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Abstract—Analytical investigation of the free vibration behavior 
of circular functionally graded (FG) plates integrated with two 
uniformly distributed actuator layers made of piezoelectric (PZT4) 
material on the top and bottom surfaces of the circular FG plate 
based on the classical plate theory (CPT) is presented in this paper. 
The material properties of the functionally graded substrate plate are 
assumed to be graded in the thickness direction according to the 
power-law distribution in terms of the volume fractions of the 
constituents and the distribution of electric potential field along the 
thickness direction of piezoelectric layers is simulated by a quadratic 
function. The differential equations of motion are solved analytically 
for clamped edge boundary condition of the plate. The detailed 
mathematical derivations are presented and Numerical investigations 
are performed for FG plates with two surface-bonded piezoelectric 
layers. Emphasis is placed on investigating the effect of varying the 
gradient index of FG plate on the free vibration characteristics of the 
structure. The results are verified by those obtained from three-
dimensional finite element analyses. 

Keywords—Circular plate, CPT, Functionally graded, 
Piezoelectric. 

I. INTRODUCTION

NEW class of materials known as ‘functionally graded 
materials’ (FGMs) has emerged recently, in which the 

material properties are graded but continuous particularly 
along the thickness direction. In an effort to develop the super 
heat resistant materials, Koizumi [1] first proposed the 
concept of FGM. These materials are microscopically 
heterogeneous and are typically made from isotropic 
components, such as metals and ceramics.  

In the quest for developing lightweight high performing 
flexible structures, a concept emerged to develop structures 
with self-controlling and self-monitoring capabilities. 
Expediently, these capabilities of a structure were achieved by 
exploiting the converse and direct piezoelectric effects of the 
piezoelectric materials as distributed actuators or sensors, 
which are mounted or embedded in the structure [2, 3]. Such 
structures having built-in mechanisms are customarily known 
as ‘smart structures’. The concept of developing smart 
structures has been extensively used for active control of 
flexible structures during the past decade [4].

Recently considerable interest has also been focused on 
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investigating the performance of FG plates integrated with 
piezoelectric actuators. For example, Ootao and Tanigawa [5] 
theoretically investigated the simply supported FG plate 
integrated with a piezoelectric plate subjected to transient 
thermal loading. A 3-D solution for FG plates coupled with a 
piezoelectric actuator layer was proposed by Reddy and 
Cheng [6] using transfer matrix and asymptotic expansion 
techniques. Wang and Noda [7] analyzed a smart FG 
composite structure composed of a layer of metal, a layer of 
piezoelectric and a FG layer in between, while in [8] a finite 
element model was developed for studying the shape and 
vibration control of FG plates integrated with piezoelectric 
sensors and actuators. Yang et al. [9] investigated the 
nonlinear thermo-electro-mechanical bending response of FG 
rectangular plates covered with monolithic piezoelectric 
actuator layers; most recently, Huang and Shen [10] 
investigated the dynamics of a FG plate coupled with two 
monolithic piezoelectric layers undergoing nonlinear 
vibrations in thermal environments. All the aforementioned 
studies focused on the rectangular-shaped plate structures.  

The present work attempts to solve the problem of 
providing analytical solution for free vibration of thin circular 
FG plates with two full size surface-bonded piezoelectric 
layers on the top and the bottom of the FG plate. The 
formulations are based on CPT. A consistent formulation that 
satisfies the Maxwell static electricity equation is presented so 
that the full coupling effect of the piezoelectric layer on the 
dynamic characteristics of the circular FGM plate can be 
estimated based on the free vibration results. The physical and 
mechanical properties of the FG substrate plate are assumed to 
be graded continuously in the thickness direction according to 
the power-law distribution in terms of the volume fractions of 
the constituents. The differential equations of motion are 
solved analytically for clamped edge boundary condition of 
the plate. By using of some mathematical techniques these 
differential equations are transformed to a sixth order ordinary 
differential equation and finally by implementing the operator 
decomposition method on this equation, three Bessel types of 
equations are obtained which can easily be solved for the plate 
deflection and the potential function. The detailed 
mathematical derivations are presented. In Numerical 
investigations, the emphasis is placed on investigating the 
effect of varying the gradient index of FG plate on the free 
vibration characteristics of the structure. The results are 
verified by those obtained from 3D finite element analyses. 

Free Vibration Analysis of Smart FGM Plates 
F.Ebrahimi,  A.Rastgo  

A



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:1, 2008

44

II. FUNCTIONALLY GRADED MATERIALS

In a FG material made of ceramic and metal mixture, if the 
volume fraction of the ceramic part is represented by Vc and 
the metallic part by Vm, we have; 

1cm VV  (1) 

Based on the power law distribution [11], the variation of 
Vc vs. thickness coordinate (z) placed at the middle of 
thickness, can be expressed as; 

0,)212( ghzV g
fc  (2) 

We assume that the inhomogeneous material properties, 
such as the modulus of elasticity E and the density  change 
in the thickness direction z based on Voigt’s rule over the 
whole range of the volume fraction [12]; while Poisson’s ratio 
 is assumed to be constant in the thickness direction [13] as; 

mcmc EzVEEzE )()()(  (3a) 

mcmc zVz )()()(  (3b) 

where subscripts m and c refer to the metal and ceramic 
constituents, respectively. After substituting Vc from Eq. (2) 
into Eqs. (3), material properties of the FGM plate are 
determined in the power law form which are the same as those 
proposed by Reddy et al. [11] i.e.; 

m
g

fmc EhzEEzE )212)(()(  (4a) 

m
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Fig. 1 Piezoelectric Coupled FGM circular plate 

III. PIEZOELECTRIC MATERIALS

For symmetry piezoelectric materials in polar coordinate, 
the stress - strain - electric field intensity relations based on 
well-known assumptions of classical plate theory,  can be 
written as [16]; 
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in which i  , k  and e represent the stress and strain 
components and the permeability constant of piezoelectric 
material and Ek indicates the components of the electric field. 
and E

ijC are the components of the symmetric piezoelectric 

stiffness matrix and 31e  is the reduced permeability constant 
of piezoelectric material as [13]; 

EEEE CCCC 33
2
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2
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IV. CONSTITUTIVE RELATIONS

The cross section of a circular FGM plate with a 
piezoelectric layer mounted on its surface is shown in Fig. 1. 
In most practical applications, the ratio of the radius to the 
thickness of the plate is more than ten, and the Kirchhoff 
assumption for thin plates is applicable, whereby the shear 
deformation and rotary inertia can be omitted. For such a 
structure, the displacement field is assumed as follows: 

),,(),,( trwtruu zz  (8) 

r
uztruu z

rr ),,(  (9) 

r
uztruu z),,(  (10) 

where uz, ur and u  are the displacements in the transverse z-
direction, radial r-direction, and tangential -direction of the 
plate, respectively. 

It is also assumed that the poling direction of the 
piezoelectric material to be in the z-direction. A differential 
strain can be induced in case of applying external electric 
potential across the piezoelectric layer resulting in bending of 
the plate. The strain of the FGM plate and piezoelectric layer 
in the radial and tangential directions and the shear component 
are given by [14] 
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The stress components in the FGM plate in terms of strains 
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or component of displacement field based on the generalized 
Hooke’s Law are [14]; 

)1())(( 2
rr

f
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where the superscript f represents the variable in the FGM 
structure; Two piezoelectric layers are attached to the FG plate 
and intended to be used as an actuator or sensor to determine 
the natural frequencies of a vibrating coupled plate,. There are 
several different models representing the input electric 
potential for such a piezoelectric layer. In this paper we 
decided to adopt the following Wang et al. electric potential 
function which is appropriate for free vibrations of proposed 
system [13]; 

),,(221 2 trhhhz ppf  (17) 

where ),,( tr is the electric potential on the mid-surface of 
the piezoelectric layer.

Based on Eq. (17), the components of electric field intensity 
E and electric flux density D is written as [15]: 

)(1111 r
ED rr  (18) 

)(1111 r
ED  (19) 

rrzz eED 3133  (20) 

where 11 , 33  are the symmetric reduced dielectric constants 
of piezo layer and given by [17]; 

)( 33
2
333333

ECe    , 1111  (21) 

in which 33 , 11  are the dielectric constants. 

V. GOVERNING EQUATIONS

In order to obtain the governing differential equation of the 
coupled circular plate, we begin with resultant moments 
components as [16];  
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And the resultant shear forces are herein written as 
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Substituting Eqs. (11-13) in to Eqs. (14-16) and Eqs. (5-7) 
and substituting the results in to Eqs. (22-26) and substituting 
the final results into the governing equation for the Kirchhoff 
plate,
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will result in the equation for the piezoelectric coupled 
circular FGM plate, 
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where is the Laplace operator in polar coordinate and 
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where f and p are material densities of the FGM plate and 
piezoelectric layer, respectively.

Note that all of the electrical variables primarily must 
satisfy the Maxwell's equation which requires that the 
divergence of the electric flux density vanishes at any point 
within the media as [15]; 

0dz
z

D
r
D

rr
rDpf

f

hh

h
zr  (29) 

Now, by substituting Eqs. (18- 20) into the above equation 
we arrive at; 
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VI. SOLUTIONS METHOD

Primarily we solve Eqs. (28) and (30) simultaneously by 
which  can be expressed in terms of w as; 
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Applying the Laplacian operator to the above equation and 
substituting the result into equation (28) gives a decoupled 
sixth-order partial differential equation, namely 
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To solve Eq. (34) for w , we first assume that; 

tmierwtrw )(),,( 1  (34) 

where )(1 rw  is the displacement amplitude in the z - 
direction as a function of radial displacement only;   is the 
natural angular frequency of the compound plate; and m is the 
wave number in the circumferential direction. Rewriting Eq. 
(32) in terms of )(1 rw  and using Eq. (34), after canceling the 
exponential term one would get; 
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where 2222 rmrdrddrd .
Eq. (35) can be solved by the method of decomposition 

operator and noting that the 1w  is non-singular at the center of 
the plate its general solution yields to 
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where
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in which x1, x2 and x3 are the roots of the following cubic 
characteristic equation, 
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here i=(1,2,3) and )( rJ im , )( rI im are the first type and the 

modified first type Bessel function ,both of them of the order 
of m. In order to obtain appropriate solution for ),,( tr , we 
assume; 

tmiertr )(),,( 1  (40) 

then substituting Eq. (36) in to Eq. (31)we arrive to the 
following relation for ),,( tr ;
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VII. CASE STUDIES, RESULTS AND DISCUSSIONS

We will solve above the relations in this section; the 
material parameters and geometries are listed in Table I. 

TABLE I
MATERIAL PROPERTIES AND GEOMETRIC SIZE OF THE PIEZOELECTRIC

COUPLED FGM PLATE [13, 17] 
FGM Plate: Ec = 205 GPa  c =8900 (kg/ m3)

Em = 200 GPa m =7800 
PZT4: EC11 132 EC33 115

EC55 26 GPa EC13 73 EC12 71
e31 =-4.1 (C/m2) e33 =14.1 e15 =10.5  

11 =7.124 (nF/m) 33 =5.841  p =7500 (kg/ m3)
   
Geometry(mm): r0=600 hf =2  ,  hp =10

A.  Clamped circular Piezo-coupled FGM plate 

The boundary condition is given by 
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and the characteristic equation is 
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in which the ()’ symbol indicates the derivative with respect to 
r and  is the nondimensional angular natural frequency.  

TABLE II
FIRST THREE RESONANCE FREQUENCIES (HZ) OF FGM PLATE

Power
Index 

Mode 
no. FGM plate 

g m Present 
Method 

Present
(FEM)

Error 
(%)

Wang et 
al. [13] 

0 138.42 139.27 0.61 138.48 
1 288.05 289.70 0.57 288.20 0
2 472.55 473.45 0.19 472.79 
0 134.63 135.43 0.59 -
1 280.17 281.78 0.57 -1
2 459.62 460.45 0.18 -
0 132.70 133.63 0.69 -
1 276.19 278.04 0.67 -3
2 453.09 454.34 0.28 -
0 132.12 133.06 0.70 - 
1 274.96 276.85 0.68 -5
2 451.06 452.39 0.29 -
0 131.85 132.78 0.70 -
1 274.39 276.25 0.67 -7
2 450.13 451.46 0.29 -
0 131.69 132.70 0.76 -
1 274.07 276.09 0.73 -9
2 449.60 450.84 0.28 -
0 131.64 132.55 0.68 -
1 273.96 275.79 0.67 -10
2 449.42 450.66 0.28 -

After calculating from Eq. (43) and using Eqs. (36, 42) we 
find the mode shape for w1 as; 
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And moreover, by using Eqs. (36, 41, 42) we have the 
electric potential as; 
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In order to validate the obtained results, we compared our 
results with those given in the literature [7,9,10]. 

Further as there were no published results for the compound 
piezoelectric FGM plate, we verify the validity of obtained 
results with those of FEM results. Our FEM model for piezo- 
FG plate comprises: a 3D 8-noded solid element with: number 
of total nodes 26950, number of total element 24276, 3 DOF 
per node in the host plate element and 6 DOF per node in the 
piezoelectric element. Tables II and III shows the numerical 
results of our method compared with other references and 
techniques. 

TABLE III
FIRST THREE RESONANCE FREQUENCIES (HZ) FOR PIEZO-COUPLED FGM

PLATE FOR VARIOUS VALUES OF POWER INDEX

Power
Index 

Mode 
no. Coupled Piezo-FGM plate 

g m Present 
Method 

Present
(FEM)

Error 
(%)

Wang et 
al. [13] 

0 143.63 144.69 0.73 143.71 
1 298.92 300.49 0.52 299.07 0
2 490.37 492.62 0.46 490.62 
0 140.26 142.22 1.38 - 
1 291.89 295.82 1.33 - 1
2 478.84 482.09 0.67 -
0 138.54 140.60 1.46 - 
1 288.33 292.47 1.42 - 3
2 472.99 476.61 0.76 -
0 138.01 140.07 1.47 - 
1 287.21 291.39 1.43 - 5
2 471.16 474.81 0.77 -
0 137.76 139.82 1.47 - 
1 286.69 290.83 1.43 - 7
2 470.30 473.95 0.77 -
0 137.62 139.73 1.51 - 
1 286.40 290.54 1.43 - 9
2 469.83 473.16 0.70 -
0 137.57 139.61 1.46 - 
1 286.30 290.41 1.42 - 10
2 469.66 473.26 0.76 -

As one can see from Table II, the obtained results from the 
analytical method when g=0 (isotropic steel plate) 
corresponds closely with the results of [7-9] and FEM 
solution. As it is seen in these tables the maximum estimated 
error of our solution with FEM is about 1.51%. 
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Fig 2. Effect of power index on the natural frequencies (first 
mode) 

A close inspection of results listed in Tables II and III 
indicates that the amount of error between analytical and FEM 
results for the natural frequencies in FGM plate alone in the 
all vibration modes and for all values of g are less than the 
similar results for the compound plate. 

The obtained results in Table III indicate that by increasing 
the value of g, the frequency of system decreases in all 
different vibrational modes. Moreover, this decreasing trend 
of frequency for smaller values of g is more pronounced, for 
example by increasing value of g from 1 to 3 (~200%) the 
frequency of the first mode for the compound plate decreases 
by 1.23% but by increasing g from 3 to 9 (~ 200%) of the 
same plate and for the same mode, the frequency decreases by 
0.66%. In order to see better the effect of g variations on the 
natural frequencies of the different plates, Fig. 2 and Fig. 3 
also illustrate these variations for the first and third mode 
shapes.

445
450
455
460
465
470
475
480
485
490
495

0 2 4 6 8 10
Power Index(g)

N
at

ur
al

 F
re

qu
en

cy
 (H

z)

FGM Plate-Analytical FGM Plate-FEM
Piezo coupled FGM-Analytical Piezo coupled FGM-FEM

Fig.  3 Effect of power index on the natural frequencies (third 
mode) 

As it is seen from Figs. 2 and Fig. 3, the behavior of the 
system follows the same trend in all different cases, i.e. the 
natural frequencies of the system decrease by increasing of g 
and stabilizes for g values greater than 7. In fact for g>>1 the 
FGM plate becomes a ceramic plate and the compound plate 

transforms to a laminated plate with ceramic core as a host 
plate.

VIII. CONCLUSION

In this paper free vibration of a FGM plus piezoelectric 
laminated circular plate based on CPT is investigated. The 
properties of FG material changes according to the Reddy’s 
model in direction of thickness of the plate and distribution of 
electric potential in the piezoelectric layers follows a quadratic 
function in short circuited form. The validity of the obtained 
results was done by crossed checking with other references as 
well as by obtained results from FEM solutions. It is further 
shown that for vibrating circular compound plates with 
specified dimensions, one can select a specific piezo-FGM 
plate which can fulfill the designated natural frequency and 
indeed this subject has many industrial applications. 
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