.  Three grids having 
161×225 (G1), 241×325 (G2) and 321×425 (G3) mesh points 
are employed.  In going from grid G1 to G2 the change in the 
flow parameters like mean drag coefficient and Strouhal 
number is less than 1%.  This indicates that the % change in 
the flow parameters is very small in going from G1 to G2 or 
G2 to G3, therefore the grid size of 241×325 is considered 
suitable for grid-independent computations. 

For the study of influence of time step, the computations 
are also performed at time step of 0.0005 dimensionless units 
for (Re = 100, Pr = 0.71, Ri = 0, α = 0o, φ = 0o).  The 
percentage change in mean drag coefficient is 0.027 when 
going from time step of 0.0005 to 0.001.  It is concluded from 
the above discussion that the smaller time step had no 
significant effect on the results therefore the time step of 
0.001 dimensionless units is chosen for the entire 
computations. 

B.  Location of Artificial Boundary 
An exercise is carried out to determine a suitable position 

for the artificial boundary, such that the numerical boundary 
conditions imposed on it do not significantly influence the 
flow dynamics in the vicinity of the square cylinder.  Initially 
the distance of the far boundary is fixed at 120 dimensionless 
units form the center of the cylinder and a grid is generated.  
Then the grid is truncated at distances of 100, 80, 60, 40 and 
20 dimensionless units to yield progressively smaller domain 
with identical grid sizes in the ξ and η directions.  For each 
choice of the location of the far boundary, computation is 
performed for Re = 100, Pr = 0.71, Ri = 0, α = 0o,  φ = 0o and 
the lift and drag coefficients and Strouhal number are 
calculated.  For distance beyond 20, the changes in the values 
of mean lift coefficient, mean drag coefficient and Strouhal 
number are quite small.  Therefore, a distance in excess of 20 
is considered suitable for computations.  For the entire 
computations the artificial boundary is located at a distance of 
40 dimensionless units. 

C. Validation  
The forced flow past a fixed square cylinder (φ = 0o) is 

considered for the conditions, Re = 100, Pr = 0.71 and free-
stream orientations 0-45o.  The variation of mean coefficient 
of drag and the mean Nusselt number with free-stream 
orientation is obtained and compared with the available data 
of Sohankar et al. [28] and Ranjan et al. [29] as shown in Figs. 
3(a)-3(b).  The present results of drag coefficient are in good 
agreement with Sohankar et al. [28] and also in agreement 
with Ranjan et al. [29].  The computed mean Nusselt number 
is in good agreement with Ranjan et al. [29]. 

The computations are also carried out for fixed stationary 
square cylinder (φ = 0o) for the conditions, Re = 100, Pr = 
0.71, α = 0o and 0 ≤ Ri ≤1.2 in the mixed convection flow 

regime.  The variation of mean coefficient of drag and mean 
Nusselt number with Richardson number is computed and 
compared with the available data of Sharma and Eswaran [13] 
in Figs. 4(a)-4(b). 
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Fig. 3(a) Variation of coefficient of drag with free-stream 

orientation 
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Fig. 3(b) Variation of mean Nusselt number with free-stream 

orientation 
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Fig. 4(a) Variation of coefficient of drag with Richardson number 
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Fig. 4(b) Variation of mean Nusselt number with Richardson number 
 

  The present computations are in good agreement with the 
numerical results of Sharma and Eswaran [13]. 

V.  RESULTS AND DISCUSSION 
To investigate the vortex-shedding suppression 

phenomenon, simulations are performed for a set of 
Richardson numbers close to the vortex-shedding suppression 
point in the unsteady flow regime at a fixed free-stream 
orientation.  The objective of this exercise is to investigate the 
character of the bifurcation associated with the vortex-
shedding suppression and to determine the critical Richardson 
number at different free stream orientations.  All the 
computations reported in this section are carried out for a 
fixed cylinder orientation of φ = 0o and at (Re = 100, Pr 
=0.71). 

A. Phenomenon of Vortex-Shedding Suppression 
The vortex-shedding for a flow past a stationary cylinder is 

the outcome of growth of linear unstable mode or perturbation 
that evolves in time in an oscillatory manner and the scenario 
is a classical supercritical Hopf bifurcation.  After the initial 
exponential growth in time, the infinitesimal unstable 
perturbation becomes finite and the non-linear self-
interactions alter the exponential growth rate.  This scenario 
was first proposed by Landau (Drazin and Reid, [30]).  The 
growth of the amplitude of the oscillatory unstable mode in 
time, for small amplitudes, is governed by the famous Landau 
equation given as, 

( )2 2 42d A A lA
d

σ
τ

= − .              (14) 

The constant ‘σ ’ represents the initial exponential growth 
rate of the amplitude and ‘ l ’ is the Landau constant.  The 
steady state amplitude of the unstable mode is readily obtained 

from (14) by setting ( )2 0d A
dτ

=  as, 

2 2
eA

l
σ

=  .                   (15) 

Near the critical point, the LHS of (15) can be linearized in 
terms of some control parameter which, in the present context, 
is the Richardson number or Ri.  Thus by generating straight 
line fit to the ( 2 −eA Ri ) data obtained near the critical point or 
vortex-shedding suppression point, the critical Richardson 
number, Ric, can be readily obtained. 

As a quantitative confirmation of the above arguments, the 
square of the equilibrium oscillatory flow amplitude obtained 
from the time history of lift coefficient is plotted as a function 
of the control parameter Ri in Fig. 5 for α = 0o. 

The data agrees well with a straight line fit having a 
negative slope.  This confirms that the vortex-shedding and its 
suppression in the context of the present problem is a 
supercritical Hopf bifurcation.  The negative slope clearly 
implies that the exponential growth rate of the linearly 
unstable mode, σ , changes sign from positive to negative 
with increase in Ri across the critical point leading to 
suppression of the vortex-shedding.  Extrapolating the straight 
line fit, the critical Richardson number (Ric) is estimated to be 
0.129 at Re = 100 and free-stream orientation α = 0o.  The 
numerical and experimental values of critical Richardson (Ric) 
number reported by Turki et al. [31] and Kakade et al. [17] are 
0.130 and 0.131 under the same conditions, and are in 
excellent agreement with the present estimate. 

Richardson Number

S
qu

ar
e

of
E

qi
lib

riu
m

A
m

pl
itu

de

0.08 0.09 0.1 0.11 0.12 0.13
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

 
Fig. 5 Variation of square of equilibrium amplitudes with the control 
parameter Ri in the neighbourhood of suppression or bifurcation for 

Re = 100, Pr = 0.71 and free-stream orientation (α) of 0o 
 

By carrying out the above exercise for different free-stream 
orientations in the range of 0o≤ α < 90o, the straight line fits 
for the 2

eA Ri−  data have been obtained and the critical Ri 
determined.  At α = 90o, vortex-shedding suppression is not 
observed within the range of Ri considered in the present 
study. 

Fig. 6 shows an interesting non-monotonic neutral curve in 
the Ri-α plane demarcating the steady and the unsteady flow 
regimes.  The critical Ri increases rapidly with increase in α 
upto 45o, beyond which it again drops till about 70o.  Further, 
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increase in α leads to a very sharp almost asymptotic increase 
in the critical Richardson number. 
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Fig. 6 Variation of critical Richardson number with free-stream 

orientation 
A detailed investigation of the wake is required to 

comprehend the possible reason for such an interesting 
suppression characteristic. 

B.  Strouhal Number in the unsteady flow regime 
The Strouhal number (St) represents the characteristic 

dimensionless frequency of vortex-shedding from the square 
cylinder and therefore represents a fundamental property 
associated with the observed periodic flow.  The time history 
of coefficient of lift is employed to obtain the dimensionless 
frequencies or the Strouhal numbers.  The effect of free-
stream orientation for the forced flow on St is depicted in Fig. 
7.  As shown in Fig. 7, the Strouhal number shows a very 
slight sensitivity to free-stream orientation for the forced flow.  
It decreases by only 5% at α = 45o relative to the value 
observed at α = 0o. 
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Fig. 7 Variation of Strouhal number with free-stream orientation 

 
In the mixed convective flow regime, the variation of 

Strouhal number with Richardson number at various free-

stream orientations is shown in Figs. 8(a)-8(g).  In order to 
highlight the effect of buoyancy, the values of St for a given 
free-stream orientation are normalized by the corresponding 
forced flow value.  It is seen from the figure that the Strouhal 
number increases smoothly with the increase in Richardson 
number and suddenly falls to zero beyond the critical 
Richardson number.  The trend remains the same for all free-
stream orientations except for the case of α = 90o, where the 
phenomenon of vortex shedding suppression does not occur.  
Bhattacharyya and Mahapatra [15] also reported that the 
vortex-shedding suppression did not occur when the cylinder 
was exposed to a horizontal cross flow. 

Increase in St with Ri can be qualitatively explained in the 
following manner.  As the shear layers surrounding the 
separated flow region or vortices gain momentum under the 
influence of buoyancy, the residence time is decreased in the 
shear layers leading to lesser transfer of momentum and 
vorticity in the separated flow.  This reduces the ability of the 
vortex or separated zone to resist the instability responsible 
for vortex-shedding.  Therefore, vortices do not remain stable 
for longer time intervals and instead are shed more frequently.   
The effect is essentially same as obtained by increasing the 
Reynolds number of the flow.   
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Fig. 8 Variation of Strouhal number with Richardson number at (a) α 

= 0o, (b) 10o, (c) 30o, (d) 45o, (e) 60o, (f) 80o, (g) 90o 
 

These arguments are further supported by the observation 
that increase in free-stream orientation leads to lower 
sensitivity of Strouhal number to Ri in the unsteady flow 
regime.  This is because at larger free-stream orientations, 
owing to greater misalignment between fluid inertia and 
buoyancy forces, buoyancy becomes less effective in 
imparting acceleration to the shear layers on either side of the 
separated flow region. 

VI. CONCLUSION 
The effect of buoyancy and free-stream orientation on 

vortex-shedding and its suppression are investigated 
numerically around a heated square cylinder in the mixed 
convective flow regime.  The highlight of the work is the 
segregation of the unsteady and the steady flow regimes in the 
(Ri - α) plane by estimation of the critical Richardson number 
at different free-stream orientations using the Stuart-landau 
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theory.  To the best of knowledge of the authors such a regime 
map for the two-dimensional mixed convective flow past a 
square cylinder has been presented for the first time.  The 
neutral curve in the regime map is an interesting non-
monotonic trend that warrants further investigation.  The flow 
is found to be steady when the Richardson number crosses the 
critical value of 0.129, 0.213, 0.458, 0.837, 1.103, 1.158, 
1.089, 0.980, 0.872, 1.027 and 1.262 respectively at free 
stream orientation of 0o, 10o, 20o, 30o, 40o, 45o, 50o, 60o, 70o, 
80o and 81o respectively.  The flow is always found to be 
unsteady for cross flow.  In the unsteady flow regime, the 
Strouhal number exhibits a strong sensitivity to Ri with values 
increasing with increase in Ri.  However, the sensitivity is 
found to decrease with increase in free-stream orientation.  
These effects have been qualitatively explained on the basis of 
shear layer momentum gain and transfer to the engulfed 
separated flow zone or vortices. 
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