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A Finite Point Method Based on Directional
Derivatives for Diffusion Equation

Guixia Lv and Longjun Shen

Abstract—This paper presents a finite point method based @mployed has not an optimal value in theory, hence is always
directional derivatives for diffusion equation on 2D seetdd points. determined by numerical experiments.
To discretize the diffusion operator at a given point, apxat stencil In [1], by using the information of the master point and

is derived by employing explicit numerical formulae of ditienal . . . )
derivatives, namely, for the point under considerationly ofive only five proper neighbor points, L. Shes al. derive the

neighbor points are involved, the number of which is the stifor ~ €xplicit formulae for approximating the first-order and sied-
discretizing diffusion operator with first-order accuradymethod for ~ order directional derivatives with second-order and finster
seleqt[ng neighbor point set is proposed,whlch satl_sfesmltvablllty accuracy, respectively. Above all, solvability condigoof
condition of numerical derivatives. Some numerical exasapare numerical derivatives are explicitly given and discussed i
performed to show the good performance of the proposed metho . . . L . .
detail, which give a general guiding principle for selegtfive
Keywords—Finite point mc_ethod,.direction:_al derivatives, diﬁUSionneighbors. In [2], based on the method employed in [1], new
equation, method for selecting neighbor point set. formulae for the second-order mixed directional derivegiare
presented.
|. INTRODUCTION This paper will apply the methods employed in [1] and
[2] to numerically solving diffusion equations. Also, we llwi
I N recent years, the meshless methods have becomep?é\sent a method for Se]ecting neighbor points_

alternative to the classical mesh methods and made greaf, |ater discussion, we consider the diffusion equation in
progress in scientific and engineering computational @Sl  he form

In this field, the strong-form meshless methods have agtdact

much attention, since they are inherent meshless, simple =V - (k(z,y)Vu) = f(z,y), (z,y)€N 1)
and straightforward. The finite point method (FPM) [1]- [5] . N
employed in the present paper falls into this category. with Dirichlet boundary condition

In essence, the FPM can be viewed as the finite difference (@.1) = gz, ) (2,1) € 990 @)
method (FDM) to solving partial differential equations (P£) WY =9\ 9); Y ’

on scattered points. Compared with the classical finite difjhere (0 is the computational domain with boundaég,
ference method on the uniform point distribution, the FPM(x7y) is the diffusion coefficient which may be discontin-
is more difficult to perform due to disorders of scatteregqys andf, g are proper smooth functions given by relevant
points. The first difficulty lies in the approximation to theproblems.

deriyatives pf a smqoth fgnction by using the information.of The rest of this paper is organized as follows: Section I
a given point and its neighbor points. In Taylor expansioajis the methods in [1] and [2]; Section IIl presents a new
framework, there are always two approaches to approximgi@hod for numerically solving diffusion equations: Senti
derivatives. One [7], [8] is employing just adequate pointg/ gesigns a method for selecting neighbor point set; Sactio
to solve for derivatives in Taylor series. This approach i§ herforms numerical examples to show the good performance

always encountered the problem of singularity. The othgfhe proposed method; conclusions are drawn in Section VI.
[3]- [6] is employing much more points than unknowns to

ensure the existence of inverse matrix and the matrix being
well-conditioned, such as in the classical least square®QjL  !l. THE FPM BASED ONDIRECTIONAL DERIVATIVES

method, the weighting least squares (WLS) method and thg,, ihis section, we briefly present the FPM Based on
moving least squares (MLS) method. In this procedure, it octional derivatives [1].

Seems that singularity issue seldom_emerges, however, 109 o ;s introduce some denotations and definitions following
much points lead to a large stencil which seriously affefos t 1]. Denote byi the index of point(z;,y:), O a specific
computational efficiency. Besides this, the number of minﬁ)oint andAl the distance from " to ’O We also have

’ 1 .
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Definition 1 ( Algorithm ® ) Given i, j, k (kK > 3) where
positive integers, an addition afand j with period of & is ity +€{i~y), i=1,...,5, j=i,
defined by aij = {

i®j=1i+j— sk, n(i, j), i:1,~.75,j€f\{i},5
wheres is a positive integer satisfying inequalit} <i+j < gpq )
(s+ 1)k.
Let I = {1, 2, 3, 4, 5}, for i € I, denote M= (23)(41)(125)(345) — (12)(34)(235)(415). (6)
" o ) ) ) Theorem 2 (five-point formulae of the second-order direc-
{"=1,i1®1,1®2,1©3, i ®4}, tional derivatives) Under the same conditions as Theorem 1,
{iTYy={i,i®4,i63,i(®2,i(®1}. the second-order derivatives of the smooth functign, y)

) ) o can be approximated with the first-order truncation error as
Define two functions of indices

§(i1, 12,13, 14,15) = (i1,13) (i2, 1) (14, i5) (12, i3, i5), 92u 2 ib A o, i—1 5. ()
. . . PRI . . —_ = ) i AU; + , v=1L1,...,9,
n(i, ) = sgn(i— 3)(—1) (i, ki) (i, ko) i Ks) b, Ra Ks), 932 MAR =0
whereiy, is, i3, i4, i5 € I, i, €1, ki, ko, ks €1 \ {Z,]}, where
andky < kz < ks. M—ay, i=1,...,5, j=1i,
Suppose that for poinD and its five neighbor points bij = B (8)
1, ..., 5numbered freely (see Fig. 1), the differences; (i = —a;j, i=1,...,5, jel\{i},
1,...,5) of the smooth functionu(z,y) are available. Then and the expressions af; and M are as given in (5) and (6),

numerical formulae termed five-point formulae for the firslr-
order and second-order directional derivatives of the gmoo
functionu(x, y) at pointO are derived.

espectively.
In [1], the authors express the Laplace operator by three
second-order derivatives in three nonparallel directioes
0%u N 0%u
0x?2  Oy?

_ W d*u i m 0%u
N1 2)B 1) g2 (12)(23)7;2 9

(12) 0%
(23)B1onz)’

and then employ the aforementioned formulae to derive the
discrete scheme for the Laplace operator.

In the present paper, we will employ two nonparallel
5 1 directions to express a general diffusion operator, anijdes
a method for selecting neighbor point set other than the one
in [1]. To this end, we need the following Lemma [1].

Au =

Fig. 1 PointO and its neighbors.

L =
Theorem 1(five-point formulae of the first-order directional LEMMA 1 Suppose that two directiong , i» are non-
derivatives) Given poin© and its five neighbor points num-parallel. If /3 is another direction, then fofz,y) € Q the

beredi, ..., 5, if the condition of uniform steplengths as  following relation is established:
(C1) ForAl;(i=1,2,...,5) — 0, there exists a constant gm m om
a, 0 < a < 1, that always satisfies ?ul(fn’—y) =(12)—"™ kZO Ck (32)m k(1 3)k8jl% ,
am - Tm—k .
a max Al; < min Al (210)
1<i<5 1<i<5 WhereC,’ﬁl _ m(m—l)...'(m—k+l).
and the solvability condition as By employing (10), we have
(CZ) 2 2 2
0“u 0“u o“u
M #0 3 1225 =022 =-+222)0¢ 1) ==
- _ - Oz dl; 2 a1 0l
are satisfied, then the first-order derivatives of the smooth , O%u
function u(z,y) can be approximated with the second-order +(z 1) ﬁ_?’
truncation error as 9 0 2 9
12228 = 2y 4202 )y D—os
. . & y? L2 a1 01,
- Ay 2 . 0“u
ﬁ*MAli;a”Auﬁomz ), i=1,...,5, (4) +y 1)281 3
[ = 2
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hence by simple operation, we have Note thatx(z,y) is a known function, so%, %fl’y)
2u  0u can be analytically expressed. ‘
Au = @ﬂL 02 Hence, at a given poinO with five proper neighbors

) ) ) (11 indexed by 1, 2, 3, 4, 5, using (4), (7) and (12) leads to
_ 1 OFu ) AT the discrete scheme to the diffusion operator as
(12)* \ 512 Lol 052)
(V- (k(z,y)Vu))o
where(1 2) #£ 0. -
To discretize the diffusion operator, the approximation of _ _ 1 25: Au {2/‘?(1’7‘9) (bi by (1 2)%‘)

the second order, mixed derivatives [2] is required. M12);Z7 7L (12 \Alf  AZ  ALAL
Suppose thatl;, I, [5 are three nonparallel directions, On(z, y) Ok(z,y)\ @
u 5 & ) J
then by (10)’5_717@’ is expressed by + <(a7 2)783: + (y 2) oy > Al
0%u
5’9211812 - - o= T " ) A, ,(16)
- _ 20U Aj2 20U A2 20U A2 _
=—@23) ?ll_zml B1 3_72’—2Al2 +(12) ﬁngls' wherer (z,y), 25 —B“éZ’y) are defined at poin®.

Obviously, (16) gives a stencil just involving six points,

Consequently, using (7) gives the approxmatlon—a% and it is interesting that (16) degenerates into the cla&iD
immediately, i.e., scheme on the uniform distributed points.
o2u 1 5 If k(z,y) is discontinuous, (1) is no longer satisfied at the
—— = chAuj + O(Al), (12) multimedia interface, while interface joint condition tse| i.e.
oL oly, MALAL j=1 k24 = —x~ 2% here, superscriptst” and '~ refer to
where M is as given in (6), and the detailed expressions @tiantities on two sides of interface, ands a vector normal

¢j (j=1,...,5) can be found in [2]. to the interface. Qur strategy is to place_ poin_ts on the fater,
and at every point on the interface, dlscretlggp and (,fﬁl—“_
by selecting neighbor points (e.g., selecting five neighbor

I1l. DISCRETIZATION METHOD points) at single side of the interface, respectively, ameht
Suppose thats(z,y) is sufficiently smooth, rewrite the discretize the interface joint condition. Detailed dissiaa will
diffusion operator in (1) as be presented elsewhere.

The discretized interface joint condition and (16) build up

V- (k(z, y)Vu) a global linear system, which can be solved by some classical

ou ou ou ou linear solvers (e.g., GMRES, BiCGSTAB).
oz (’i(%y)%) (’)_y (fi(%y)a—y) (13)
= k(z,y)Au+ On(,y) Ou | Or(z,y) Ou IV. SELECTING NEIGHBOR POINTS

Oxr Ox oy Oy

. In above discussion, the solvability conditigd # 0 is
By using (10),%, % can be expressed by two nonparall y 7

ee&lways supposed true. In practical computation, to keep the

directional derivatives s and 7 numerical process stablé)/| > C > 0 (C is a positive
constant) should be satisfied for every point. In a method for
Ou - 1 (z 2) Ou +(12) Ou selecting neighbor point set, both distances and angladdho
o 12 x — T)— |, . ! :
T (12) 0loy be taken into consideration and be well balanced. Thergfore

Iy
du_ 1 (0 O rewrite M as
oy (12) or o)
Therefore, by using (11) and (14), (13) is reformed as where

V- (k(z,y)Vu)

M = Al*All AlgAlgAl4All5Al25A135Al45,

M*=(23)(41)(125)(345)—(12)(34)(235)415).

_ 1 Jr(xy) aizt _ o3 P u n 0%u Obviously, the size of\/* mirrors angle measure. Now, we
(12) | 12) \g1y2 ol19l;  Dly? can design a method for selecting neighbor point set. First o
9 ) P all, for any point;, prepare a point set denoted @y including
+ ((x 2)%—%@ 2)%) ju point ¢ and its neighbor points about 20. In computation
t Y ol procedure of diffusion problems, as scattered points aeslfix
On(z, y) Ak(z,y)\ Ou bapkg_round gr.ids can be intrqducgd to quickly defiie For
+( (12 % +(1y) oy 6? point i, select its neighbor points i¥; as follows:
2

(15) Step 1:select a nearest point to "i" iG/; as "1.”
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Step 2: select a nearest point to "i" iff7; as "2” which S S &
satisfies(1 2) > sin «g, Whereayg is a parametric angle.

.

Step 3: select a nearest point to "i” iff7; as "3" which
satisfies(2 3) > sin «p.

.
0

.

.

Step 4: select a nearest point to "i" id; other than "1”,
"2" and "3" as "4", and if (1 3) = 0, then(3 4) > sinayg LI
should be satisfied. I S R

.
e ® o 0° o0 0 o 4
o ® ® o 00 o ¢

Step 5: select a nearest point to "i” id7; other than "1,
"2" "3" and "4” as "5” which satisfies|M*| > Cy, whereCjy
is a positive constant always given l6yy = 0.1 in practical M .
application. ' .

L
-04 -O0. 2

. ]
o o 0 ¢ ° e o o o

.
o o A I Y
LI
.
.
.

L L L L L L
-1 -08 -0.6 0.2 0.4 0.6 0.8 1

Note that, for a multimedia diffusion problem, five neigh- Fig. 2 Point distribution in a circle.

bors of pointi should be limited in a single media.

The corresponding convergence results are presented in
Tables I-lII.

V. NUMERICAL RESULTS

Suppose thatQ is discretized by scattered points

Table |

Errors for solutionu

{(xi,y:),i = 1,2,...,N}, and N is the total number of N EY EN
discrete points. 221 1.8234E-005 3.5745E-005
Define the discrete norm error by 841 5.0510E-006 9.9307E-006
1861 2.4716E-006 4.6528E-006
. N ) 172 3281 1.4697E-006 2.6830E-006
By = {Z(Uz u(ws, yi))? /N2, 7321 6.4173E-007 1.1818E-006
EN = max |U; — u(zs,ys), Rate 1.91 1.95
1<i<N
whereU; andu(z;, y;) are the numerical solution and the exact Table Il
solution, respectively. Errors fordu/ox
To investigate the convergence, we first define an average N EY EY
distance 221 2.6275E-005 1.0242E-004
841 7.4451E-006 3.7506E-005
S/N, 1861 3.4563E-006 3.4823E-005
3281 1.9454E-006 1.9023E-005
where S is the area of. |7Q321 8'8316?95'007 8'245515006
The convergence rate of the method is given by ate s :
Rate — 108 ™ — log B Table Ill
log hy — log ho Errors fordu/dy
N EYN EN
whereh; andh, are corresponding t&; and N, respectively. 291 1.0100E-004 2. 1042E-004
The following test example is rebuilt from [9]. 841 2.6331E-005 5.8153E-005
. 1861 1.1690E-005 2.6043E-005
Example 1.Solve the equation 3281 6.6369E-006 1.6572E-005
7321 2.9898E-006 1.0372E-005
{ Au = f, (z,y) € Q, Rate 2.01 1.72
u(z,y) =g, (z,y) €0,
In Tables I-lll, it is shown that the approximation to the

whereQ) = {(z,y)] 0 < 2%+ y% <1}, andf, g are given solution is almost second-order accuracy, and to the fidgo
by the exact solutionu(z,y) = m The point directional derivatives of the solution is more than firster
distribution inQ is shown in Fig. 2 accuracy.
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Example 2. Solve the equation (from [10]) whereQ2 = [0, 1] x [0, 1],
~Au=(6+4 2+16 2 (z2+2y2)’ ; GQ, 1, 0<z<0.5,
w= (6+ 4% + 165%)e (z.9) R
u(w,y) = —e(@* 207, (2,y) € 09, SRS

and f, g are computed from the known solution
where @ = [0,1] x [0,1] and the exact solution is =

o r2y?) 14+z+y+ (x—0.5)2e*tY 0<z<0.5,
The point distribution is shown in Fig. 3. =3 3k-1 = . 2 sty .
The purpose of this example is to compare the FPM with on TRTYT (v —0.5)% 0.5 <<l

the classical Least Square method (LSQ). In LSQ, neighborThe point distribution is almost the same as that of Example

points are the nearest ones, the number of which is about 20but atz = 0.5 uniformly distributed points are placed to
The convergence rates are graphically depicted in Fig. 4. coincide with the multimedia interface (shown in Fig. 5).
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Fig. 3 441 random distribution points. Fig. 5 441 random distribution points.

results are given in Tables IV, V.
Table IV
Errors for solutionu, x = 1072
N EY EY
: 81 1.1483E-002 3.4009E-002
g 289 2.6400E-003 6.9218E-003
1089 6.9230E-004 1.9069E-003
4225 1.9784E-004 6.3509E-004
16641 4.8928E-005 1.2703E-004
Rate 2.05 2.10
10° 16‘
Number of total points Table V
Fig. 4 Comparison of solution errors. Errors for solutionu, x = 10~
N EY EY
In Fig. 4, it appears that the FPM has almost the same 81 1.1745E-002 3.4779E-002
convergence rate as that of the LSQ, and the FPM is with 289 2 6848E-003 7.0486E-003
higher accuracy. Besides, more neighbor points selected in 1089 7.0239E-004 1.9368E-003
LSQ lead to a large discrete stencil which consequentlyltesu 4225 1.9815E-004 6.1636E-004
in low computational efficiency. 16641 4.9810E-005 1.2939E-004
Rate 2.05 2.10

Example 3.Solve the equation with discontinuous diffusion
coefficient (from [10])

Here, we takex = 1072, 104, and the corresponding

V- (k(z,y)Vu) = f, (z,y) €Q Tables 1V, V show that the solutions to the diffusion equa-
’ T ’ tion with discontinuous coefficient are second-order astyr
u(z,y) =g, (x,y) € 09, which verify the good performance of the proposed method.
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VI. CONCLUSION

This paper presents a method to numerically solving dif-
fusion equation by the FPM, which results in a six-point
stencil to discretize diffusion operator. Numerical expents
demonstrate that the proposed method is second-ordergecur
and is better than the LSQ method. The method can be
generalized to a general elliptic equation. The method for
selecting neighbor point set is an interesting and importan
topic which is in our ongoing work.
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