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Two iterative algorithms to compute the
bisymmetric solution of the matrix equation
A1X1B1 + A2X2B2 + ... + AlXlBl = C

A.Tajaddini

Abstract—In this paper, two matrix iterative methods are presented
to solve the matrix equation A1X1B1 + A2X2B2 + ... +

AlXlBl = C the minimum residual problem ‖∑l

i=1
AiX̂iBi−

C‖F = minXi∈BRni×ni‖
∑l

i=1
AiXiBi−C‖F and the ma-

trix nearness problem [X̂1, X̂2, ..., X̂l] = min[X1,X2,...,Xl]∈SE

‖[X1, X2, ..., Xl] − [X̃1, X̃2, ..., X̃l]‖F , where BRni×ni is
the set of bisymmetric matrices, and SE is the solution set of
above matrix equation or minimum residual problem. These matrix
iterative methods have faster convergence rate and higher accuracy
than former methods. Paige’s algorithms are used as the frame method
for deriving these matrix iterative methods. The numerical example
is used to illustrate the efficiency of these new methods.

Keywords—Bisymmetric matrices, Paige’s algorithms , Least
square.

I. INTRODUCTION

In this work, we will use the following notations. Let
Rm×n and BSRn×n denote the set of m × n real ma-
trices and n × n real bisymmetric matrices, respectively.
Sn(Sn = (en, en−1, ..., e1))denotes the n× n reverse identity
matrix (ei denotes ith column of n× n identity matrix). The
superscript T represents the transpose of a matrix. In space
Rm×n, we define inner product as: < A,B >= trace(BTA)
for all A,B ∈ Rm×n which generates the Frobenius norm
‖A‖F =

√
< A,A >. Notation A

⊗
B is Kronecker product.

The symbol vec(A) = (aT1 , a
T
2 , ..., a

T
n )
T is a vector formed

by the columns of given matrix A = (a1, a2, ..., an). The
bisymmetric matrices play an important role in information
theory, linear system theory, linear estimate theory and nu-
merical analysis [3], [13], which can be defined as follows:

Definition 1.1: Let Sn ∈ Rn×n be a reverse identity matrix.
A matrix X ∈ Rn×n is said to be bisymmetric matrix if X =
XT = SnXSn.

In this paper, we consider the following three problems.
Problem I.Given Ai ∈ Rp×ni , Bi ∈ Rni×q , i = 1, 2, ...l
and C ∈ Rp×q , find matrix group [X1, X2, ..., Xl] with
Xi ∈ BSRni×ni , i = 1, 2, ..., l such that

A1X1B1 +A2X2B2 + ...+AlXlBl = C. (1)

Problem II.Given Ai ∈ Rp×ni , Bi ∈ Rni×q , i = 1, 2, ...l
and C ∈ Rp×q , find matrix group [X̂1, X̂2, ..., X̂l] with X̂i ∈
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BSRni×ni , i = 1, 2, ..., l such that

‖
l∑
i=1

AiX̂iBi−C‖F = minXi∈BRni×ni ‖
l∑
i=1

AiXiBi−C‖F
(2)

Problem III.When problem I or II is consistent. Let SE denote
its solution group set, of the minimum residual problem for
given matrix group [X̃1, X̃2, ..., X̃l] with X̃i ∈ Rni×ni , i =
1, 2, ..., l, find [X̂1, X̂2, ..., X̂l] ∈ SE with X̂i ∈ BSRni×ni ,
such that

[X̂1, X̂2, ..., X̂l] = min[X1,X2,...,Xl]∈SE
‖[X1, X2, ..., Xl]−

[X̃1, X̃2, ..., X̃l]‖F (3)

In many areas of computational mathematics, control and
system theory, matrix equations can be encountered. In recent
years, there has been an increased interest in solving matrix
equations; for example, Dai [2], Huang [4], have studied
the linear matrix equation AXB = C with a symmetric
and skew-symmetric condition on the solution, Peng [7], [6],
Shim [12], Chu [1] have studied the linear matrix equation
AXB + CY D = E with unknown matrices X and Y being
real or complex. The methods used in these papers included
generalized inverse, generalized singular value decomposition
(GSVD) and canonical decomposition (CCD) of matrices.
Peng [10], [11] has studied the equation A1X1B1+A2X2B2+
... + AlXlBl = C with the bisymmetric conditions on
the solutions. Peng [11] has studied the conjugate gradient
method, and show that the solvability of the matrix equation
can be judged automatically. By using Paige’s algorithms [5],
Peng [9], [8] proposed two matrix iterative methods to get the
constrained solutions of AXB = C and the constrained least
squares solutions of AXB+CY D = E, and to solve general
coupled matrix equations, respectively. Motivated by the work
of Peng [9], [8], we propose two iterative methods to solve the
matrix equationA1X1B1+A2X2B2+ ...+AlXlBl = C with
bisymmetric condition on the solution, and matrix nearness
problem II. These matrix iterative methods have faster con-
vergence rate and higher accuracy than the iterative methods
proposed in above references in some cases. We will use
Paige’s algorithms [5], which are based on the bidiagonaliza-
tion procedure of Golub and Kahan [3] as the framework for
deriving these matrix-form iterative methods. The basic idea
is that we first transform the problem I into the unconstrained
linear problem in vector form which can be solved by Paige’s
algorithms by the Kronecker product of matrices, and finally,



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:5, 2013

840

we transform the vector-form iterative methods into matrix-
form iterative methods.
This paper is organized as follows. In section 2, we shortly
recall Paige’s algorithms for solving linear systems and least-
squres problem, and so based on Paige’s algorithms, we
propose two iterative algorithms to solve problems I, II, III.
Finally, in section 3, one numerical example are presented to
support the theorical results of this paper.

II. TWO MATRIX ITERATIVE METHODS

In this section, by extending the idea of Paige’s algorithms,
we construct two algorithms for solving problem I, II. We
first shortly recall Paige’s algorithms for solving the minimum
norm solution of the following unconstrained linear system:

Ax = b,

where A ∈ Rm×n and b ∈ Rm. Paige’s algorithms are based
on the Bidiagonalization procedure of Golub and Kahan [3],
which are summarized as follows.
Paige’s Algorithm 1
1. τ0 = 1; ξ0 = −1;ω0 = 0; z0 = 0;w0 = 0;
β1u1 = b;α1v1 = ATu1;
2. For i=1,2,...
(a) ξi = −ξi−1βi/αi;
(b) zi = zi−1 + ξivi;
(c) ωi = (τi−1 − βiωi−1)/αi;
(d) wi = wi−1 + ωivi;
(e) βi+1ui+1 = Avi − αiui;
(f) τi = −τi−1αi/βi+1;
(g) αi+1vi+1 = ATui+1 − βi+1vi;
(h) γi = βi+1ξi/(βi+1ωi − τi);
(i) xi = zi − γiωi;
(j) Exit if a stopping criterion has been met.
Paige’s Algorithm 2
1. θ1v1 = AT b; ρ1u1 = Av1;w1 = v1/ρ1; ξ1 = θ1/ρ1;x1 =
ξ1w1;
2. For i=1,2,...
(a) θi+1vi+1 = ATui − ρivi;
(b) ρi+1ui+1 = Avi+1 − θi+1ui;
(c) ωi+1 = (vi+1 − θi+1ωi)/ρi+1;
(d) ξi+1 = −ξiθi+1/ρi+1;
(e) xi+1 = xi + ξi+1wi+1;
(f) Exit if a stopping criterion has been met.
The real scalars αi, βi, ρi, and θi are chosen to be nonnegative
and such that ‖ui‖2 = ‖vi‖2 = 1 in Paige’s algorithms,
respectively. The stopping criterion may be chosen as
‖ri‖2 = ‖b − Axi‖2 ≤ ε or ‖xi − xi−1‖2 ≤ ε, where ε > 0
is a small tolerance.
Based on Paige’s algorithms 1 and 2, we propose two matrix
iterative algorithms to solve problem I and II.
We can show that problem I is equivalent to the linear matrix
equation

Ax = b (4)

where,

A =

⎛
⎜⎝

BT
1

⊗
A1 BT

2

⊗
A2 ... BT

l

⊗
Al

(Sn1B1)T
⊗

A1Sn1 (Sn2B2)T
⊗

A2Sn2 ... (Snl
Bl)

T
⊗

AlSnl

A1

⊗
BT

1
A2

⊗
BT

2
... Al

⊗
BT

l

(Sn1AT
1

)T
⊗

BT
1

Sn1 (Sn2AT
2

)T
⊗

BT
2

Sn2 ... (Snl
AT

l
)T
⊗

BT
l

Snl

⎞
⎟⎠

x =

⎛
⎜⎜⎜⎜⎜⎜⎝

vec(X1)
vec(X2)

.

.

.
vec(Xl)

⎞
⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎝

vec(C)
vec(C)
vec(CT )
vec(CT )

⎞
⎟⎟⎠ .

Therefore, the vector form of β1u1 = b, α1v1 = ATu1,
βi+1ui+1 = Avi − αiui, and αi+1vi+1 = ATui+1 − βi+1vi,
i = 1, 2, ... in Paige’s algorithm 1 can be written in the matrix
form

β1 = 2‖C‖F , U1,1 = C/β1, U1,2 = C/β1, U1,3 = CT /β1,
U1,4 = CT /β1,

α1 = {∑l
i=1 ‖ATi U1,1B

T
i +SniA

T
i U1,2B

T
i Sni +BiU1,3Ai+

Sni
BiU1,4AiSni

‖2F }1/2,

α1V1,i = ATi U1,1B
T
i + Sni

ATi U1,2B
T
i Sni

+ BiU1,3Ai +
SniBiU1,4AiSni , i = 1, 2, ..., l,

βk+1 = {‖∑l
i=1 AiVk,iBi − αkUk,1‖2F +∑l

i=1 ‖AiSni
Vk,iSni

Bi − αkUk,2‖2F+
‖∑l

i=1 B
T
i Vk,iA

T
i −αkUk,3‖2F +

∑l
i=1 ‖BT

i Sni
Vk,iSni

ATi −
αkUk,4‖2F }

1
2

βk+1Uk+1,1 =
∑l
i=1 AiVk,iBi − αkUk,1,

βk+1Uk+1,2 =
∑l
i=1 AiSni

Vk,iSni
Bi − αkUk,2,

βk+1Uk+1,3 =
∑l
i=1 B

T
i Vk,iA

T
i − αkUk,3,

βk+1Uk+1,4 =
∑l
i=1 B

T
i Sni

Vk,iSni
ATi − αkUk,4,

αk+1 = {∑l
i=1 ‖ATi Uk+1,1B

T
i + Sni

ATi Uk+1,2B
T
i Sni

+
BiUk+1,3Ai + SniBiUk+1,4AiSni − βk+1Vk,i‖2F }1/2,

αk+1Vk+1,i = ATi Uk+1,1B
T
i + Sni

ATi Uk+1,2B
T
i Sni

+
BiUk+1,3Ai + Sni

BiUk+1,4AiSni
− βk+1Vk,i, i=1,2,...,l.

Also, the vector form of θ1v1 = AT b, ρ1u1 = Av1,
θi+1vi+1 = ATui − ρivi, ρi+1ui+1 = Avi+1 − θi+1ui,
i = 1, 2, ... in paige’s algorithm 2 can be written as:

θ1 = {∑l
i=1 ‖ATi CBT

i + Sni
ATi CBT

i Sni
+ BiC

TAi +
SniBiC

TAiSni‖2F }1/2,

θ1V1,i = ATi CBT
i + Sni

ATi CBT
i Sni

+ BiC
TAi +

Sni
BiC

TAiSni
, i=1,2,...,l,

ρ1 = {‖∑l
i=1 AiX1,iBi‖2F + ‖∑l

i=1 AiSniX1,iSniBi‖2F +

‖∑l
i=1 B

T
i X1,iA

T
i ‖2F + ‖∑l

i=1 B
T
i Sni

X1,iSni
ATi ‖2F }1/2,
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ρ1U1,1 =
∑l
i=1 AiX1,iBi, ρ1U1,2 =

∑l
i=1 AiSniX1,iSniBi,

ρ1U1,3 =
∑l
i=1 B

T
i X1,iA

T
i , ρ1U1,4 =∑l

i=1 B
T
i Sni

X1,iSni
ATi ,

θk+1 =
∑l
i=1{‖ATi Uk,iBT

i +SniA
T
i Uk,2B

T
i Sni+BiUk,3Ai+

Sni
BiUk,4AiSni

− ρkVk,i‖2F }1/2,

θk+1Vk+1,i = ATi Uk,iB
T
i +Sni

ATi Uk,2B
T
i Sni

+BiUk,3Ai+
SniBiUk,4AiSni − ρkVk,i, i=1,2,...,l,

ρk+1 = {‖∑l
i=1 AiVk+1,iBi − θk+1Uk,1‖2F +

‖∑l
i=1 AiSni

Vk+1,iSni
Bi − θk+1Uk,2‖2F +

‖∑l
i=1 B

T
i Vk+1,iA

T
i − θk+1Uk,3‖2F +

‖∑l
i=1 B

T
i SniVk+1,iSniA

T
i − θk+1Uk,4‖2F+}1/2

ρk+1Uk+1,1 =
∑l
i=1 AiVk+1,iBi − θk+1Uk,1,

ρk+1Uk+1,2 =
∑l
i=1 AiSni

Vk+1,iSni
Bi − θk+1Uk,2,

ρk+1Uk+1,3 =
∑l
i=1 B

T
i Vk+1,iA

T
i − θk+1Uk,3,

ρk+1Uk+1,4 =
∑l
i=1 B

T
i Sni

Vk+1,iSni
ATi − θk+1Uk,4,

Analogous results can be obtained about the minimum
residual problem 1. According to above discussion, we
introduce two iterative algorithms to compute the unique
minimum Frobenius norm solution [X1, X2, ..., Xl] of the
problem I as:

Paige 1 B.S.
1. τ0 = 1; ξ0 = −1;ω0 = 0;Z0,1 = ... = Z0,l = 0;W0,1 =
... = W0,l = 0;

β1 = 2‖C‖F , U1,1 = C/β1,U1,2 = C/β1, U1,3 = CT /β1,
U1,4 = CT /β1;

α1 = {∑l
i=1 ‖ATi U1,1B

T
i +SniA

T
i U1,2B

T
i Sni +BiU1,3Ai+

Sni
BiU1,4AiSni

‖2F }1/2,

V1,i = ATi U1,1B
T
i + Sni

ATi U1,2B
T
i Sni

+ BiU1,3Ai +
SniBiU1,4AiSni , i = 1, 2, ..., l,

2. For k=1,2,...

(a) ξk = −ξk−1βk/αk;

(b) Zk,i = Zk−1,i + ξkVk,i = Zk−1,i + ξk/αk(A
T
i Uk,1B

T
i +

Sni
ATi Uk,2B

T
i Sni

+BiUk,3Ai+Sni
BiUk,4AiSni

−βkVk−1,i),
i=1,2 ...,l;

(c) ωk = (τk−1 − βkωk−1)/αk;

(d) Wk,i = Wk−1,i+ωkVk,i = Wk−1,i+ωk/αk(A
T
i Uk,1B

T
i +

Sni
ATi Uk,2B

T
i Sni

+BiUk,3Ai+Sni
BiUk,4AiSni

−βkVk−1,i),
i=1,2,...,l;

(e) βk+1 = {‖∑l
i=1 AiVk,iBi − αkUk,1‖2F +

‖∑l
i=1 AiSni

Vk,iSni
Bi − αkUk,2‖2F + ‖∑l

i=1 B
T
i Vk,iA

T
i −

αkUk,3‖2F
+‖∑l

i=1 B
T
i SniVk,iSniA

T
i − αkUk,4‖2F }

1
2 ;

(f) βk+1Uk+1,1 =
∑l
i=1 AiVk,iBi − αkUk,1;

βk+1Uk+1,2 =
∑l
i=1 AiSni

Vk,iSni
Bi − αkUk,2;

βk+1Uk+1,3 =
∑l
i=1 B

T
i Vk,iA

T
i − αkUk,3;

βk+1Uk+1,4 =
∑l
i=1 B

T
i Sni

Vk,iSni
ATi − αkUk,4;

(g) τk = −τk−1αk/βk+1;

(h) αk+1 = {∑l
i=1 ‖ATi Uk+1,1B

T
i +SniA

T
i Uk+1,2B

T
i Sni +

BiUk+1,3Ai + Sni
BiUk+1,4AiSni

− βk+1Vk,i‖2F }1/2,

(i) αk+1Vk+1,i = ATi Uk+1,1B
T
i + Sni

ATi Uk+1,2B
T
i Sni

+
BiUk+1,3Ai + SniBiUk+1,4AiSni − βk+1Vk,i, i=1,2,...,l;

(j) γk = βk+1ξk/(βk+1ωk − τk);

(k) Xk,i = Zk,i − γkWk,i,i=1,2,...,l;

(l) Exit if a stopping criterion has been met.

Paige 2 B.S.
1. θ1 = {∑l

i=1 ‖ATi CBT
i + Sni

ATi CBT
i Sni

+ BiC
TAi +

Sni
BiC

TAiSni
‖2F }1/2;

θ1V1,i = ATi CBT
i + SniA

T
i CBT

i Sni + BiC
TAi +

Sni
BiC

TAiSni
, i=1,2,...,l;

ρ1 = {‖∑l
i=1 AiV1,iBi‖2F + ‖∑l

i=1 AiSni
V1,iSni

Bi‖2F +

‖∑l
i=1 B

T
i V1,iA

T
i ‖2F+

‖∑l
i=1 B

T
i Sni

V1,iSni
ATi ‖2F }1/2;

ρ1U1,1 =
∑l
i=1 AiV1,iBi;

ρ1U1,2 =
∑l
i=1 AiSniV1,iSniBi;

ρ1U1,3 =
∑l
i=1 B

T
i V1,iA

T
i ;

ρ1U1,4 =
∑l
i=1 B

T
i Sni

V1,iSni
ATi ;

W1,i = 1/ρ1V1,i, i=1,2,...,l;

ξ1 = θ1/ρ1;

X1,i = ξ1W1,i, i=1,2,...,l;

2. For k=1,2,...

(a) θk+1 =
∑l
i=1{‖ATi Uk,iBT

i + Sni
ATi Uk,2B

T
i Sni

+
BiUk,3Ai + Sni

BiUk,4AiSni
− ρkVk,i‖2F }1/2;
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θk+1Vk+1,i = ATi Uk,iB
T
i +SniA

T
i Uk,2B

T
i Sni +BiUk,3Ai+

SniBiUk,4AiSni − ρkVk,i, i=1,2,...,l;

(b) ρk+1 = {‖∑l
i=1 AiVk+1,iBi − θk+1Uk,1‖2F +

‖∑l
i=1 AiSni

Vk+1,iSni
Bi − θk+1Uk,2‖2F +

‖∑l
i=1 B

T
i Vk+1,iA

T
i − θk+1Uk,3‖2F +

‖∑l
i=1 B

T
i SniVk+1,iSniA

T
i − θk+1Uk,4‖2F }1/2;

ρk+1Uk+1,1 =
∑l
i=1 AiVk+1,iBi − θk+1Uk,1;

ρk+1Uk+1,2 =
∑l
i=1 AiSniVk+1,iSniBi − θk+1Uk,2;

ρk+1Uk+1,3 =
∑l
i=1 B

T
i Vk+1,iA

T
i − θk+1Uk,3;

ρk+1Uk+1,4 =
∑l
i=1 B

T
i Sni

Vk+1,iSni
ATi − θk+1Uk,4;

(c) Wk+1,i = (Vk+1,i − θk+1Wk,i)/ρk+1, i= 1,2,...,l;

(d) ξk+1 = −ξkθk+1/ρk+1;

(e) Xk+1,i = Xk,i + ξk+1Wk+1,i, i=1,2,...,l;

(f) Exit if a stopping criterion has been met.
Now, we consider the matrix nearness problem III. Suppose
Xi, i=1,2,...,l are bisymmetric matrices, and X̃i ∈ Rni×ni , it
follows
minXi∈Rni×ni ‖[X1, X2, ..., Xl] − [X̃1, X̃2, ..., X̃l‖2F =

minXi∈Rni×ni ‖[X1 − X̃1+X̃1

T
+Sn1 X̃1Sn1+Sn1 X̃1

T
Sn1

4 , ...

, Xl − X̃l+X̃l

T
+Snl

X̃lSnl
+Snl

X̃l

T
Snl

4 ]‖2F +

‖ X̃1−X̃1

T
+Sn1 X̃1Sn1−Sn1 X̃1

T
Sn1

4 , ...

,
X̃l−X̃l

T
+Snl

X̃lSnl
−Snl

X̃l

T
Snl

4 ‖2F .
Hence, finding the unique solution of the matrix
nearness problem III is equivalent to first finding the
minimum Frobenius norm bisymmetric solution of the
matrix equation I or the least-squares problem II with

C − ∑l
i=1 Ai(

X̃i+X̃i
T
+Sni

X̃iSni
+Sni

X̃i
T
Sni

4 )Bi instead of
C. Once the minimum Frobenius norm bisymmetric solution
group [X∗

1 , X
∗
2 , ..., X

∗
l ] is obtained by Paige 1 B.S and Paige

2 B.S, the unique bisymmetric solution group [X̂1, X̂2, ..., X̂l]
of the matrix nearness problem III can be obtained. In this
case, the solution group [X̂1, X̂2, ..., X̂l]can be expressed as

X̂i = X∗
i +

X̃i+X̃i
T
+Sni

X̃iSni
+Sni

X̃i
T
Sni

4 , i=1,2,...,l.

III. NUMERICAL EXAMPLES

In this section, we compare Paige 1 B.S and Paige 2 B.S nu-
merically with the method proposed in [11], denoted by Peng-
M. All the tests were performed by Matlab 7.1. We choose the
initial iterative matrix groups in the Peng’s method as zero
matrix group in suitable size. All the following examples are
used to illustrate the performance of three methods to compute
the minimum Frobenius norm bisymmetric solution group
[X1, X2, ..., Xl] of the matrix equation 1 an the minimum
residual 2.

Example 3.1: Suppose that the matrices A1, B1, A2, B2,
and C are given

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 3 1 3 1
3 −7 3 −7 3
3 −2 3 −2 3
11 6 11 6 11
−5 5 −5 5 −5
9 4 9 4 9

⎞
⎟⎟⎟⎟⎟⎟⎠

,

B1 =

⎛
⎜⎜⎜⎜⎝
−1 4 −1 4 −1
5 −1 5 −1 5
−1 −2 −1 −2 −1
3 9 3 9 3
7 −8 7 −8 7

⎞
⎟⎟⎟⎟⎠ ,

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

3 −4 3 −4 1 6
−1 3 −1 3 −3 −1
3 −5 3 −5 2 5
3 −4 3 −4 1 6
−1 3 −1 3 −3 −1
3 −5 3 −5 2 5

⎞
⎟⎟⎟⎟⎟⎟⎠

,

B2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−5 4 −1 −5 4
−2 3 5 −2 3
3 5 −1 3 5
2 −6 3 2 −6
1 11 7 1 11
4 −1 4 −5 4

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

−136 878 419 −510 1216
898 481 701 1321 82
499 1779 943 406 1840
1088 1278 1643 −110 2440
−974 −1855 −1171 −1015 −1790
973 1431 1417 58 2314

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The above given matrices A1, B1, A2, B2, and C are such that
the matrix equation A1X1B1+A2X2B2 = C have bisymmet-
ric solution pairs [X1, X2]. Figure 1 describes the convergence
rate of the function R(k) = ‖C − A1X1B1 − A2X2B2‖F of
the above two methods and conjugate gradient method.
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Fig. 1. The results obtained for Example 3.1
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