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Abstract—In this paper, at first we explain about negative 

hypergeometric distribution and its properties. Then we use the w-

function and the Stein identity to give a result on the poisson 

approximation to the negative hypergeometric distribution in terms of 

the total variation distance between the negative hypergeometric and 

poisson distributions and its upper bound. 
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I. INTRODUCTION 

ET a box contain � items of which are defective and � are 

non defective. Items are inspected at random (one at a time) 

without replacement, from box until the number of non 

defective items reaches a fixed number�. 

Let � be the number of defective items the sample, then � 

has a negative hypergeometric distribution and denoted by 

����, �, �	. Its probability function can be expressed as; 


���	  ������
� ���������

��� �
����

� � �  0,1, … , �                   (1)            

Where �, � � � and � � �1,2, … , ��. 

Now, we show the mean and variance of � are �  ��
��� and 

σ!  "#�$�#��	�$�"��	
�$��	%�$�!	  , respectively. 
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For variance we obtain &���� + 1		 then, 
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Then 

                         σ!  "#�$�#��	�$�"��	
�$��	%�$�!	                                 (2) 

Suppose that � and � tend to ∞ in such a way that 
�

��� 6 7 

(0 8 7 8 1	, then the negative hypergeometric distribution 

converges to the negative binomial distribution with 

parameters � and 
9

��9. Similarly this distribution may converge 

to the binomial or poisson or normal distribution if the 

conditions on their parameters are appropriate. 

It should be noted that if 
"

$�� is not be small and � is 

sufficiently large, then ����, �, �	 can also approximated by 

the normal distribution with mean 
#"

$�� and variance 
#"�$�"��	

�$��	% . 

In this case, a bound on the normal approximation can be 

derived by using the same method in [3]. 

In this paper, we use the w-function associated with the 

random variable � together with the Stein-Chen identity to 

give an upper bound for the total variation distance between 

the negative hypergeometric and poisson distributions. 

II. USEFUL DEFINITION AND PROPOSITIONS 

A. Let X be a non-negative integer-valued random 

variable with distribution  F and let P= denote the poisson 

distribution with mean >. The total variation distance between 

two distribution defined by: 

                d@A�F, P=	  supE|F�A	 + P=�A	|                     (3) 

 

Where A runs over subset of non-negative integers. To obtain 

an upper bound for the total variation distance in terms of the 

w-function, we apply the Stein-chen identity (see [2]) 

according to which for every positive constant, every subset A 

of non-negative integers and some function  g  g=,E , 

 

              F�A	 + P=�A	  E4λg�X * 1	 + Xg�X	5                 (4) 
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The explicit formula for the function g can be found e.g in 

[2], but what we really need are the following estimates valid 

uniformly for all A: 

sup
K

|g�k	| M min41, λ�� !⁄ 5 

               |∆g|  supK|∆g�k	| M λ��41 + e�=5                (5) 

 

where ∆g�k	  g�k * 1	 + g�k	 (see [1]). 

B. Let a non-negative integer-valued random variable X 

with distribution F  �p�k	, k  0,1,2, … � have mean µ and 

variance σ!. Define a function w associated with the random 

variable X by the relation  

C. σ!w�k	p�k	  ∑ �µ + i	p�i	,KW() k  0,1,2, …         (6)     

 

Immediately from the above we have 

w�0	  µ
σ!   

w�k * 1	  X�K	
X�K��	 w�k	 * µ��K��	

Y% k  0,1,2, …         (7) 

And 

                           w�k	 Z 0, k  0,1,2, …                       (8) 

 Proposition1. If a non-negative integer-valued random 

variable X with distribution p�k	 [ 0 , for all k in support of X 

and 0 8 σ!  Var�X	 8 ∞ , then; 

 

             Cov4X, g�X	5  σ!E�w�X	∆g�X		                    (9) 

 

For any function g: � c �0� 6 d for which 

E�w�X	∆g�X		 8 ∞ .By taking e�x	  x , we have 

E4w�X	5  1 (see [4]). 

Proposition2. (Reference [6])Let w�X	 be the w-function 

associated with the negative hypergeometric random variable, 

then; 

 

                               w�k	  �"�K	�#�K	
�$��	Y%                               (10)                   

Where σ!  "#�$�#��	�$�"��	
�$��	%�$�!	  . 

 

Proof  

Following (7), we have 

w�k	  p�k + 1	
p�k	 w�k + 1	 * µ + k

σ!  

      µ
Y% * X�K��	

X�K	 w�k + 1	 + K
Y%                                       (11) 

 

With replacing (1) in (11) we have 

w�k	  rS
�R * 1	σ! * k�R + r * S + k * 1	

�r * k + 1	�S + k * 1	 w�k + 1	 + k
σ! 

k  1,2, … , S 

And as we told before i�0	  "#
�$��	Y% . 

We will show that (10) holds for every  k � �1,2, … , S�. 

Equation (11) holds for k  1 i.e 

w�1	  �r * 1	�S + 1	
�R * 1	σ!  

We assume that (11) holds for �  j + 1, then we will 

prove that holds for �  j. 

By mathematical induction, (11) holds for every � �
�1,2, … , ��. 

 

III. POISSON  APPROXIMATION 

We will prove our main result by using the w-function 

associated with the negative hypergeometric random variable 

� and the Stein-Chen identity. 

For the Stein-Chen identity, using definition 1, its applied 

for every positive constant >, and every subset A of e 
ek: � c �0� 6 d , yield 

 ����, �, �	�l� + mn�>	�l�  &�>e�� * 1	 + �e��		   (12) 

 

For any subset A of  � c �0� , Barbour et al in [2] proved 

that: 

 

 supk,�|∆g�k	|  supk,�|g�k * 1	 + g�k	| M λ
���1 + e�λ	 

(13)   

 

The following theorem gives a result of the poisson 

approximation to the negative hypergeometric distribution. 

Theorem. Let � be negative hypergeometric random 

variable, λ  "#
$��  and � Z � + 1, then for l o � c �0� 

pqr�����, �, �	, mn�>		 s 41 + t�u5 �� * 1	�� * 1	 + ��� + � * 1	
�� * 1	�� * 2	  

(14) 

Proof 

From (12) it follows that 

|����, �, �	�l� + mn�>	�l�|  |&�>e�� * 1	 + �e��		| 
 |&�>e�� * 1		 + vnw��, e��		 + �&�e��		| 
 x>&4∆e��	5 + vnw��, e��		x 
 x>&4∆e��	5 + y!&�i��	∆e��		x 2z �9	 

M &x4> + y!i��	5∆e��	x 
M sup

|Z�
|∆g�x	| &|> + y!i��	| 

M λ
���1 + e�λ	&|> + y!i��	| 2z �13	 

Then  

|����, �, �	�l� + mn�>	�l�| M λ
���1 + e�λ	&|> + y!i��	|  

(15) 

Now we show that  > + y!i��	 Z 0. As by proposition 2, 

> + y!i��	  ��
� * 1 + y! �� * �	�� + �	

�� * 1	y!  

                  "#
$�� + �"�K	�#�K	

�$��	  

                   K�K�#�"	
$�� Z 0 

Thus 

&|> + y!i��	|  &4> + y!i��	5 

                       > + y!&4i��	5 

                       > + y! 

                       λ �$��	�"��	�#�$�"��	
�$��	�$�!	  

Then we have 

pqr�����, �, �	, mn�>		
s 41
+ t�u	 �� * 1	�� * 1	 + ��� + � * 1	

�� * 1	�� * 2	  
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If �  � + 1 then 

pqr4����, �, �	, mn�>	5 

                s 41+e�=5 �$��	�"��	��"��	�$�"��	
�$��	�$�!	  

Thus 

pqr�����, �, �	, mn�>		 s 41 + t�u5 ��� * 1	
�� * 1	�� * 2	 8 �

� 
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