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Abstract—In this paper we present an autoregressive model with 

neural networks modeling and standard error backpropagation 
algorithm training optimization in order to predict the gross domestic 
product (GDP) growth rate of four countries. Specifically we propose 
a kind of weighted regression, which can be used for econometric 
purposes, where the initial inputs are multiplied by the neural 
networks final optimum weights from input-hidden layer after the 
training process. The forecasts are compared with those of the 
ordinary autoregressive model and we conclude that the proposed 
regression’s forecasting results outperform significant those of 
autoregressive model in the out-of-sample period.  The idea behind 
this approach is to propose a parametric regression with weighted 
variables in order to test for the statistical significance and the 
magnitude of the estimated autoregressive coefficients and 
simultaneously to estimate the forecasts. 

 
 

Keywords—Autoregressive model, Error back-propagation Feed-
Forward neural networks,, Gross Domestic Product 

I. INTRODUCTION 
MPIRICAL analysis in macroeconomics as well as in 
financial economics is largely based on times series. The 

existence of unexpected shocks or innovations to the economy 
plus measurement errors, strongly suggest that economic 
variables are stochastic. This approach allows the model 
builder to use statistical inference in constructing and testing 
equations that characterize relationships between economic 
variables. A forecast might be judged successful if it is close 
to the outcome but that judgment may also depend on how 
close it is measured. Depending upon the degree of forecast 
uncertainty, forecasts may range from being highly 
informative to utterly useless for the tasks at hand. A measure 
of forecast uncertainty provides an assessment of the expected 
or predicted uncertainty of the forecast errors which helps to 
qualify the forecasts themselves and to give a picture of the 
expected range of likely outcomes. 

Aryal and Yao-Wu [1] applied a MLP network with 3 
hidden layers to forecast the Chinese construction industry 
and they compare the forecasting performance of the MLP 
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networks with that of ARIMA and they found that the RMSE 
of the MLP estimation is 49 percent lower than the ARIMA 
counterpart. Swanson and White [2,3] applied neural networks 
to forecast nine seasonally adjusted US macroeconomic time 
series and they found generally neural networks outperform 
the linear models. Keles et al. [4] developed Adaptive Neuro-
Fuzzy Inference System for the prediction of domestic debt 
presenting very good results. 

We propose the specific approach because we are trying to 
formulate a parametric regression, where we are not able to do 
it with traditional neural network modelling. Furthermore, in 
econometrics literature and empirical researches, weighted 
regressions have been used, where the independent variables 
are transformed by multiplying them with some weights. In 
this case we consider the weights of the neural network 
training.   

In this paper we compare the forecasting performance of 
Autoregressive (AR) and Feed-Forward Neural Networks 
Autoregressive (FFNN-AR) models in the case of Gross 
domestic Product. The structure of the paper has as follows. In 
section II we present the methodology of the estimating and 
forecasting procedure for both Autoregressive and FFNN 
Autoregressive models. In section III the frequency and the 
type of data are described. In section IV the estimated and 
forecasting results are reported, while in the last section the 
concluding remarks of this study are presented.  

 

II. METHODOLOGY 
 

A. Autoregressive (AR) Models    
 

We consider a series y1, y2, . . . , yn. An autoregressive 
model of order p denoted  AR(p), states that yt is the linear 
function of the previous p values of the series plus an error 
term: 
 

tptpttt yyyy εφφφφ +++++= −−− ....22110         (1) 

 
, where φ1, φ2 . . . ,φp are weights that we have to define or 
determine, and εt denotes the residuals which are normally 
distributed with zero mean and variance σ2 [5]. Based on t-
statistics, we choose the lag order. We test up to 5 lags. 
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Conditioned on the full set of information available up to time 
i and on forecasts of the exogenous variables, the one-period-
ahead forecast of yt would be 
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B. Feed-Forward Neural Networks Autoregressive (FFNN-

AR) Models with Error Back-Propagation Algorithm 
 
The Feed-Forward Neural Networks model is a widely used 

approach known for its speed and accuracy. A FFNN can be 
represented as in Fig. 1. To be specific, in Fig. 1 we present a 
feed-forward neural network with an input layer of m0 nodes 
for n=1…. m0, one hidden layer and a single output layer. The 
input layer includes the input variables, which in the case we 
examine are the lags of the dependent variable of (1) and 
specifically the Gross Domestic Product of each country. The 
hidden layer consists of hidden neurons or units placed in 
parallel. Each neuron in the hidden layer performs a weighted 
summation of the weights which then passes an activation 
function. The output layer of the neural network is formed by 
another weighted summation of the outputs of the neurons in 
the hidden layer [6]. 
 

 
 
Fig. 1 A Feed-Forward neural networks with one hidden layer and 
one output layer 
 

The FFNN model is estimated based on the error 
backpropagation algorithm [6]-[7]. This algorithm adopts a 
learning process referred as error correction learning. 
Specifically the learning process has as the main target the 
minimization of the cost function leading to a learning rule 
known as the Delta rule or Widrow-Hoff rule [8]. The cost 
function which is minimized is defined as: 
 

)()()( nyndne kkk −=                                                     (3) 
 
, where  ek(n) is the error signal, yk(n) is the neural network 
output signal and dk(n) is the desired target, which is the real 
value of the Gross domestic Product growth rate. The purpose 
of the neural network learning process is to apply corrective 
adjustments to the synaptic weight of neuron k in order to 
make the output yk(n) to come closer to the desired response 

dk(n) in a step-by-step manner. The minimization of the cost 
function is:  
 

)(
2
1)( nenf k=                                                                  (4) 

We denote the wkj(n) as the value of the synaptic weight wkj of 
neuron k excited by element xj(n) on the signal input vector 
xj(n) at time step n, where input vector contains the 
independent variables we examine. Based on the delta rule the 
adjustment Δwkj(n) applied to the synaptic weight wkj(n) at 
time step n is given by the following relation: 
 

)()()( nxnenw jkkj η=Δ                                                    (5) 
 
,where the Greek letter η denotes the learning rate. After the 
computation of the synaptic adjustment Δwkj(n) the synaptic 
weight wkj(n) is updated in the following way. 
 

)()()1( nwnwnw kjkjkj Δ+=+                                        (6) 

 
In other words wkj(n) and wkj(n+1) can be viewed as the old 

and new values respectively [6]-[7]. Additionally in this paper 
we update the weights with learning rate, as also with 
momentum rate, so we have: 
 

))()1((*)1()1(* nwnwmomnwnw kjkjkjkj −+++=+           (7) 

 
,where the mom denotes the momentum rate. The hidden 
neurons used are equal with the number of inputs. In the case 
we have an autoregressive model with constant, then the 
hidden neurons are equal with the number of the dependent 
lagged series, while in the case we obtain constant too then the 
number of hidden neurons is equal with the number of the 
dependent lagged series plus one indicating the constant, 
which is a vector of ones and specifically is the bias in neural 
network model. We test three transfer functions, from input to 
hidden layer, the logistic, hyperbolic tangent and linear. On 
the other hand the linear transfer function, from hidden to 
output layer, is used in all three tests.  The logistic, hyperbolic 
tangent and linear transfer functions are defined respectively 
by expressions (8)-(10). 
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The process from the input to output layer is the forward 

pass, where the inputs x are fed in to the network. The transfer 
functions at the nodes and their derivatives are evaluated in 
each node and then derivatives are stored. The purpose of the 
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backpropagation algorithm, which is the backward pass from 
output to input layer, is the derivation of (11)-(13). This can 
be written respectively for logistic, hyperbolic tangent and 
linear transfer functions respectively as: 
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More specifically the first step is the forward pass. The 

second step is the backpropagation to the output layer. This 
can be written as: 
 

))(1()(
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, where e(Β) j is defined as the backpropagation error, yj is the 
signal or output of the output layer and dj is the desired output, 
in our case is the actual gross domestic product growth rate. 
The partial derivative is: 
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, where E is the error-cost function (3), hoj denotes the output 
values from the hidden layer and kjw )(Β∂  is the synaptic 
weight matrix from output to hidden layer. The next step of 
backpropagation algorithm is the backpropagation to the 
hidden layer. This is: 
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, where e(A) j is defined as the backpropagation error to hidden 
layer, hoj ,  e(B) j and kjw )(Β∂  are defined as previously. The 
partial derivative is: 
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Ik denotes the inputs and kj
Aw )(∂  is the synaptic weight 

matrix from hidden to input layer. Finally we propose the 
following neural network regression: 
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, where for i=1,2…p is the number of lags as in the case of 
AR models, kj

Aw )(  are the optimized weights from hidden to 
input layer and b is the bias which is a vector of ones as in the 

case of  the ordinary least squares method. So we regress the 
initial dependent variable y, which denotes the GDP growth 
rates, on the weighted inputs, forming a kind of a weighted 
regression. The forecasting performance of Autoregressive 
(AR) models and Feed-forward neural networks 
Autoregressive (FFNN-AR) models in both in-sample and 
out-of- sample periods is counted based on the Mean Absolute 
Error (MAE) and Root Mean Squared Error (RMSE) 
described respectively by (19) and (20).  
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III. DATA 
 
The data are in quarterly frequency and are referred in 

Gross Domestic Product (GDP) growth rates for quarter-by-
quarter. The period examined is 1991-2009 for France, Italy, 
UK and USA. Moreover the period 1991-2006 is obtained as 
the in-sample for AR model or as the train period for the 
FFNN-AR model, while period 2007-2009 is taken as the out-
of-sample period. Moreover, we apply a four step ahead 
period forecasting. Specifically in the one-step ahead 
prediction both models present a very similar and high 
performance. The purpose is to extend the step forecasting 
period because it is much more useful. Firstly, we estimate the 
forecasts for 2007, then we replace the forecasting values with 
the actual and we estimate the forecasts for 2008. The same 
procedure is followed for 2009.  

 
IV. EMPIRICAL RESULTS 

 
In Table 1 we observe that based on ADF test [9] the GDP 

growth rate is not stationary in its levels in the case of France 
for all significance levels, while the GDP growth rate in Italy 
and USA is marginally stationary in 0.10. For this reason we 
consider that first differences are more appropriate. Moreover 
it should be noticed that in both AR and FFNN-AR models we 
excluded constant or bias because the forecasts as also the 
estimated coefficients are much more significant in the case 
we do not take constant. The learning and momentum rates 
have been set up at 0.05 and 0.1 respectively, the goal error at 
0.5 and the number of maximum epochs at 50. The algorithm 
runs until the network error reach a level lower than the goal 
error. 

 In Table II we report the epochs and the networks error 
reached after the neural network training. It should be noticed 
that all activation functions from input-to-hidden layer present 
the same forecasting performance so we choose randomly the 
logistic function. In all cases we found that the models present 
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higher forecasting power with no constant in the estimated 
regression. Additionally, based on t-statistics, the optimum lag 
order is 1.  

 
TABLE I 

ADF UNIT ROOT TESTS 
 France Italy UK USA Critical values  

for ADF1 

ADF test     -4.110   α=0.01 
-3.482  α=0.05 
-3.169  α=0.10 

In Levels -2.039 -3.26 -3.81 -3.17 
In First  

differences 
-6.25 -6.40 

 
-6.70 -6.45 

  1 MacKinnon, [9] 
 

 

TABLE II 
EPOCHS AND NETWORK ERROR REACHED  

AFTER THE TRAINING PROCESS 
 France Italy UK USA 

Goal error 0.5 0.5 0.5 0.5 
Error after 

 optimization 
0.499 0.490 0.499 0.482 

Epochs after 
 optimization 

15 25 12 15 

 
 

TABLE III 
AUTOREGRESSIVE (AR) ESTIMATIONS 

t-statistics in parentheses, * denotes significance in α=0.01, ** denotes significance in 
α=0.05, LBQ2 is the Ljung-Box test on squared standardized residuals with 2 lags, 
ARCH-LM denotes  Lagrange Multiplier test for ARCH effects with 2 lags 
 

The estimated Autoregressive (AR) and Feed-Forward 
Neural Networks Autoregressive (FFNN-AR) results are 
reported in Tables III and IV respectively. Based on LBQ2 and 
ARCH-LM tests we reject the existence of autocorrelation and 
ARCH effects respectively in residuals [5].  

In Tables V and VI we present the MAE and RMSE 
measures for the in-sample and the out-of-sample periods 
respectively of the estimated models. Only in one case AR 
model outperforms the FFNN-AR model in the in-sample 
period and more specifically in the case of Italy, while in the 
remained countries we examine, RMSE and MAE are very 
close among the two models. On the other hand in the out-of-

sample period which is of greatest interest, FFNN-AR 
outperforms significant AR model. This can be shown also 
from Fig. 2-5. We conclude that with the approach we 
propose we gain two things. Firstly, we get an alternative 
autoregressive procedure and secondly, we improve the 
forecasts n the out-of-sample period.  

 
 
 

TABLE IV 
FEED-FORWARD NEURAL NETWORKS AUTOREGRESSIVE 

(FFNN-AR) ESTIMATIONS 

t-statistics in parentheses, * denotes significance in α=0.01, LBQ2 is the Ljung-Box 
test on squared standardized residuals with 2 lags, ARCH-LM denotes  Lagrange 
Multiplier test for ARCH effects with 2 lags 

 
 
 

TABLE V 
FORECASTING PERFORMANCE OF AR AND FFNN-AR  

MODELS FOR IN-SAMPLE PERIOD 
 AR FFNN-AR 
 MAE RMSE MAE RMSE 

France  0.5201 0.6371 0.5040 0.6148 
Italy 0.5808 0.7566 0.5841 0.7602 
UK 0.4196 0.5341 0.4146 0.5295 

USA 0.5481 0.6606 0.5267 0.6383 
 
 
 
 

TABLE VI 
FORECASTING PERFORMANCE OF AR AND FFNN-AR  

MODELS FOR OUT-OF-SAMPLE PERIOD 
 AR AR 
 MAE MAE MAE MAE 

France  2.1385 2.5840 1.5501 1.9210 
Italy 2.3555 2.9334 1.9911 2.2682 
UK 2.2230 2.8528 1.8801 2.3076 

USA 2.0581 2.5179 1.8832 2.2711 
 

France 

1
)382.2( **

2826.0 −= tt yy  

R2
adj. = 0.0799, LBQ2 (2)=0.0298, p-value for LBQ2 =0.863  

ARCH-LM(2)=0.212, p-value for ARCH-LM=0.9789 
Italy 

1
)587.3( *

4158.0 −= tt yy  

R2
adj. = 0.1649, LBQ2 (2)=0.1544, p-value for LBQ2 =0.694  

ARCH-LM(2)=0.0937, p-value for ARCH-LM=0.9106 
UK 

1)469.2(
2861.0 −= tt yy  

R2
adj. = 0.0632,LBQ2 (2)=1.7913, p-value for LBQ2 =0.181  

ARCH-LM(2)=1.502, p-value for ARCH-LM=0.2306 
USA 

1
)099.11( *

2296.0 −= tt yy  

R2
adj. = 0.0479,LBQ2 (2)=1.3274, p-value for LBQ2 =0.249  

ARCH-LM(2)=0.842, p-value for ARCH-LM=0.4354 

France 

1
)773.25( *

3720.0 −= tt yy  

R2
adj. = 0.4081, LBQ2 (2)=0.0789, p-value for LBQ2 =0.784, 

 ARCH-LM(2)=0.9125, p-value for ARCH-LM=0.6073 
Italy 

1
)578.18( *

5014.0 −= tt yy  

R2
adj. = 0.7847, LBQ2 (2)=0.8915, p-value for LBQ2 =0.348,  

ARCH-LM(2)=1.5791, p-value for ARCH-LM=0.4540 
UK 

1
)573.32( *

1377.0 −= tt yy  

R2
adj. = 0.6744, LBQ2 (2)=1.9817, p-value for LBQ2 =0.168,  

ARCH-LM(2)=1.607, p-value for ARCH-LM=0.2847 
USA 

1
)139.32( *

1110.0 −= tt yy  

R2
adj. = 0.6358, LBQ2 (2)=1.9915, p-value for LBQ2 =0.170,  

ARCH-LM(2)=1.097, p-value for ARCH-LM=0.3541 
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Fig. 2 Out-of-sample period forecasts with AR and FFNN-AR 
models for France 

-8

-6

-4

-2

0

2

4

2007Q1 2007Q3 2008Q1 2008Q3 2009Q1 2009Q3

Actual
AR Forecast
FFNN-AR Forecast

 
Fig. 3 Out-of-sample period forecasts with AR and FFNN-AR 
models for Italy 
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Fig. 4 Out-of-sample period forecasts with AR and FFNN-AR 
models for UK 
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Fig. 5 Out-of-sample period forecasts with AR and FFNN-AR 
models for USA 

 
V. CONCLUSIONS 

 
The main conclusion of this paper is that the forecasting 

performance of the model we propose is much more superior 
in the out-of-sample period, while its forecasting ability is 
very close with that of AR model  in the in sample period.  
Additionally, genetic algorithms for the training process can 
be used instead to error backpropagation training or the 
procedure can be enriched with other nonlinear optimization 
procedures, like Levenberg-Marquardt among others.  
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