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extended for fuzzy differential equations with impulse effect using
Lyapunov functions and Razumikhin technique.
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[. INTRODUCTION

Differential equations have been used to model the evolu-
tionary mechanisms of various dynamical processes in diverse
field of application. But, when a dynamical system is modeled
by deterministic ordinary differential equations, we cannot
usually be sure that the model is perfect because, in general,
the knowledge of dynamical system is often incomplete and
vague. Imprecision due to uncertainty or vagueness requires
the introduction of fuzzy differential equations. The study
of fuzzy differential equations has been initiated in 1978 by
Kandel and Byatt [6], [7] and after that it has become an
independent subject in conjection with fuzzy valued analysis
and set valued differential equations. Buckley and Feuring [1]
have given a very general formulation for fuzzy first order
initial value problem and Kaleva [5] established an existence
and uniqueness result for a solution of fuzzy differential
equation. There exists sufficient literature on fuzzy differential
equations (see monograph [8] and references therein).

Some authors have also worked on fuzzy functional differential
equations (see [2], [11]), but so far a small amount of work is
done for the fuzzy differential equations with impulse effect.
Srivastava and Gupta [12] have established the local and global
existence and uniqueness results for fuzzy differential equation
with impulse effect using Hukuhara derivative and contraction
principle. Guo et al. [4] established some existence results
for the impulsive functional differential equations utilizing the
Hullermeier approach.

Stability is one of the important qualitative property and has
been studied by many authors in last few years for fuzzy
differential equations [3], [13]. Strict stability is a kind of
stability that can give us some information about the rate of
decay of the solutions and has been studied by many authors
for differential equations with or without impulse effect (see
[91, [10], [14]).

The aim of this paper is to establish some results on strict
stability for fuzzy differential equation with impulse effect.
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Various sufficient conditions are derived using Lyapunov func-
tions and Razumikhin technique.

The paper is organized as follows. Section 2 introduces some
preliminary definitions and notations which will be used
throughout the paper. In Section 3, some sufficient conditions
have been established for strict stability of trivial solution of
fuzzy differential equation with impulse effect.

II. PRELIMINARIES

The idea of fuzzy set was proposed by Lofti Zadeh in the
1960s, as a tool to handle uncertainty that is due to vagueness
or imprecision rather than to randomness.

The concept of fuzzy set is based on the idea that each element
z in the base set X is assigned a membership grade u(x)
taking values in [0, 1]. According to Zadeh, a fuzzy subset of
X is a non-empty subset {(z,u(z)) : x € X} of X x [0,1]
for some function u : X — [0, 1]. In particular, a fuzzy subset
of " is defined in terms of a membership function which
assigns to each point x € R™ a grade of membership in the
fuzzy set. Such a membership function v : R — [0, 1] is used
to denote the corresponding fuzzy set.

For instance, the function u : ®! — [0, 1] with

0,z <2
a5(r —2),2 <2 <100 1)
1,100 < z

u(z) =

is an example of a fuzzy set of real numbers >> 2. It is
necessary to mention here that there may be many other
reasonable choices of membership grade function different
from as defined above.

Let u be any fuzzy set in X. Then for each a € (0, 1], the set
[u]* = {z € X : u(x) > a} is called a-level set of a fuzzy
set.

Clearly, a-level sets of a fuzzy set are crisp sets.

The support [u]® of a fuzzy set is then defined as the closure
of the union of all its level sets, that is

[u] = Uae(o,1)[u]®.

The union, intersection and complement of fuzzy sets can be
defined pointwise in terms of their membership grades. Let u
and v be any two fuzzy sets, then the complement u°, their
union u V v and the intersection u A v are defined respectively
as

u(z) =1 —u(z), 2)

uVo(z) =u(z)Vo(r) = max{u(z),v(x)}, 3)
uAv(z) = u(z) Av(z) = min{u(z),v(z)}, 4
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for each x € X.

A fuzzy subset u is said to be convex if u(Az + (1 — A)y) >
minfu(z), u(y)] for some A € [0,1] and z,y € X.

In case of fuzzy numbers, that is fuzzy sets u : ® — [0,1],
fuzzy convexity means that the level sets are intervals.

The space E™ = {u : " — I = [0,1]} denotes the space
of all fuzzy subsets u of R™ which satisfy the following
assumptions:

(2) u is normal i.e. there exist an zy € R"™ such that u(xg) = 1;
®) [u]® = {u € R" : u(x) > 0} is compact;

(c) u is upper semicontinuous;

(d) w is fuzzy convex, ie. u(Azx + (I — Ny >
min{u(x), u(y)},0 < A < 1.

Remark: An advantage of only requiring the © € E™ to be
upper semicontinuous and not continuous is that the nonempty
compact convex subsets of ™ can then also be included in
E™ by means of their characteristic functions.

For later purposes, we define 0 € E™ as 0(z) = 1 if 2 = 0
and 0(z) = 0 if z # 0.

Consider the following fuzzy differential equation with im-
pulse effect

u = f(t’u)7 t # ty,
uth) = u(ty) + I(uty)), k=1,2,..., (3)
u(tg) = g,

where f : J x E" — E" J = [tg,00), I, : E™ — E"
is continuous, ug € E" and t;,k = 1,2,... are points of
impulses such that ¢t < t;+1 and t — oo as k — oo.

Now, we have following definitions:

Definition 2.1: The trivial solution of (5) is said to be strictly
stable if, for any ¢; > 0 and t; € R, there exists a §; =
81(to,€1) > 0 such that d[ug,0] < &; implies d[u(t),0] <
€1,t > to and for every do < d1, there exists an 0 < e < Js
such that d[ug, 0] > &, implies d[u(t), 0] > €.

Definition 2.2: The trivial solution is said to be strictly
uniformly stable, if §;,d> and e in above definition are
independent of .

Definition 2.3: The trivial solution is said to be strictly
attractive, if given ¢ > tp and a; > 0,¢; > 0, for every
ag < aq, there exists e2 < €1 and T4 (to, €1), T2(to, €2) such
that ay < dfug,0] < ay implies e; < du(t),0] < € for
to+T1 <t <to+To.

Definition 2.4: The trivial solution is said to be strictly uni-
formly attractive if 77,75 in above definition are independent
of to.

Definition 2.5: A function V : R x E™ — R, is said to
belong to class Vj if
(i) V(t,u) is continuous in (tx—1,t;] X E™ and for each u €
E" k=1,2,.., hm(t,'u)—»(t;r,u) V(t,v) = V(tf,u) exists;
(i) V(t,u) is locally Lipschitzian in « and V (¢,0) = 0.

Definition 2.6: Let V' € Vj, for each (¢t,u) € (tg—1,tx] ¥
E™, DtV is defined as

1
DYV (t,u) = ;}E{ﬁ sup E[V(t + hyu+ hf(t,u) — V(¢ u)].

We define,
() Ko ={a e C(R;+,R;) : a(0) =0, a(s) > 0 for s > 0}.

(ii) K = {a € Ky : a is strictly increasing in R, }.
(iii) K1 = {¢ € C(R4+,R4+) : ¢ is increasing and ¢(s) <
s for s > 0}.

III. MAIN RESULTS

In this section, we shall investigate some sufficient
conditions for strict stability of trivial solution of the fuzzy
impulsive differential equation (5) by using Lyapunov
function with Razumikhin technique.

Theorem 3.1 Assume that
(i) There exists V; € Vp such that by (d[u,0]) < Vi(t,u) <
al(d[u,()]), al,bl S IC;
1) DYVi(t,u) < g(t)w(Vi(t,uw)), g,w : Ry — Ry are
locally integrable;
(i) For all k& € N, Vi(tf,ulty) + Ie(u(ty))) <
1 (Vi(t, u(te))), where ¢y € Ky;
(iv) There exist a constant A > 0 such that ﬁi"'_l g(s)ds <

A, k € N and for any v > 0 such that f:’l @) % > A
(v) There exists Vo € Vp such that by(d[u, 0]) < Va(t, u)
aQ(d[u, 6]), as, by € I,

(vi) DT Va(t,u) < h(t)p(Va(t,u)), h,p : Ry — Ry are
locally integrable;

(vii) For all k& € N, Vo(tf,ulty) + Ii(u(ty))) >
w;l(vz(tk,u(tk))), where ¥y € Kq;

(viii) There exist a constant B > 0 such that ftik_l h(s)ds <

B, k € N and for any v > 0 such that f;h(") pds > B;

(s) =

Then the trivial solution of (5) is strictly uniform stable.
Proof: Let 0 < ¢; < p. Choose d; = d1(e1) > 0 such that

¥1 H(a1(01)) < bifer). X
Firstly we prove that for ug € E", d([uo,0]) < &1 implies
d([u(t),0]) < €1, t > to. R
Clearly, Vi (to, uo) < a1(d[uo,0]) < a1(d1) < ¢ " (a1(61)).
We claim that

Vi(t,u(t)) < 97t (a1(61)), to <t < tr. (6)
If (6) does not hold, then there is an € (¢, 1] such that

Vl(f,u(f)) > wfl(al((ﬁ)) > a1(51) > %(to,’do).

From the continuity of V4 (¢, u(t)) in (to, t1], there exists s; €
(to,t) such that

Vi(s1,u(s1))
Vi(t,u(t)) <
and also there exist an so € (tg, $1) such that
Vi(sz,u(s2)) = ai(d1), )]
Vi(t,u(t)) > a1(d1), t € [s2,s1].
< g(w(V(t,u)) in

IN

¥ (a1(61)), ()
¢;1(a1(61))7 tO S t< S1,
)

Therefore, we integrate DTV (¢, u)
[s2, s1] and by condition (iv), we have

Vi(si,u(s1)) ds s1 tr
/ g/ g(t)dtg/ gyt < A. (9

Vi(s2,u(sz2)) w(s) s2 th_1
On the other hand (7), (8) and (iv) implies that

Vi(siu(s1)) g $1 (a1(61)) ds
/ ds_ _ / 45 o4
Vi(s2,u(s2)) w(8> a1(61) w(s)
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This is contradiction to inequality (9). So the inequality (6)
holds.
From condition (iii), we have
Vl(ti‘r’u(ti‘r)) Vl(ti—7u(t1)+ll(“' t
1 (Va(t1,u(tr))

1))
<aq(d1). (10)

IN

Next, we claim that

Vi(t,u(t)) < ¢yt ay(6)), th <t < to. (11)
Since a1 (61) < 17 *(a1(61)), if inequality (11) does not hold,
37 € (t1, 2] such that

Vi(7,u(?) > ¢y Han(61)) > a1 (61) > Va(ty, u(ty)).
From the continuity of Vi (¢, u(t)) in
r1 € (t1,7) such that
Vi(riu(r)) = 47 (a1(61)), (12)

Vi(t,u(t)) < ¢fl(a1(51))7 t) <t<m

and also there exist an ry € (t1,71) such that

Vi(rz,u(rz)) = a1(d), (13)
Vl(t7u(t)) > a1(61)7 te [T’Q,Tl].

(t1,t2], there exist an

Therefore, after integrating the inequality D1V (t,u) <
g(t)w(V(t,u)) in [ra,71], similar as above and we get a
contradiction. So inequality (11) holds.

From condition (iii), we have

Vi(ts, u(ty)) Vi(t3, u(tz) + Ia(u(t2)))
1(V1(t27 (t2))
P1(y H(ar(61)))
a1(01)- (14)

By similar argument as before, we can prove that for k =
1,2, ...

Vi(t,u(t)) <ot (an(6)), th <t < tppa, (15)
Vl(tl-i_-ﬁ-l’ (tz+1)) < ai(dy).
Since a1 (d1) < 9 *(a1(d1)), by inequalities (6), we have
Vi(t,u(t)) < o H(ar(61)) < bifer), t > to.
By condition (i), we have
bi(dfu(t),0]) < Vi(t,u(t)) < 4y H(ar(61)) < bi(er), t = to.
Thus

IANIAIA

dlu(t),0] < e, t > to.

Now, let 0 < d3 < §; and choose 0 < €3 < d5 such that
az(ez) < Pa(b2(02)). A .
Next, we prove that d([ug,0]) > 2 implies d([u(¢),0]) >
€, t > to.

Clearly, Va(to,uo) > ba(d[ug, 0]) > ba(d2) > 12 (ba(52)).

We claim that

VQ(t,’U,(t)) > ¢2(b2((52)), to <t <t. (16)

Suppose inequality (16) does not hold, then there is a ¢ €
(to, t1] such that

‘/2(F7 u(f)) < 1/)2((72(52)) < 62(52) < Vz(to,’lto).

From the continuity of Vs (¢, u(t)) in (to, ¢1], there exist a t €
(to,t) such that

Vot u(t)) = wa(ba(d2)), (17)
Va(t,u(t)) > a(ba(d2)), to <t <t
)

and also there exist an ¢ € (fo,t such that

VQ(t ,u(t )) = b2(52), (18)
Va(t,u®)) < bo(8y), telt t].

After integrating DT Va(t, u) < h(t)p(Va(t,u)) in
by condition (viii), we have

Va(t ut) g ¢
S = |
Vo(t" u(t”)) p(s) t’
On the other hand (17), (18) and (viii) implies that
Va(t () g a(b2(82)) g
[ e [
Va(t" u(t’")) p(s) b2 (82) p(s)
which is contradiction to inequality (19). So the inequality

(16) holds.
From condition (vii) and inequality (16), we have

Va(tf,u(tf)) = 3t (Valts, u(tr))) > ba(82).
Next, we prove that
Vo (t,u(t)) > 1ha(ba(02)), t1 <t < to. (20)

If inequality (20) does not hold, then there is a ¢ € (¢1, t2]
such that

Va(q,u(q)) < ¥2(b2(d2)) < b2(02) < Va(ty, u(ts)).

From the continuity of V5 (¢, u
(t1,q) such that

Va(qr,u(qr)) =
Va(t,u(t)) >

[t”,t] and

Tk
h(t)dtg/ h(t)dt < B. (19)
tp—1

(t)) in (t1, 2], there exista ¢; €

P2 (b2(2)), (1)
Pa(ba(d2)), to <t < qu

and also there exist an ¢o € (t1,¢1) such that

Va(gz,u(g2)) = ba(d2), (22)
Va(t,u(t)) < b2(02), t € (g2, q1]-
Therefore, after integrating DV Va(t,u) < h(¢)p(Va(t,u)) in
[92, ¢1] and similar as before, we get a contradiction. So the
inequality (20) holds.
From condition (vii), we have
Va(ts, u(ts)) Va(ty , u(tz) + Ix(u(t2)))

vyt (Valtz, ultz))
b2 (02)- (23)

By similar arguement as before, we can prove that for k =
1,2,..,

AV

Va(t, u(t)) a(ba(d2)), th <t <tpyr, (24)
V2(7$-~-17 (tk+1)) 52(52)~
Since by (d2) < 12(b2(d2)), by inequalities (16), (24), we have

Va(t, u(t)) = h2(b2(02)) > az(e2).

>
=
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By condition (v), we have
az(d[u(t),0]) > Va(t,u(t)) > az(ez), t > to.

Thus X
d[u(t)70] > €, t > tp.

Thus the trivial solution of (5) is strictly uniformly stable.

Theorem 3.2 Assume that
(i) There exists Vi € Vp such that by (d[u,0]) < Vi(t,u) <
ay(d[u,0]), a1,b1 € K;
(i) For any solution u(t) of (5), DT Vi(t,u) < 0;
(iii) For all k € N, Vi(tf,u(ty) + Ie(u(ty)) < (1 +
di) V1 (tk, u(te)), where di > 0 and >"p7 ; dj < o0;
(iv) There exists Vo € Vp such that by (d[u, 0]) < Va(t,u) <
ag(d[u,0]), ag, by € K;
(v) For any solution u(t) of (5), D Va(t,u) > 0;
(vi) For all k& € N, Vao(t{,u(ty) + Lp(u(ty))) > (1 —
cx)Va(ti, w(ty)), where 0 < ¢ <1 and Y 27, ¢k < 00;
Then the trivial solution of (5) is strictly uniformly stable.
Proof: Since Y ;- dy < oo and >, ¢x < oo, it follows
that [T;2 (1 +dy) =M and [[;-,(1 —cx) = N.
Clearly, 1 <M < 00,0 < N <1.
Let 0 < € < p. Choose 67 = d1(€1) > 0 such that
Mal(dl) < bl(El). .
Firstly, we prove that for uy € E™, d([ug,0]) < d; implies
d([u(t),0]) < e1, t > to.
Clearly, Vi (to,uo) < a1 (d[uo,0]) < a1(61).
We claim that

V1(t7u(t)) < a1(51), to <t <ty (25)

If the inequality (25) does not hold, then there is a £ € (tg, t1]
such that

Vl(f,u(f)) > al(él) > Vl(to,uO),

which implies that there is a t* € (to,f] such that
D*Vi(t,u) > 0, which is a contradiction to condition (ii).
Therefore, inequality (25) holds.

From condition (iii), we have

Vit u(t])) Vi(t], ulth) + T (u(th)))

< (A +d)Vity, u(ty))
< (I+dy)ai(61). (26)
Now, we claim that
%(t,u(t)) < (1 + dl)a1(51),t1 <t < ts. (27)

If inequality (27) does not hold, then there is an § € (¢1, to]
such that

Vi(8,u(8)) > (1 + di)ar(61) = Va(ta,u(t)),

which implies that there is an s; € (¢1,§) such that
D*Vi(t,u) > 0, which is again a contradiction to condition
(ii). Therefore, the inequality (27) holds.

From condition (iii), we have

Viltd,u(ty)) = Vi(ta,u(ts) + L(u(ts)))
< (14 do)Vi(ta, u(ts))
< (1+d)(1+d2)ai(61). (28)

By similar arguement as before, we can prove that for k =
1,2,..

te <t < 1pt1,
which together with (25) implies
Vl(t,u(t)) S Mal(él),Vt 2 to.
So from condition (i), we have
by(dfu(t),0]) < Vi(t,u(t)) < May(61) < bi(er), t > to.
Thus .
d[u(t),O} < 61,t > to.

Now, let 0 < 02 < 07 and choose 0 < €3 < o such that
(12(52) < Nbg((sz) )

Next, we prove that for ug € E", d([ug,0]) > 02 implies
d([u(t),0]) > e

Clearly, Vg(to,U()) > bg(d[UQ,O]) > b2(62)

We claim that

Vg(t,u(t)) 2 b2(62), t() <t S tl. (29)

If inequality (29) does not hold, then there is a ¢ € (to,t1]
such that

Va(t,u(t)) < ba(da) < Va(to, uo),

which implies that there is a t' € (ty,f) such that
DHVy (', u(t')) < 0, which is a contradiction to the condition
(v). Therefore, inequality (29) holds.

From condition (vi), we have

Va(tf, u(t])) Va(t, uty) + I (u(ty)))

> (1 —=c)Va(ts,u(tr))
Z (1 — 61)62(62). (30)
Now, we claim that
Vg(t,u(t)) > (1 — Cl)b2(§2),t1 <t <ts. 30

If inequality (31) does not hold, then there is an 7 € (¢y, 2]
such that

Vg(f,u(f)) < (1 — Cl)b2(52) < Vg(tl,u(tl)),
which implies that there is an r; € (¢1,7) such that
D Va(r1,u(r1)) > 0, which is a contradiction to condition
(v). Therefore, inequality (31) holds.
Also, from condition (vi), we have
Va(ts ,ulty)) Vit , ultz) + I (u(
= (1= c2)Va(te, u(tz))
2 (1*61)(1 *Cz)bg(dz). (32)
By similar arguement as before, we can prove that for k£ =
1,2,...

Vg(t,u(t)) > (1—Cl)(].—Cg),..(l—ck)b2(52), tr <t < Tht1,

t2)))

which together with inequality (29) and condition (iv) imply
as(d[u(t), 0]) > Va(t,u(t)) > Nby(d2) > as(es), t > to.
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Thus,

dlu(t),0] > ez, t > to.

Hence the zero solution of (5) is strictly uniformly stable.

(11
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