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A Finite Point Method Based on Directional
Derivatives for Diffusion Equation

Guixia Lv and Longjun Shen

Abstract—This paper presents a finite point method based on
directional derivatives for diffusion equation on 2D scattered points.
To discretize the diffusion operator at a given point, a six-point stencil
is derived by employing explicit numerical formulae of directional
derivatives, namely, for the point under consideration, only five
neighbor points are involved, the number of which is the smallest for
discretizing diffusion operator with first-order accuracy. A method for
selecting neighbor point set is proposed, which satisfies the solvability
condition of numerical derivatives. Some numerical examples are
performed to show the good performance of the proposed method.

Keywords—Finite point method, directional derivatives, diffusion
equation, method for selecting neighbor point set.

I. I NTRODUCTION

I N recent years, the meshless methods have become an
alternative to the classical mesh methods and made great

progress in scientific and engineering computational problems.
In this field, the strong-form meshless methods have attracted
much attention, since they are inherent meshless, simple
and straightforward. The finite point method (FPM) [1]- [5]
employed in the present paper falls into this category.

In essence, the FPM can be viewed as the finite difference
method (FDM) to solving partial differential equations (PDEs)
on scattered points. Compared with the classical finite dif-
ference method on the uniform point distribution, the FPM
is more difficult to perform due to disorders of scattered
points. The first difficulty lies in the approximation to the
derivatives of a smooth function by using the information of
a given point and its neighbor points. In Taylor expansion
framework, there are always two approaches to approximate
derivatives. One [7], [8] is employing just adequate points
to solve for derivatives in Taylor series. This approach is
always encountered the problem of singularity. The other
[3]- [6] is employing much more points than unknowns to
ensure the existence of inverse matrix and the matrix being
well-conditioned, such as in the classical least squares (LSQ)
method, the weighting least squares (WLS) method and the
moving least squares (MLS) method. In this procedure, it
seems that singularity issue seldom emerges, however, too
much points lead to a large stencil which seriously affects the
computational efficiency. Besides this, the number of points

G. X. Lv is with National Key Laboratory of Science and Technol-
ogy on Computational Physics, Institute of Applied Physicsand Compu-
tational Mathematics, P. O. Box 8009-26, Beijing 100088, China (e-mail:
lvguixia@126.com).

L. J. Shen is with National Key Laboratory of Science and Technol-
ogy on Computational Physics, Institute of Applied Physicsand Compu-
tational Mathematics, P. O. Box 8009-26, Beijing 100088, China (e-mail:
shenlj@iapcm.ac.cn).

employed has not an optimal value in theory, hence is always
determined by numerical experiments.

In [1], by using the information of the master point and
only five proper neighbor points, L. Shenet al. derive the
explicit formulae for approximating the first-order and second-
order directional derivatives with second-order and first-order
accuracy, respectively. Above all, solvability conditions of
numerical derivatives are explicitly given and discussed in
detail, which give a general guiding principle for selecting five
neighbors. In [2], based on the method employed in [1], new
formulae for the second-order mixed directional derivatives are
presented.

This paper will apply the methods employed in [1] and
[2] to numerically solving diffusion equations. Also, we will
present a method for selecting neighbor points.

In later discussion, we consider the diffusion equation in
the form

−∇ · (κ(x, y)∇u) = f(x, y), (x, y) ∈ Ω (1)

with Dirichlet boundary condition

u(x, y) = g(x, y), (x, y) ∈ ∂Ω, (2)

where Ω is the computational domain with boundary∂Ω,
κ(x, y) is the diffusion coefficient which may be discontin-
uous, andf, g are proper smooth functions given by relevant
problems.

The rest of this paper is organized as follows: Section II
recalls the methods in [1] and [2]; Section III presents a new
method for numerically solving diffusion equations; Section
IV designs a method for selecting neighbor point set; Section
V performs numerical examples to show the good performance
of the proposed method; conclusions are drawn in Section VI.

II. THE FPM BASED ON DIRECTIONAL DERIVATIVES

In this section, we briefly present the FPM Based on
directional derivatives [1].

Let us introduce some denotations and definitions following
[1]. Denote by i the index of point(xi, yi), O a specific
point, and∆li the distance from ”i” to ”O”. We also have
the following:

• (i j k) : = sin(
̂−→

k i,
−→
k j), and(i j k) : = cos(

̂−→
k i,

−→
k j).

Specially,(i j) : =(i j O), and(i j) := (i j O).

• 〈i j k〉 =
1

2
(i j k)∆li∆lj . Specially,〈i j〉 : = 〈i j O〉.
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Definition 1 ( Algorithm ©k ) Given i, j, k (k ≥ 3)
positive integers, an addition ofi and j with period of k is
defined by

i©k j = i+ j − sk,

wheres is a positive integer satisfying inequalitysk < i+j ≤
(s+ 1)k.

Let I = {1, 2, 3, 4, 5}, for i ∈ I, denote

{i+}= {i, i©5 1, i©5 2, i©5 3, i©5 4},

{i−} = {i, i©5 4, i©5 3, i©5 2, i©5 1}.

Define two functions of indices

ξ(i1, i2, i3, i4, i5) = 〈i1, i3〉〈i2, i4〉〈i4, i5〉〈i2, i3, i5〉,

η(i, j) = sgn(i− j)(−1)i+j〈i, k1〉〈i, k2〉〈i, k3〉〈k1, k2, k3〉,

where i1, i2, i3, i4, i5 ∈ I, i, j ∈ I, k1, k2, k3 ∈ I \ {i, j},
andk1 < k2 < k3.

Suppose that for pointO and its five neighbor points
1, . . . , 5 numbered freely (see Fig. 1), the differences∆ui(i =
1, . . . , 5) of the smooth functionu(x, y) are available. Then
numerical formulae termed five-point formulae for the first-
order and second-order directional derivatives of the smooth
functionu(x, y) at pointO are derived.

O

1

2

3
4

5

Fig. 1 PointO and its neighbors.

Theorem 1(five-point formulae of the first-order directional
derivatives) Given pointO and its five neighbor points num-
bered1, . . . , 5, if the condition of uniform steplengths as

(C1) For∆li(i = 1, 2, . . . , 5) → 0, there exists a constant
α, 0 < α < 1, that always satisfies

α max
1≤i≤5

∆li ≤ min
1≤i≤5

∆li,

and the solvability condition as
(C2)

M 6= 0 (3)

are satisfied, then the first-order derivatives of the smooth
function u(x, y) can be approximated with the second-order
truncation error as

∂u

∂
−→
li

=
1

M∆li

5∑
j=1

aij∆uj +O(∆l2), i = 1, . . . , 5, (4)

where

aij =

{
ξ({i+}) + ξ({i−}), i = 1, . . . , 5, j = i,

η(i, j), i = 1, . . . , 5, j ∈ I \ {i},
(5)

and

M = 〈2 3〉〈4 1〉〈1 2 5〉〈3 4 5〉 − 〈1 2〉〈3 4〉〈2 3 5〉〈4 1 5〉. (6)

Theorem 2 (five-point formulae of the second-order direc-
tional derivatives) Under the same conditions as Theorem 1,
the second-order derivatives of the smooth functionu(x, y)
can be approximated with the first-order truncation error as

∂2u

∂
−→
li 2

=
2

M∆l2i

5∑
j=1

bij∆uj +O(∆l), i = 1, . . . , 5, (7)

where

bij =

{
M − aii, i = 1, . . . , 5, j = i,

−aij , i = 1, . . . , 5, j ∈ I \ {i},
(8)

and the expressions ofaij andM are as given in (5) and (6),
respectively.

In [1], the authors express the Laplace operator by three
second-order derivatives in three nonparallel directions, i.e.

∆u =
∂2u

∂x2
+

∂2u

∂y2

= −

(
(2 3)

(1 2)(3 1)

∂2u

∂
−→
l1 2

+
(3 1)

(1 2)(2 3)

∂2u

∂
−→
l2 2

+
(1 2)

(2 3)(3 1)

∂2u

∂
−→
l3 2

)
,

(9)

and then employ the aforementioned formulae to derive the
discrete scheme for the Laplace operator.

In the present paper, we will employ two nonparallel
directions to express a general diffusion operator, and design
a method for selecting neighbor point set other than the one
in [1]. To this end, we need the following Lemma [1].

LEMMA 1 Suppose that two directions
−→
l1 ,

−→
l2 are non-

parallel. If
−→
l3 is another direction, then for(x, y) ∈ Ω the

following relation is established:

∂mu(x, y)

∂
−→
l3 m

= (1 2)−m
m∑

k=0

Ck
m(3 2)m−k(1 3)k

∂mu(x, y)

∂
−→
l1m−k∂

−→
l2 k

,

(10)
whereCk

m = m(m−1)...(m−k+1)
k! .

By employing (10), we have

(1 2)2
∂2u

∂x2
= (2 x)2

∂2u

∂
−→
l1 2

+ 2(2 x)(x 1)
∂2u

∂
−→
l1 ∂

−→
l2

+(x 1)2
∂2u

∂
−→
l2 2

,

(1 2)2
∂2u

∂y2
= (2 y)2

∂2u

∂
−→
l1 2

+ 2(2 y)(y 1)
∂2u

∂
−→
l1 ∂

−→
l2

+(y 1)2
∂2u

∂
−→
l2 2

,
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hence by simple operation, we have

∆u =
∂2u

∂x2
+

∂2u

∂y2

=
1

(1 2)2

(
∂2u

∂
−→
l1 2

− 2(1 2)
∂2u

∂
−→
l1 ∂

−→
l2

+
∂2u

∂
−→
l2 2

)
,

(11)

where(1 2) 6= 0.
To discretize the diffusion operator, the approximation of

the second order mixed derivatives [2] is required.
Suppose that

−→
l1 ,

−→
l2 ,

−→
l3 are three nonparallel directions,

then by (10), ∂2u

∂
−→
l1 ∂

−→
l2

is expressed by

2〈2 3〉〈3 1〉
∂2u

∂
−→
l1 ∂

−→
l2
∆l1∆l2

= −〈2 3〉2
∂2u

∂
−→
l1 2

∆l21 − 〈3 1〉2
∂2u

∂
−→
l2 2

∆l22 + 〈1 2〉2
∂2u

∂
−→
l3 2

∆l23.

Consequently, using (7) gives the approximation of∂
2u

∂
−→
l1 ∂

−→
l2

immediately, i.e.,

∂2u

∂
−→
l1 ∂

−→
l2

=
1

M∆l1∆l2

5∑
j=1

cj∆uj +O(∆l), (12)

whereM is as given in (6), and the detailed expressions of
cj (j = 1, . . . , 5) can be found in [2].

III. D ISCRETIZATION METHOD

Suppose thatκ(x, y) is sufficiently smooth, rewrite the
diffusion operator in (1) as

∇ · (κ(x, y)∇u)

=
∂u

∂x

(
κ(x, y)

∂u

∂x

)
+

∂u

∂y

(
κ(x, y)

∂u

∂y

)

= κ(x, y)∆u +
∂κ(x, y)

∂x

∂u

∂x
+

∂κ(x, y)

∂y

∂u

∂y
.

(13)

By using (10),∂u∂x ,
∂u
∂y can be expressed by two nonparallel

directional derivatives∂u
∂
−→
l1

and ∂u

∂
−→
l2

∂u

∂x
=

1

(1 2)

(
(x 2)

∂u

∂
−→
l1

+ (1 x)
∂u

∂
−→
l2

)
,

∂u

∂y
=

1

(1 2)

(
(y 2)

∂u

∂
−→
l1

+ (1 y)
∂u

∂
−→
l2

)
.

(14)

Therefore, by using (11) and (14), (13) is reformed as

∇ · (κ(x, y)∇u)

=
1

(1 2)

{
κ(x, y)

(1 2)

(
∂2u

∂
−→
l1 2

− 2(1 2)
∂2u

∂
−→
l1 ∂

−→
l2

+
∂2u

∂
−→
l2 2

)

+

(
(x 2)

∂κ(x, y)

∂x
+ (y 2)

∂κ(x, y)

∂y

)
∂u

∂
−→
l1

+

(
(1 x)

∂κ(x, y)

∂x
+ (1 y)

∂κ(x, y)

∂y

)
∂u

∂
−→
l2

}

(15)

Note thatκ(x, y) is a known function, so∂κ(x,y)∂x , ∂κ(x,y)
∂y

can be analytically expressed.
Hence, at a given pointO with five proper neighbors

indexed by ’1, 2, 3, 4, 5’, using (4), (7) and (12) leads to
the discrete scheme to the diffusion operator as

(∇ · (κ(x, y)∇u))O

=
1

M(1 2)

5∑
j=1

∆uj

{
2κ(x, y)

(1 2)

(
b1j
∆l21

+
b2j
∆l22

−
(1 2)cj
∆l1∆l2

)

+

(
(x 2)

∂κ(x, y)

∂x
+ (y 2)

∂κ(x, y)

∂y

)
a1j
∆l1

+

(
(1 x)

∂κ(x, y)

∂x
+ (1 y)

∂κ(x, y)

∂y

)
a2j
∆l2

}
,

(16)
whereκ(x, y), ∂κ(x,y)

∂x , ∂κ(x,y)
∂y are defined at pointO.

Obviously, (16) gives a stencil just involving six points,
and it is interesting that (16) degenerates into the classical FD
scheme on the uniform distributed points.

If κ(x, y) is discontinuous, (1) is no longer satisfied at the
multimedia interface, while interface joint condition holds, i.e.
κ+ ∂u

∂n+ = −κ− ∂u
∂n−

, here, superscripts ’+’ and ’−’ refer to
quantities on two sides of interface, andn is a vector normal
to the interface. Our strategy is to place points on the interface,
and at every point on the interface, discretize∂u∂n+ and ∂u

∂n−

by selecting neighbor points (e.g., selecting five neighbor
points) at single side of the interface, respectively, and then
discretize the interface joint condition. Detailed discussion will
be presented elsewhere.

The discretized interface joint condition and (16) build up
a global linear system, which can be solved by some classical
linear solvers (e.g., GMRES, BiCGSTAB).

IV. SELECTING NEIGHBOR POINTS

In above discussion, the solvability conditionM 6= 0 is
always supposed true. In practical computation, to keep the
numerical process stable,|M | ≥ C > 0 (C is a positive
constant) should be satisfied for every point. In a method for
selecting neighbor point set, both distances and angles should
be taken into consideration and be well balanced. Therefore,
rewriteM as

M = M∗∆l1∆l2∆l3∆l4∆l15∆l25∆l35∆l45,

where

M∗ = (2 3)(4 1)(1 2 5)(3 4 5)− (1 2)(3 4)(2 3 5)(4 1 5).

Obviously, the size ofM∗ mirrors angle measure. Now, we
can design a method for selecting neighbor point set. First of
all, for any pointi, prepare a point set denoted byGi including
point i and its neighbor points about 20. In computation
procedure of diffusion problems, as scattered points are fixed,
background grids can be introduced to quickly defineGi. For
point i, select its neighbor points inGi as follows:

Step 1: select a nearest point to ”i” inGi as ”1.”
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Step 2: select a nearest point to ”i” inGi as ”2” which
satisfies(1 2) ≥ sinα0, whereα0 is a parametric angle.

Step 3: select a nearest point to ”i” inGi as ”3” which
satisfies(2 3) ≥ sinα0.

Step 4: select a nearest point to ”i” inGi other than ”1”,
”2” and ”3” as ”4”, and if (1 3) = 0, then (3 4) ≥ sinα0

should be satisfied.

Step 5: select a nearest point to ”i” inGi other than ”1”,
”2” ,”3” and ”4” as ”5” which satisfies|M∗| ≥ C0, whereC0

is a positive constant always given byC0 = 0.1 in practical
application.

Note that, for a multimedia diffusion problem, five neigh-
bors of pointi should be limited in a single media.

V. NUMERICAL RESULTS

Suppose that Ω is discretized by scattered points
{(xi, yi), i = 1, 2, . . . , N}, and N is the total number of
discrete points.

Define the discrete norm error by

EN
2 = {

N∑
i=1

(Ui − u(xi, yi))
2/N}1/2,

EN
∞ = max

1≤i≤N
|Ui − u(xi, yi)|,

whereUi andu(xi, yi) are the numerical solution and the exact
solution, respectively.

To investigate the convergence, we first define an average
distance

h =
√
S/N,

whereS is the area ofΩ.

The convergence rate of the method is given by

Rate =
logEN1 − logEN2

log h1 − log h2
,

whereh1 andh2 are corresponding toN1 andN2, respectively.

The following test example is rebuilt from [9].

Example 1. Solve the equation

{
∆u = f, (x, y) ∈ Ω,

u(x, y) = g, (x, y) ∈ ∂Ω,

whereΩ = {(x, y)| 0 ≤ x2 + y2 ≤ 1}, andf , g are given
by the exact solutionu(x, y) = 25

25+(x−0.2)2+2y2 . The point
distribution inΩ is shown in Fig. 2.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2 Point distribution in a circle.

The corresponding convergence results are presented in
Tables I-III.

Table I
Errors for solutionu

N EN
2 EN

∞

221 1.8234E-005 3.5745E-005
841 5.0510E-006 9.9307E-006
1861 2.4716E-006 4.6528E-006
3281 1.4697E-006 2.6830E-006
7321 6.4173E-007 1.1818E-006
Rate 1.91 1.95

Table II
Errors for∂u/∂x

N EN
2 EN

∞

221 2.6275E-005 1.0242E-004
841 7.4451E-006 3.7506E-005
1861 3.4563E-006 3.4823E-005
3281 1.9454E-006 1.9023E-005
7321 8.8360E-007 8.0461E-006
Rate 1.94 1.45

Table III
Errors for∂u/∂y

N EN
2 EN

∞

221 1.0100E-004 2.1042E-004
841 2.6331E-005 5.8153E-005
1861 1.1690E-005 2.6043E-005
3281 6.6369E-006 1.6572E-005
7321 2.9898E-006 1.0372E-005
Rate 2.01 1.72

In Tables I-III, it is shown that the approximation to the
solution is almost second-order accuracy, and to the first-order
directional derivatives of the solution is more than first-order
accuracy.
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Example 2. Solve the equation (from [10])


−∆u = (6 + 4x2 + 16y2)e(x
2+2y2), (x, y) ∈ Ω,

u(x, y) = −e(x
2+2y2), (x, y) ∈ ∂Ω,

where Ω = [0, 1] × [0, 1] and the exact solution isu =
−e(x

2+2y2).
The point distribution is shown in Fig. 3.
The purpose of this example is to compare the FPM with

the classical Least Square method (LSQ). In LSQ, neighbor
points are the nearest ones, the number of which is about 10.
The convergence rates are graphically depicted in Fig. 4.
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Fig. 3 441 random distribution points.
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Fig. 4 Comparison of solution errors.

In Fig. 4, it appears that the FPM has almost the same
convergence rate as that of the LSQ, and the FPM is with
higher accuracy. Besides, more neighbor points selected in
LSQ lead to a large discrete stencil which consequently results
in low computational efficiency.

Example 3.Solve the equation with discontinuous diffusion
coefficient (from [10])

{
−∇ · (κ(x, y)∇u) = f, (x, y) ∈ Ω,

u(x, y) = g, (x, y) ∈ ∂Ω,

whereΩ = [0, 1]× [0, 1],

κ(x, y) =

{
1, 0 < x ≤ 0.5,

κ, 0.5 < x < 1,

andf , g are computed from the known solution

u =




1 + x+ y + (x− 0.5)2ex+y 0 < x ≤ 0.5,

3κ− 1

2κ
+

x

κ
+ y + (x− 0.5)2ex+y 0.5 < x < 1.

The point distribution is almost the same as that of Example
2, but atx = 0.5 uniformly distributed points are placed to
coincide with the multimedia interface (shown in Fig. 5).
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Fig. 5 441 random distribution points.

Here, we takeκ = 10−2, 10−4, and the corresponding
results are given in Tables IV, V.

Table IV
Errors for solutionu, κ = 10−2

N EN
2 EN

∞

81 1.1483E-002 3.4009E-002
289 2.6400E-003 6.9218E-003
1089 6.9230E-004 1.9069E-003
4225 1.9784E-004 6.3509E-004
16641 4.8928E-005 1.2703E-004
Rate 2.05 2.10

Table V
Errors for solutionu, κ = 10−4

N EN
2 EN

∞

81 1.1745E-002 3.4779E-002
289 2.6848E-003 7.0486E-003
1089 7.0239E-004 1.9368E-003
4225 1.9815E-004 6.1636E-004
16641 4.9810E-005 1.2939E-004
Rate 2.05 2.10

Tables IV, V show that the solutions to the diffusion equa-
tion with discontinuous coefficient are second-order accurate,
which verify the good performance of the proposed method.
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VI. CONCLUSION

This paper presents a method to numerically solving dif-
fusion equation by the FPM, which results in a six-point
stencil to discretize diffusion operator. Numerical experiments
demonstrate that the proposed method is second-order accurate
and is better than the LSQ method. The method can be
generalized to a general elliptic equation. The method for
selecting neighbor point set is an interesting and important
topic which is in our ongoing work.
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