A Note on Negative Hypergeometric Distribution and Its Approximation

S. B. Mansuri

Abstract

In this paper, at first we explain about negative hypergeometric distribution and its properties. Then we use the wfunction and the Stein identity to give a result on the poisson approximation to the negative hypergeometric distribution in terms of the total variation distance between the negative hypergeometric and poisson distributions and its upper bound.

Keywords-Negative hypergeometric distribution, Poisson distribution, Poisson approximation, Stein-Chen identity, w-function.

I. INTRODUCTION

IET a box contain S items of which are defective and R are non defective. Items are inspected at random (one at a time) without replacement, from box until the number of non defective items reaches a fixed numberr.

Let X be the number of defective items the sample, then X has a negative hypergeometric distribution and denoted by $N H(R, S, r)$. Its probability function can be expressed as;

$$
\begin{equation*}
p_{X}(k)=\frac{\binom{r+k-1}{r}\binom{R-r+S-k}{S-k}}{\binom{R+S}{S}} \quad k=0,1, \ldots, S \tag{1}
\end{equation*}
$$

Where $R, S \in \mathbb{N}$ and $r \in\{1,2, \ldots, R\}$.
Now, we show the mean and variance of X are $\mu=\frac{r S}{R+1}$ and $\sigma^{2}=\frac{r S(R+S+1)(R-r+1)}{(R+1)^{2}(R+2)}$, respectively.

Proof
$\mu=E(X)=\sum_{k=0}^{S} k \frac{\binom{r+k-1}{r}\binom{R-r+S-k}{S-k}}{\binom{R+S}{S}}$
$=\frac{1}{\binom{R+S}{S}} \sum_{k=0}^{S} \frac{(r+k-1)!}{(k-1)!(r-1)!}\binom{R-r+S-k}{S-k}$
$=\frac{1}{\binom{R+S}{S}} \sum_{k=0}^{S-1} \frac{(r+k)!}{k!(r-1)!}\binom{R-r+S-k-1}{S-k-1}$
$=\frac{r}{\binom{R+S}{S}} \sum_{k=0}^{S-1}\binom{r+k}{k}\binom{R-r+S-k-1}{S-k-1}$
Note that, we have
$\sum_{j=0}^{k}\binom{a+k-j-1}{k-j}\binom{b+j-1}{j}=\binom{a+b+k-1}{k}$
Then
B. Mansouri is with the Department of Science, Payame Noor University, 19395-4697, Tehran, Iran (phone:+989131831016, e-mail: S_mansouri@pnu.ac.ir).
$\mu=\frac{r}{\binom{R+S}{S}}\binom{R+S}{S-1}=\frac{r S}{R+1}$
For variance we obtain $E(X(X-1))$ then,

$$
\begin{aligned}
& E(X(X-1))=\sum_{k=0}^{S} k(k-1) \frac{\binom{r+k-1}{r}\binom{R-r+S-k}{S-k}}{\binom{R+S}{S}} \\
& =\frac{r(r+1)}{\binom{R+S}{S}} \sum_{k=0}^{S-2}\binom{r+k+1}{k}\binom{R-r+S-k-2}{S-k-2} \\
& =\frac{r(r+1)}{\binom{R+S}{S}}\binom{R+S}{S-2}=\frac{r S(r+1)(S-1)}{(R+1)(R+2)} \\
& \quad \text { Then }
\end{aligned}
$$

$$
\begin{equation*}
\sigma^{2}=\frac{\mathrm{rS}(\mathrm{R}+\mathrm{S}+1)(\mathrm{R}-\mathrm{r}+1)}{(\mathrm{R}+1)^{2}(\mathrm{R}+2)} \tag{2}
\end{equation*}
$$

Suppose that S and R tend to ∞ in such a way that $\frac{S}{R+1} \rightarrow \theta$ $(0<\theta<1)$, then the negative hypergeometric distribution converges to the negative binomial distribution with parameters r and $\frac{\theta}{1+\theta}$. Similarly this distribution may converge to the binomial or poisson or normal distribution if the conditions on their parameters are appropriate.
It should be noted that if $\frac{\mathrm{r}}{\mathrm{R}+1}$ is not be small and S is sufficiently large, then $N H(R, S, r)$ can also approximated by the normal distribution with mean $\frac{\mathrm{Sr}}{\mathrm{R}+1}$ and variance $\frac{\mathrm{Sr}(\mathrm{R}-\mathrm{r}+1)}{(\mathrm{R}+1)^{2}}$. In this case, a bound on the normal approximation can be derived by using the same method in [3].

In this paper, we use the w-function associated with the random variable X together with the Stein-Chen identity to give an upper bound for the total variation distance between the negative hypergeometric and poisson distributions.

II. UsEFUl DEFINITION AND Propositions

A. Let X be a non-negative integer-valued random variable with distribution F and let P_{λ} denote the poisson distribution with mean λ. The total variation distance between two distribution defined by:

$$
\begin{equation*}
\mathrm{d}_{\mathrm{TV}}\left(\mathrm{~F}, \mathrm{P}_{\lambda}\right)=\sup _{\mathrm{A}}\left|\mathrm{~F}(\mathrm{~A})-\mathrm{P}_{\lambda}(\mathrm{A})\right| \tag{3}
\end{equation*}
$$

Where A runs over subset of non-negative integers. To obtain an upper bound for the total variation distance in terms of the w-function, we apply the Stein-chen identity (see [2]) according to which for every positive constant, every subset A of non-negative integers and some function $g=g_{\lambda, A}$,

$$
\begin{equation*}
F(A)-P_{\lambda}(A)=E(\lambda g(X+1)-X g(X)) \tag{4}
\end{equation*}
$$

The explicit formula for the function g can be found e.g in [2], but what we really need are the following estimates valid uniformly for all A:

$$
\begin{gather*}
\sup _{\mathrm{k}}|g(\mathrm{k})| \ll \min \left(1, \lambda^{-1 / 2}\right) \\
|\Delta \mathrm{g}|=\sup _{\mathrm{k}}|\Delta \mathrm{~g}(\mathrm{k})| \ll \lambda^{-1}\left(1-\mathrm{e}^{-\lambda}\right) \tag{5}
\end{gather*}
$$

where $\Delta g(k)=g(k+1)-g(k)($ see [1]).
B. Let a non-negative integer-valued random variable X with distribution $F=\{p(k), k=0,1,2, \ldots\}$ have mean μ and variance σ^{2}. Define a function w associated with the random variable X by the relation

$$
\begin{equation*}
\text { C. } \quad \sigma^{2} w(k) p(k)=\sum_{i=0}^{k}(\mu-i) p(i), k=0,1,2, \ldots \tag{6}
\end{equation*}
$$

Immediately from the above we have

$$
\begin{equation*}
\mathrm{w}(0)=\frac{\mu}{\sigma^{2}} \tag{7}
\end{equation*}
$$

$\mathrm{w}(\mathrm{k}+1)=\frac{\mathrm{p}(\mathrm{k})}{\mathrm{p}(\mathrm{k}+1)} \mathrm{w}(\mathrm{k})+\frac{\mu-(\mathrm{k}+1)}{\sigma^{2}} \quad \mathrm{k}=0,1,2, \ldots$
And

$$
\begin{equation*}
w(k) \gg 0, k=0,1,2, \ldots \tag{8}
\end{equation*}
$$

Proposition1. If a non-negative integer-valued random variable X with distribution $\mathrm{p}(\mathrm{k})>0$, for all k in support of X and $0<\sigma^{2}=\operatorname{Var}(X)<\infty$, then;

$$
\begin{equation*}
\operatorname{Cov}(\mathrm{X}, \mathrm{~g}(\mathrm{X}))=\sigma^{2} \mathrm{E}(\mathrm{w}(\mathrm{X}) \Delta \mathrm{g}(\mathrm{X})) \tag{9}
\end{equation*}
$$

For any function $\mathrm{g}: \mathbb{N} \cup\{0\} \rightarrow \mathbb{R}$ for which $\mathrm{E}(\mathrm{w}(\mathrm{X}) \Delta \mathrm{g}(\mathrm{X}))<\infty \quad$.By taking $g(\mathrm{x})=\mathrm{x}$, we have $\mathrm{E}(\mathrm{w}(\mathrm{X}))=1$ (see [4]).

Proposition2. (Reference [6])Let $\mathrm{w}(\mathrm{X})$ be the w -function associated with the negative hypergeometric random variable, then;

$$
\begin{equation*}
\mathrm{w}(\mathrm{k})=\frac{(\mathrm{r}+\mathrm{k})(\mathrm{S}-\mathrm{k})}{(\mathrm{R}+1) \sigma^{2}} \tag{10}
\end{equation*}
$$

Where $\sigma^{2}=\frac{\mathrm{rS}(\mathrm{R}+\mathrm{S}+1)(\mathrm{R}-\mathrm{r}+1)}{(\mathrm{R}+1)^{2}(\mathrm{R}+2)}$.

Proof

Following (7), we have

$$
\begin{align*}
w(k) & =\frac{p(k-1)}{p(k)} w(k-1)+\frac{\mu-k}{\sigma^{2}} \\
& =\frac{\mu}{\sigma^{2}}+\frac{p(k-1)}{p(k)} w(k-1)-\frac{k}{\sigma^{2}} \tag{11}
\end{align*}
$$

With replacing (1) in (11) we have
$w(k)=\frac{r S}{(R+1) \sigma^{2}}+\frac{k(R-r+S-k+1)}{(r+k-1)(S-k+1)} w(k-1)-\frac{k}{\sigma^{2}}$

$$
\mathrm{k}=1,2, \ldots, \mathrm{~S}
$$

And as we told before $w(0)=\frac{\mathrm{rS}}{(\mathrm{R}+1) \mathrm{\sigma}^{2}}$.
We will show that (10) holds for every $k \in\{1,2, \ldots, S\}$.
Equation (11) holds for $\mathrm{k}=1$ i.e

$$
\mathrm{w}(1)=\frac{(\mathrm{r}+1)(\mathrm{S}-1)}{(\mathrm{R}+1) \sigma^{2}}
$$

We assume that (11) holds for $k=i-1$, then we will prove that holds for $k=i$.

By mathematical induction, (11) holds for every $k \in$ $\{1,2, \ldots, S\}$.

III. Poisson Approximation

We will prove our main result by using the w-function associated with the negative hypergeometric random variable X and the Stein-Chen identity.
For the Stein-Chen identity, using definition 1, its applied for every positive constant λ, and every subset A of $g=$ $g_{A}: \mathbb{N} \cup\{0\} \rightarrow \mathbb{R}$, yield
$N H(R, S, r)\{A\}-P o(\lambda)\{A\}=E(\lambda g(X+1)-X g(X))$
For any subset A of $\mathbb{N} \cup\{0\}$, Barbour et al in [2] proved that:

$$
\begin{equation*}
\sup _{A, k}|\Delta \mathrm{~g}(\mathrm{k})|=\sup _{A, k}|\mathrm{~g}(\mathrm{k}+1)-\mathrm{g}(\mathrm{k})| \ll \lambda^{-1}\left(1-\mathrm{e}^{-\lambda}\right) \tag{13}
\end{equation*}
$$

The following theorem gives a result of the poisson approximation to the negative hypergeometric distribution.

Theorem. Let X be negative hypergeometric random variable, $\lambda=\frac{\mathrm{rS}}{\mathrm{R}+1}$ and $r \gg S-1$, then for $A \subseteq \mathbb{N} \cup\{0\}$

$$
\begin{equation*}
d_{T V}(N H(R, S, r), P o(\lambda)) \leq\left(1-e^{-\lambda}\right) \frac{(R+1)(r+1)-S(R-r+1)}{(R+1)(R+2)} \tag{14}
\end{equation*}
$$

Proof
From (12) it follows that
$|N H(R, S, r)\{A\}-P o(\lambda)\{A\}|=|E(\lambda g(X+1)-X g(X))|$
$=|E(\lambda g(X+1))-\operatorname{Cov}(X, g(X))-\mu E(g(X))|$
$=|\lambda E(\Delta g(X))-\operatorname{Cov}(X, g(X))|$
$=\left|\lambda E(\Delta g(X))-\sigma^{2} E(w(X) \Delta g(X))\right| \quad$ by (9)
$\ll E\left|\left(\lambda-\sigma^{2} w(X)\right) \Delta g(X)\right|$
$\ll \sup |\Delta \mathrm{g}(\mathrm{x})| E\left|\lambda-\sigma^{2} w(X)\right|$
$\ll \lambda^{x>1}\left(1-\mathrm{e}^{-\lambda}\right) E\left|\lambda-\sigma^{2} w(X)\right| \quad$ by (13)
Then
$|N H(R, S, r)\{A\}-P o(\lambda)\{A\}| \ll \lambda^{-1}\left(1-\mathrm{e}^{-\lambda}\right) E\left|\lambda-\sigma^{2} w(X)\right|$
Now we show that $\lambda-\sigma^{2} w(X) \gg 0$. As by proposition 2,

$$
\begin{align*}
\lambda-\sigma^{2} w(X) & =\frac{r S}{R+1}-\sigma^{2} \frac{(r+k)(S-k)}{(R+1) \sigma^{2}} \tag{15}\\
& =\frac{\mathrm{rS}}{\mathrm{R}+1}-\frac{(\mathrm{r}+\mathrm{k})(\mathrm{S}-\mathrm{k})}{(\mathrm{R}+1)} \\
& =\frac{\mathrm{k}(\mathrm{k}-\mathrm{S}+\mathrm{r})}{\mathrm{R}+1} \gg 0
\end{align*}
$$

Thus

$$
\begin{aligned}
E\left|\lambda-\sigma^{2} w(X)\right| & =E\left(\lambda-\sigma^{2} w(X)\right) \\
& =\lambda-\sigma^{2} E(w(X)) \\
& =\lambda-\sigma^{2} \\
& =\lambda \frac{(\mathrm{R}+1)(\mathrm{r}+1)-\mathrm{S}(\mathrm{R}-\mathrm{r}+1)}{(\mathrm{R}+1)(\mathrm{R}+2)}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
d_{T V}(N H(R, S, r) & , P o(\lambda)) \\
& \leq(1 \\
& -e^{-\lambda)} \frac{(R+1)(r+1)-S(R-r+1)}{(R+1)(R+2)}
\end{aligned}
$$

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934
Vol:6, No:11, 2012

If $r=S-1$ then

$$
\begin{aligned}
& d_{T V}(N H(R, S, r), P o(\lambda)) \\
& \quad \leq\left(1-\mathrm{e}^{-\lambda}\right) \frac{(\mathrm{R}+1)(\mathrm{r}+1)-(\mathrm{r}+1)(\mathrm{R}-\mathrm{r}+1)}{(\mathrm{R}+1)(\mathrm{R}+2)} \\
& \text { Thus } \\
& d_{T V}(N H(R, S, r), P o(\lambda)) \leq\left(1-e^{-\lambda}\right) \frac{r(r+1)}{(R+1)(R+2)}<\frac{r}{R}
\end{aligned}
$$

References

[1] A.D. Barbour, G.K. Eagleson, Poisson Approximation for Some Statistics Based on Exchangeable Trials. Adv. Appl. Probab. 15 (1983), 360-385.
[2] A.D. Barbour, L.Hoslt, S. Janson, Poisson Approximation. Oxford Studies in Probability 2, Clarendon Press, Oxford, 1992.
[3] Boonta, K. Neammanee, Bonds on Random Infinite Urn Model. Bull, Malays. Math.Sci.Soc., 30(2007), 121- 128.
[4] T. Cacoullos, V. Papathanasiou, Characterization of Distributions by Variance Bounds. Statist. Probab. Lett., 7 (1989), 351-356.
[5] M. Majsnerowska, A Note on Poisson Approximation by w-function. Appl. Math. 25, 3 (1998), 387-392.
[6] K. Teerapabolarn, On the Poisson Approximation to the Negative Hypergeometric Distribution, Int. Math. Fourm, (2000), 1-8.

