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Two iterative algorithms to compute the

bisymmetric solution of the matrix equation
A X 1B+ Ay XoBy+ ... + A X B =C

A.Tajaddini

Abstract—In this paper, two matrix iterative methods are presented
to solve the matrix equation A1 X1B1 + A2X2B2 + ... +
A; X B; = C the minimum residual problem || le:l A; X;B; —

. 1

C”F = mznxieBRniini/”\Zizl/A\AiXiBi —_ CHF and the ma-
trix nearness problem [X1, X2, ..., Xi] = min[x, x,,... x,]esx
[ X1, X2y ooy Xi] — [X1, X2y o0y Xi]||F, where BR™ %™ is
the set of bisymmetric matrices, and Sg is the solution set of
above matrix equation or minimum residual problem. These matrix
iterative methods have faster convergence rate and higher accuracy
than former methods. Paige’s algorithms are used as the frame method
for deriving these matrix iterative methods. The numerical example
is used to illustrate the efficiency of these new methods.

Keywords—Bisymmetric matrices, Paige’s algorithms , Least
square.

I. INTRODUCTION

In this work, we will use the following notations. Let
R™™ and BSR"™™™ denote the set of m x m real ma-
trices and n x m real bisymmetric matrices, respectively.
Sn(Sn = (én,€n—1, ..., e1))denotes the n x n reverse identity
matrix (e; denotes ith column of n X n identity matrix). The
superscript I' represents the transpose of a matrix. In space
R™*"_ we define inner product as: < A, B >= trace(BT A)
for all A,B € R™*™ which generates the Frobenius norm
|A|lF = V< A, A >. Notation A ) B is Kronecker product.
The symbol vec(A) = (a¥,al,...,aT)T is a vector formed
by the columns of given matrix A = (ai,as,...,a,). The
bisymmetric matrices play an important role in information
theory, linear system theory, linear estimate theory and nu-
merical analysis [3], [13], which can be defined as follows:

Definition 1.1: Let S,, € R"*™ be a reverse identity matrix.
A matrix X € R"*"™ is said to be bisymmetric matrix if X =
XT =8,X5,.

In this paper, we consider the following three problems.
Problem LGiven A; € RP*™, B; € R"*1, ¢ = 1,2,..1
and C € RP*%, find matrix group [Xi,Xo,...,X;] with
X; € BSR™*"i =12 ...,.1 such that

A1 X 1By + A3 XoBo + ...+ A1 XB, =C. @)

Problem ILGiven A; € RP™, B, € R™4, i = 1,2,..1

and C' € RP*4, find matrix group [X1, Xo, ,5(\,] with X; €
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BSRm*™i 4 =1,2,...,1 such that

l l
1Y AiXiB;—Cllp = miny,eprmixm | Y AiXiBi—C|r

i=1 i=1
2
Problem III.When problem I or II is consistent. Let S denote
its solution group set, of the minimum residual problem for
given matrix group [Xi, Xy, ..., Xj] with X; € R">™i i =
1,2,...,1, find [X1, X2, ..., X;] € Sg with X; € BSR™*"i,
sucll\tha/t\ .
[Xl,Xg, ...,Xl] = min[Xth,,__7Xl]€SE H[Xh X27 .“’Xl],

(X1, Xo, oo, X1 || 3)

In many areas of computational mathematics, control and
system theory, matrix equations can be encountered. In recent
years, there has been an increased interest in solving matrix
equations; for example, Dai [2], Huang [4], have studied
the linear matrix equation AXB = (' with a symmetric
and skew-symmetric condition on the solution, Peng [7], [6],
Shim [12], Chu [1] have studied the linear matrix equation
AXB + CYD = FE with unknown matrices X and Y being
real or complex. The methods used in these papers included
generalized inverse, generalized singular value decomposition
(GSVD) and canonical decomposition (CCD) of matrices.
Peng [10], [11] has studied the equation A1 X B1+ A3 XoBo+
.. + AAX;B;, = C with the bisymmetric conditions on
the solutions. Peng [11] has studied the conjugate gradient
method, and show that the solvability of the matrix equation
can be judged automatically. By using Paige’s algorithms [5],
Peng [9], [8] proposed two matrix iterative methods to get the
constrained solutions of AX B = C and the constrained least
squares solutions of AXB+ CY D = E, and to solve general
coupled matrix equations, respectively. Motivated by the work
of Peng [9], [8], we propose two iterative methods to solve the
matrix equationA; X1 B1 + Ao XoBo + ...+ A; X; B; = C with
bisymmetric condition on the solution, and matrix nearness
problem II. These matrix iterative methods have faster con-
vergence rate and higher accuracy than the iterative methods
proposed in above references in some cases. We will use
Paige’s algorithms [5], which are based on the bidiagonaliza-
tion procedure of Golub and Kahan [3] as the framework for
deriving these matrix-form iterative methods. The basic idea
is that we first transform the problem I into the unconstrained
linear problem in vector form which can be solved by Paige’s
algorithms by the Kronecker product of matrices, and finally,
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we transform the vector-form iterative methods into matrix-
form iterative methods.

This paper is organized as follows. In section 2, we shortly
recall Paige’s algorithms for solving linear systems and least-
squres problem, and so based on Paige’s algorithms, we
propose two iterative algorithms to solve problems I, II, III.
Finally, in section 3, one numerical example are presented to
support the theorical results of this paper.

II. TWO MATRIX ITERATIVE METHODS

In this section, by extending the idea of Paige’s algorithms,
we construct two algorithms for solving problem I, II. We
first shortly recall Paige’s algorithms for solving the minimum
norm solution of the following unconstrained linear system:

Ax = b,

where A € R™*™ and b € R™. Paige’s algorithms are based
on the Bidiagonalization procedure of Golub and Kahan [3],
which are summarized as follows.

Paige’s Algorithm 1

1. =16 = —1;wg = 0;29 = 0; wy = 0;

Brur = byaqvy = ATuy;

2. Fori=1,2,...

(@) & = —&-1Bi/aus

(b) 2z =21+ &vi;

(©) wi = (Ti—1 — Biwi—1)/a;

@ wi = w1 +wivi;

() Birr1uir1 = Av; — oyuy;

) 7 =-ni_105/Biv1:

(@) ait1vier = ATU'L-H = Bix1vis

(th) v = 5i+1fi/(,3i+1wi - Ti);

() = 2z — yiwss

(j) Exit if a stopping criterion has been met.

Paige’s Algorithm 2

1. 61vi = ATb; prug = Aviywy = vi/p1;& = 01 /p1; o1 =
ISVZE

2. Fori=1,2,...

@ Oiy1vier = ATu; — pivy;

() pir1tis1 = Avipr — Oip1uy;

©) wit1 = (Vig1 — bip1wi)/piy1s

(d) &ix1 = —&biv1/piv1s

©) Ziy1 = + &1 Wit1s

(f) Exit if a stopping criterion has been met.

The real scalars «;, 3;, p;, and 6; are chosen to be nonnegative

and such that ||u;|l2 = |lvil]2 = 1 in Paige’s algorithms,
respectively. The stopping criterion may be chosen as
[Irille = |Ib — Azl < € or ||a; — zi—1]]2 < €, where € > 0

is a small tolerance.

Based on Paige’s algorithms 1 and 2, we propose two matrix
iterative algorithms to solve problem I and II.

We can show that problem I is equivalent to the linear matrix
equation

Az =b “

where,
B ® Ay BT ® Ag
A= (SnlB1)T®Alsn1 (Snsz)T®A25n2
= a1 Q) BT 45 Q) BT
(SHLA?)T®BfSn1 (SnzAZT)T®BZTan
vec(X1)
vec(X2) vec(C)
= . vec(C)
B . ’ vee(CT)
. vec(CT)
vec(Xy)
Therefore, the vector form of Biuy; = b, ajv; = ATuy,

T
Bit1uit1 = Av; — ajuy, and @ip1vipr = A% uipr — Biyavi,
1 =1,2,... in Paige’s algorithm 1 can be written in the matrix
form

Bi =2||Cllp, Uiy = C/B1, Ura = C/B1, U g = CT /Py,
Ura=C" /Py,

o = {22:1 HA?ULIBZT+S’ﬂzAz—'U172B;TSnz +BiU1,3Ai +
SniBiUlAAiSniH%'}l/Z’

alvu = A?Ul’lBiT + SniA;TFULQB;TSnZ =+ BiUl,gAi +
Sn,iBiUlAAiSn,i, 1=1,2,...,1,

Bt = AIXi AViiB -
Zé:l HAiSnin,iSniBi - akUk.QH%‘JF
15251 BIViiAT — iUk sl %+ 325y | BT i, Vi S, AT —
arUsall3}2

akU}mlH% +

1
Br41Un+1,1 = 2 i1 AiViiBi — apUp 1,
1
Br+1Uk+1,2 = 2 ;1 AiSn; Vi,iSn, Bi — Uy 2,
l T T
Br41Uk+1,3 = 2 i1 B Vi i Al — apUp 3,
Brs1Uns1.a =30 BT S, Vi iSn, AT — oy U,
k+1VEk+1,4 i=1 i Pn; Vk,ion; 44 apUg 4,

app1 = {Xi AT U121 BT + Sn, ATUi12BTS,, +
BiUi41,3A; + Sn, BiUg41,44:5n, — Br+1 Vk,i“%}l/g,

a1 Vir1i = AFUpy11BT + Sn,ATUpy12BES,, +
BiUpy1,34; + Sn, BiUpq1,4A:Sn, — Bry1 Vi, i=1,2,..1

Also, the vector form of fjv; = ATh, pjug = Avy,
Oir1vip1 = ATu; — Pivis Pitititr = Avipr — O,
1 =1,2,... in paige’s algorithm 2 can be written as:

91 = {22:1 HAZTCBlT + Sn,AzTCBzTSnL + BlcTAz +
SrleiCTAiSnil|%‘}1/2’

0.Vi; = ATCBI + S, ATCBTS,, + BiCTA; +
S BiCT AiSp,. i=1.2...01,

l l
= {12 AiX1:Bill% + 3251 AiSn, X1,:9, Bill % +
H Zi:l Bz‘TXLiAiTHQF + || zz‘:1 BiTSm:Xl,iSmAiTH%}I/Z’

BZT®A1

(Sny BDT Q) ArSn,
Ay BT

1
(s AT @ 57 50
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piUig = 22:1 A¢X1,¢Bz‘l, U2 = 22:1 AiSn, X1,i5n, Bi,
p1U1 3 = Yooy BI XAl piUia =
Zé:l BzTSmXLiSn,:AiT’

Vi1 = i {IIAT Ui BY +8,, ATUr o BT S,y + BiUr 3 Ai+
Sy, BiUg 4 AiSn, — ppViil 2 31Y/2,

0k+1Vk+1,i = A?UkVZBZT + SnlAZTngBZTSm + BiUk,gAi +
Sni BiUg 4 AiSn;, — pi Vi, 1=1,2,..1,

l
N> isi AiViy1,:Bi

Py = O 1Ukal% +
| i1 AiSn, Vis1,iSn, B - Ok11Uk 2% +
13721 B Vier1,, AT - Or11U 3|1 +

13521 BY S, Vi1, AT = Op 11 Up a7 4312
Pr41Uk41,1 = Zézl AiVit1,:Bi — 041Uk 1,
Pr+1Ug11,2 = Zizl AiSn, Vit1,iSn, Bi — 041Uk 2,
U =S BTVi1 AT — 01U,
Pk+1VUk+1,3 Zizl i Vk+1,i4; k+1VE,3,
!
Pe41Uks1.4 = i1 BESn, Vi1,i5n, AT — Or1Up 4

Analogous results can be obtained about the minimum
residual problem 1. According to above discussion, we
introduce two iterative algorithms to compute the unique
minimum Frobenius norm solution [X7, Xs,...,X;] of the
problem I as:

Paige 1 B.S.
Lm0 =1% = —Liwo =0;Zp,1 = ... = Zoy = 0;Wp1 =
e = W()J = 0;

Bi = 2|Cllp, Uiq = C/B1,Ur2 = C/B1, Uz = CT/py,
Uiy =CT/By;

o = {22:1 |AT Ur1 BY + Sy, AT Ur2BY S, + Bilh 3 A +
Sy BiU1 44 Sy, || 312,

Vl,i = A?U171B? -+ SnzA?U17QB?Sm -+ BiULgAi -+
S BU1 4AiSn.s i = 1,2, .,

2. For k=1,2,...

@ & = —E&k—18k/ou;

(0 Zii=Zi—1,i+ Vi = Zi—1,i + & /o (AT U 1B +
Sy AT Uk 2 BE Sy, +BiUy 3Ai+Sn, BiUg 4 Ai Sy — B Vi—1,1)
=12 ...1;

©) wr = (Th—1 — Brwr—1)/k;
(d) Wii=Wi_1i+wiVii = W1, +wi /o (AT U, 1 B +

Sy ATUL 2 BT Sy, +BiUy 3 Ai+Sn, BiUg 4 AiSp; — B Vie—1.1)
i=1,2,....1;

(e) l Bryr = Al 22:1 AiViiB; z apUpi|% +
13251 AiSn, Vi.iSn, Bi — axUk a3 + | Yoi—y BY Vi AT —
apUg,3

%
+ iy BY S VieaSn AT — arUp all3 335
6 Be+1Uks1,1 = Zi=1 AiViiBi — o Uy 1
Br+1Uk+1,2 = 22:1 AiSn,Vi,iSn, Bi — o Uy 2;
Br+1Uk+1,3 = Zizl BI'Vy AT — iUy 3
_ T . T _ .

T i=1"1 ~Mnq B e 2 ) I
Brr1Uks1,4 = iy B SniViiSn Aj — arlUpa
(&) Tk = —Th—10u/Prt1s

() a1 = {35y |ATUkp11 BT + S, AT Up 1 2BT S, +
BiUgy1,34; + Sp, BiUkt1,44:Sn, — Bri1Viill 212,

(i) ars1Viy1i = ATUpp11BE + S, AT U1 2 BES,,, +
BiUgq134; + Sn, BiUg11,44iSn, — Brt1 Vi, i=1.2,...1;

@ vk = Br+18k/ (Ber1wk — Tk);

(k) Xk = Zri — Wkii=1,2,....1;

(I) Exit if a stopping criterion has been met.

Paige 2 B.S.

1. 6 = {3, |ATCBL + 5,,ATCBLS,, + B;CT A, +
S BiCT AilSy |1}/

0Vi; = ATCBT + 5, ATCBTS, + B,CTA; +
S, BiCT A;S,,, i=1.2,...1;

v = Al Sicy AViBillE + | ey AiSa Vi iSa Billy +
| Sies B ViaAT I+

132521 BY S ViiSn, AT 133
pUi1 = 22:1 AiV1,:By;

prUrs = Sy AiSn,Vi,iSn, Bis
prUrs =S BI'ViAT;
p1U14 = Zli:1 BY'Sn V10, AT
Wi =1/p1Via i=1.2,..1;

&1 =01/p1;

X1 =&Wi,,i=12,..1;

2. For k=1,2,...

@ O = S {IATUBE + 8, ATU»BI'S,, +
BiUy 3A; + Sn, BiUx 4Ai Sy, — piViil| 21

841



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:7, No:5, 2013

Ok+1Vier1,i = ATU:BF + S, ATU, o BI'S,,, + B;Uy, 3A; +

SnlBiUk,AlAiSn,; - pk'Vk:,iv i=1,2,....1;

® o1 = AN AVieniBi — OeniUsalld +
I3 A4Sy, Viet1.iSn, Bi - 9k+1Uk,2H% +
H Z i=1 Bz Vk?‘H-JAz - +

I3 i1 BESn Vis1,:9n, AT = ki1 Ur al 332

Pr1Upr11 = Zl 1AiVi1,:Bi — 0k 1Ug 15
Prt1Uk41,2 = Zf‘,ﬂ AiSn, Viet1,i5n, Bi — 011Uk 2;
Pri1Ukr13 = 30y BT Vi1, AT — 011U 3
pre1Ukina = iy BY S VieyiSn, AT = 041Uk s

©) Wi, = Vit1,i — Ot 1 W)/ pry1, 1= 1,2,.]

(D er1 = —Erbri1/pri1s

©) Xpt1,i= X+ &1 Wri1,, 1=1.2,...1

(f) Exit if a stopping criterion has been met.

Now, we consider the matrix nearness problem III. Suppose
X;, i=1,2,...,1 are bisymmetric matrices, and X; € R it
follows o

mmx CR™i X" ||[X1,X2,.. Xl] [X17X2>-;\/XZHF

X X Snq X185, Sn, X1 S
mmX S H[X 1+X1 + nq 1 ny+5Sn X1 n17“.

Xi+X, +S7LleSnl+SanL

X - “L||% +
= ~T —
HX1—X1 +Sn1X1Sn1—San1 Sn1
~ o7 ~ 4 =T ’
Xi—=Xi +Sn; XiSn; —=Sn; Xi Sny 12
’ 4 HF
Hence, finding the wunique solution of the matrix

nearness problem III is equivalent to first finding the
minimum Frobenius norm bisymmetric solution of the
matrix equatlon I or the least- squares problem II with

C — ZZ 1A (X i+ Xi 50, X, S” 850 X S, i)B; instead of

C'. Once the minimum Frobemus norm bisymmetric solution
group [X7, X5, ..., X[] is obtained by Paige 1 B.S and Paige
2 B.S, the unique bisymmetric solution group [X 1, X 2y ooy X l]
of the matrix nearness problem III can be obtained. In this
case, the solution group [Xl,Xg, . Xl]can be expressed as

Xi+X; SnXSn S,,X Sn
X, =X+ 27 ik Sni ¥ ,i=1,2,..L

III. NUMERICAL EXAMPLES

In this section, we compare Paige 1 B.S and Paige 2 B.S nu-
merically with the method proposed in [11], denoted by Peng-
M. All the tests were performed by Matlab 7.1. We choose the
initial iterative matrix groups in the Peng’s method as zero
matrix group in suitable size. All the following examples are
used to illustrate the performance of three methods to compute
the minimum Frobenius norm bisymmetric solution group
[X1, Xo,...,X;] of the matrix equation 1 an the minimum
residual 2.

Example 3.1: Suppose

and C are given

Al =

Bl =

B2 =

and

—136
898
499
1088

—-974
973

1 3 1 3 1
3 =7 3 -7 3
3 -2 3 -2 3
1 6 11 6 11
-5 5 -5 5 =5
9 4 9 4 9
-1 4 -1 4 -1
5 -1 5 -1 5
-1 -2 -1 -2 -1
3 9 3 9 3
7T -8 7 -8 7
3 -4 3 -4 1
-1 3 -1 3 =3
3 -5 3 -5 2
3 -4 3 -4 1
-1 3 -1 3 =3
3 -5 3 -5 2
-5 4 -1 -5 4
-2 3 5 -2 3
3 5 -1 3 5
2 -6 3 2 -6
1 11 7 1 11
4 -1 4 -5 4
878 419 -510
481 701 1321
1779 943 406
1278 1643  —110
—1855 —1171 —1015
1431 1417 58

that the matrices Al, B1, A2, B2,

)

1216
82
1840
2440
—1790
2314

The above given matrices A1, B1, A2, B2, and C are such that

the matrix equation A1 X1B1+AX5By =

C have bisymmet-

ric solution pairs [ X1, X5]. Figure 1 describes the convergence

rate of the function R(k) = ||C — A1 X1 B

— AQXQBQHF of

the above two methods and conjugate gradient method.
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Fig. 1. The results obtained for Example 3.1
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