
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1618

Abstract—This article describes Uruk, the virtual museum of

Iraq that we developed for visual exploration and retrieval of image

collections. The system largely exploits the loosely-structured

hierarchy of XML documents that provides a useful representation

method to store semi-structured or unstructured data, which does not

easily fit into existing database. The system offers users the

capability to mine and manage the XML-based image collections

through a web-based Graphical User Interface (GUI). Typically, at an

interactive session with the system, the user can browse a visual

structural summary of the XML database in order to select interesting

elements. Using this intermediate result, queries combining structure

and textual references can be composed and presented to the system.

After query evaluation, the full set of answers is presented in a visual

and structured way.

.

Keywords—Data-centric XML, graphical user interfaces,

information retrieval, case-based reasoning, fuzzy sets

I. INTRODUCTION

S two tendencies for the current and future development

of image libraries are crucial for the purpose of this

paper. First, the amount of images and text used for the

description of these images in a typical digital images-based

database grows continuously. For example, Image Database at

the College of Veterinary Medicine, Washington has a large

collection of Veterinary and animal related images [1]. The

Defense Image Database, which is an official Ministry of

Defense, UK, holds thousands of images [2]. The virtual

museum of Japanese art is a comprehensive site includes

information about and photos of all forms of traditional

Japanese art [3]. Fine Arts covers painting, sculpture, and

ukiyoe; Crafts introduces ceramics, textiles, and metalwork;

Performance Arts introduces Kabuki, Noh, Bunraku, and

Kyogen; Pastime Arts explores Bonsai, Ikebana, calligraphy,

and tea ceremony; and Martial Arts provides an overview of

Sumo, Judo, Aikido, Kyudo, etc. The Web Gallery of Art is a

virtual museum and searchable database of European painting

and sculpture of the Romanesque, Gothic, Renaissance,

Baroque, Neoclassicism, and Romanticism periods (1000-

1850), currently containing over 27.000 reproductions [4]. The

art history virtual library contains more than 40000 Images

[5].

Khalil Shihab is with the University of the South Pacific, School of

Computing, Information and Mathematical Sciences, Suva, Fiji (phone: +679-

3232329; fax: +679 323 1527; e-mail: khalil.shihab@gmail.com).
Nida Al-Chalabi, is with Sultan Qaboos University, Department of

Computer Science, Muscat, Oman (phone: +968 2414 2400; fax: +968 2414

1407; e-mail: nida@squ.edu.om).

The tourism image Australia gallery depicts the Australian

people, environment and the lifestyle across a range of

experiences including nature, indigenous culture, outback,

adventure, beach, cities, and food and wine [6].

In some of our own experiments, we used a large collection

of images from Iraqi Museum and from the Oriental Institute

of The University of Chicago [7]. We used XML documents

to annotate and store 160 images up to 10.3 MB, ranging from

prehistoric period to the Achaemedian and Seleucid 500 BC.

These artifacts include many of the most famous works of

ancient Sumerian, Akkadian, Babylonian and Assyrian art. In

particular, they include the Uruk vase, dating from 3500BC

and artifacts excavated from the ancient Sumerian city of Ur.

XML documents provide users with a mean to store and

deal with valuable information on a wide range of domains.

XML and databases are a natural fit for each other in three

important ways. First, XML documents provide a platform-

neutral mechanism for transporting data between databases

and applications. Second, databases provide an efficient way

to store and query XML documents. The third way is the

loosely-structured hierarchy of XML documents provides a

useful representation method to store semi-structured or

unstructured data, which does not easily fit into existing

database models. These characteristics encourage researchers

and companies to develop many XML-based databases that

allow preserving physical document structure, support

document-level transactions, and execute queries in an XML

query language. However, the increasing use of a large

number of XML documents causes many problems to the

users [8]. In particular, the structure of these XML documents

adds an additional problem in dealing with them. One of the

problems of XML documents is the searching that can be too

complex for most users. XML documents are generally not

interoperable in the same search environment, because of all

the different, incompatible vocabularies. XML searching

requires people or software to know a lot about the structure of

the documents. Moreover XML does not have any browser

support and does not have anything to support the end user

applications. Therefore, automatic graph drawing is a

necessary solution of these problems. It has many important

applications in software engineering, database and web design,

networking, and in visual interfaces for many other domains.

Although XML is good for data exchange between

applications, it is often not chosen for visualization of the data

because it is not very human readable. The second challenge

is, therefore, to allow users dealing visually with XML

documents. In this work, we describe the visual and interactive

exploration of XML documents. We focused on the users and

developed more intuitive ways to visualize the XML

Khalil Shihab and Nida Al-Chalabi

Mining and Visual Management of XML-Based

Image Collections

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1619

documents. In order to visualize the informative content of an

XML document, the structure of data has to be carefully

preserved. Therefore, we used a tree-like structure in which

nodes are used to represent the children (nodes) of the XML

document and links between these nodes are used to represent

the relations between these nodes [9].

The system consists of two main components: the Text

Interaction Component (TIC) and the Visual Interaction

Component (VIC). The users can use either component for

creating an XML document, delete or add a node. In a typical

session with Uruk, the user first creates a new or imports an

existing XML database. After that, the user can browse a

visual structural summary of the XML database in order to

select interesting elements.

II. VISUALIZATION FEATURES

The main features of the Visual Interaction Component

(VIC) are as follows:

A. Simple Navigation with Minimum Disorientation

The graphic manager part of VIC was designed to include

features to aid the user in navigating the visualization. In

particular, if the XML document contains a large number of

nodes, the graphic manager displays only the root of the tree.

The navigation of any part (level) or the whole tree is left to

the user. Therefore, the graphic manager provides the user a

full control on the way he/she likes to be displayed and to

work on.

B. High Information Content

The graphic manager allows the user to display the content

of any node of the tree by moving and clicking the mouse on

that node.

C. Low Visualization Complexity, Well Structured

If an XML document has a complex structure, the graphic

manager displays not only the top level of the tree but also it

displays the parent nodes of that level. The manager allows the

user to explode these nodes to their children nodes, i.e. using

partial display of the tree; the system provides the desired

information to the user.

D. Resilience to Change

The graphic manager allows changes of content of any node

and provides an option to the user for saving or ignoring the

changes. In case of updating and then saving the resulting tree,

the system maintains the integrity of the data structure of

XML document.

E. Good Use of Interaction

The system provides a pull down menu of a few top level

options. Each of these options contains a few low level

options. Therefore, the system is designed and implemented to

be user friendly and easy to use.

It provided users with the following key features:

1) Uruk is platform independent; it is developed in Java and

can be used on any platform (Windows, Linux, Mac, etc.)

out of the box. Also, it can be used as a web applet to be

integrated into web pages. Uruk occupies less than 50MB

of the system memory when running.

2) Due to the shape of the nodes, Hydra and other existing

visualization systems would not produce readable results

when drawing large XML documents. Uruk uses specific

algorithms which sort the nodes to be presentable to the

human user.

3) Uruk allows the user generating an XML document

visually, without any XML knowledge. It is technically

referred to as “XML WYSWYG Editor”.

4) Uruk is able to export the graph as Image and GraphML

(XML-based file format for graphs) files. GraphML is a

de facto standard for graph representation and this

feature enables Uruk to collaborate with external graph

drawing libraries such as yFiles, which is known as the

world's best graph drawing library. Users are not bond to

Uruk's graphical features when it comes to XML

visualization; they could convert their XML files to

GraphML by Uruk and then draw the GraphML file in

their desired application.

5) Uruk is a multi-graph application. Therefore, users can

open and visualize multiple XML documents

simultaneously and work on them individually.

6) Uruk draws the graphs in multiple layouts (Tree and

Circle are currently implemented; many more layouts are

possible to apply).

F. Mining XML Documents

There are two main phases in the development of this

important part of the system. The first is the search and growth

phase. Here, the ranking system first constructs a collection of

nodes about a query string. Since the search results may

contain a large number of nodes, this number must be limited

to a reasonable quantity so that the system can reach a

compromise between obtaining a collection of nodes highly

relevant and saving computational effort. For constructing

such a collection of nodes, the ranking system makes use of

the results given by a text-based search engine. The search

engine will return a set of nodes which are determined by its

own scoring function as a root set. It then extends the root set

by adding any additional nodes that is pointed to by a node

already in the root set. The new collection is then renamed the

base set. In this way, the link structure analysis can be

restricted to this base set, which is expected to be relatively

small, rich in relevant nodes.

The second is the weight and propagation phase, in which

the results returned by the first stage are evaluated. Here, the

ranking system calculates the rank score of each node based

on the link structure between any node pairs in the base set,

and extracts good authorities and hubs from the overall

collection of nodes.

G. Computing similarity between nodes

The computing is divided into three steps, which are:

Generating extended-element vectors, Measure of element

similarity, and Constructing of the similarity matrix.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1620

Generating the extended-element vectors for an XML

document is as follows:

1) Parse an XML document to extract elements and generate

a DOM (Document Object Model) tree.

2) Sift meaningful tokens by ?ltering delimiters such as

space, hyphen, and under score.

3) Delete tokens included in a stop-list.

4) Extract stems or original form of the tokens through

stemming process.

5) Extend elements thus found, using the WordNet thesaurus

and a User-defined word library, with synonyms,

compound words, and abbreviations.

III. THE REASONER MODULE OF URUK

An integrated approach that is based on case-based

reasoning and fuzzy sets is used as the underline technique of

the reasoned module. It makes use of past experiences to

derive the solution for a new problem. It has been widely

implemented in practical [10]. To process past experiences

(cases) efficiently, a common case-based reasoning technique

is to select some characteristics that are representative of the

cases and use them as indexes to store the cases. Later, to

solve new problems, the system uses these characteristics as

probe to retrieve the set of similar cases that are then adapted

and modified to arrive at a targeted solution. Often, it is a

common practice to narrow the set of retrieved cases by means

of a similarity metric. Another problem encountered in case-

based reasoning is the acquisition of past experiences when

the reasoner is initially deployed. At that early stage, the

reasoner may have to find a solution from scratch due to

insufficient numbers of past cases to be used as model.

Therefore, we used XML as case representation for making up

structured knowledge-rich data.

Using fuzzy indexing and retrieval allows attributes that are

characterized by numerical values to be converted into fuzzy

sets to simplify comparison. For example, the height of the

artifact can be converted into categorical scale (e.g. tall/large,

medium and short/small). Also, fuzzy sets allow multiple

indexing of a case on a single value with different degrees of

membership. For example, if the size is 60cm, this can be

classified as tall with 0.4 and medium with 0.7, where 0.4 and

0.7 are the degrees that the height is classified as tall or

medium respectively. This treatment increases the flexibility

of case matching by allowing the case to be considered as a

candidate when we are looking for an artifact with either large

or medium size.

A. Fuzzy sets and membership functions used in the system

In fuzzy sets an object may partially belong to a set, so the

set must be represented by a continuous membership function

maps the domain of the set to an interval of [0, 1]. For

example, the following functions (1-3) and Fig. 1 show the

membership functions of high, moderate and low utilization as

they are applied to the size and estimated price of an artifact in

our application. Classical sets, which are subsets of fuzzy sets,

represented by binary membership functions and therefore,

they are subsets of fuzzy sets, [11, 12].

Since fuzzy sets use possibilities rather than binary

membership values, a threshold value is often used to

differentiate those considered highly likely to be a member of

a set from those considered relatively unlikely. For example,

when we are seeking for artifacts that have large size or tall,

we may want to consider only those with membership grades

of tall are above 5. This value is generally called α-cut. For

example, if the membership function of tall, as defined in Fig.

1, is given and if the α-cut is set at 5 for tall, then artifacts with

height greater than 55cm are considered tall, whereas artifacts

that have their heights greater than 61 are considered very tall.

Fig. 1 The membership function of high/tall, moderate/medium and

low/small

1. µhigh(x) =(x-x1)/do if x1 ≤ x ≤ x2, 0 if x <x1, and 1 if x>x2

2. µmoderate(x) = (x-x1)/0.5do if x1 ≤ x ≤ midpoint,

µmoderate(x) = (x2-x)/0.5do if midpoint ≤ x ≤ x2,

µmoderate(x) = 0 otherwise

3. µlow(x) = (x2-x)/do if x1 ≤ x ≤ x2, 0 if x >x2, and 1 if x< x1

Where x1, x2, do and midpoint are as follows:

B. Image indexing and retrieval

Case attributes can be either quantitative or qualitative.

Qualitative attributes accept nominal values. For example, the

artifact type is a qualitative attribute whose value may be

stone, bronze/copper, clay, gold, ivory, or shell. Quantitative

attributes, on the other hand, allow values to be measured on a

numerical scale.

Fuzzy indexing and retrieval are useful in domains where

cases have quantitative attributes. For cases with qualitative

attributes only, indexing can be performed on attributes







=

=
=

20

30

/

1

x

x
x

OI

CPU







=

=
=

40

70

/

2

x

x
x

OI

CPU







=

=
=

20

40

/d

d
d

OI

CPU

o








=

=
=

30

50

/
midpt

midpt
midpt

OI

CPU

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1621

directly. For example, artifacts can be classified as large,

medium, or small (three classes according to their size); or can

be classified according to their materials into six classes:

stone, bronze/copper, clay, gold, ivory, or shell. We can easily

index systems by their materials. If we also want to include

the height or size, indexing becomes more complicated since

the value of this attribute can be any positive real number.

However, with a proper transformation into a few discrete

classes based on practical requirements, indexing becomes

easier to handle.

The process of fuzzy indexing is, therefore, of two stages.

Quantitative attributes are first processed by the fuzzifier

(called fuzzification) and then indexed on the resulting classes

(indexing) before being stored in the CB. The following

section describes these stages in more detail and illustrates

how they can be applied to the lost treasures domain.

The fuzzification process includes the following steps:

1) When a case is encountered, qualitative attributes are

identified.

2) For each quantitative attribute, proper classes are

determined based on practical needs.

3) The membership function of each class and its associated

α cut are determined.

4) Numerical values of each case are converted into proper

classes for indexing.

To illustrate this process, a running example is used. The

context is a lost treasure domain that contains Artifacts,

Figurines, Inlays, Jewelry, Metal Vessels, Musical

Instruments, Pottery, Relief, Seals, Sculpture, Vessels and

Terracotta. They are categorized into six different types: stone,

bronze/copper, clay, gold, ivory, or shell. Fig. 2 shows an

example of XML document of some of these objects.

<?xml version="1.0" ?>

- <IMAGES>
 - <IMAGE>

<SERNO>1</SERNO>
<MuesumNumber>IM19755</MuesumNumber>
<CATEGORY>Limestone, Female</CATEGORY>
<MATERIAL>Limestone</MATERIAL>
<KEYWORDS>Female, Standing,
Limestone</KEYWORDS>
<DESCRIPTION>Standing Female, Eyeballs of
Shell</DESCRIPTION>
<DIMENSION>HEIGHT/LENGTH/54cm, tall/0.62,
medium/0.25, small/0.0.13 </DIMENSION>
<LOCATION>Tell Asmar</LOCATION>
<PERIOD>Sumerian, Early Dynastic II 2600
B.C.</PERIOD>
<STATUS>Stolen</STATUS>
<URL>http://MySite/ImageGallery/Images/st
anding_picl.jpg</URL>
 </IMAGE>

 - <IMAGE>
<SERNO>2</SERNO>
<MuesumNumber>IM19653</MuesumNumber>
<CATEGORY>Female, Standing,
Stone</CATEGORY>
<MATERIAL>Stone</MATERIAL>
<KEYWORDS>Female, Standing, Stone, South-
Iraq</KEYWORDS>

<DESCRIPTION>Statue of female wearing
elaborate, flounced garment
leaving one shoulder bare </DESCRIPTION>
<DIMENSION>HEIGHT/LENGTH/36cm, tall/0.54,
medium/0.6, small/0.7 </DIMENSION>
<LOCATION>Khafaji</LOCATION>
<PERIOD>Sumerian, Early Dynastic II 2800
B.C.</PERIOD>
<STATUS>Unknown</STATUS>
<URL>http://MySite/ImageGallery/Images/st
anding_pic2.jpg</URL>
</IMAGE>

 - <IMAGE>
<SERNO>3</SERNO>
<MuesumNumber>IM19759</MuesumNumber>
<CATEGORY>Male, Stone,
Standing</CATEGORY>
<MATERIAL>Stone, Limestone</MATERIAL>
<KEYWORDS>Male, Standing, Stone, South-
Iraq</KEYWORDS>
<DESCRIPTION>Statue of male bearded, long
hair, bare-chested wearing
flounced skirt, hands folded, standing on
flat base </DESCRIPTION>
<DIMENSION>HEIGHT/LENGTH/ 54cm, tall/0.57
medium/0.46, small/0.42 </DIMENSION>
<LOCATION>Tell Asmar</LOCATION>
<PERIOD>Sumerian, Early Dynastic, 2600
B.C.</PERIOD>
<STATUS>Stolen</STATUS>
<URL>http://MySite/ImageGallery/Images/st
anding_pic3.jpg</URL>

 </IMAGE>

 - <IMAGE>
<SERNO>4</SERNO>
<MuesumNumber>IM9659</MuesumNumber>
<CATEGORY>Female, Stone,
Standing</CATEGORY>
<MATERIAL>Stone, Limestone</MATERIAL>
<KEYWORDS>Female, Standing,
Stone</KEYWORDS>
<DESCRIPTION>Statue of female wearing
flounced garment leaving one shoulder
bare, hands folded, standing on flat base
</DESCRIPTION>

<DIMENSION>HEIGHT/LENGTH/ 36cm, tall/0.059,
medium/0.8, small//0.4 </DIMENSION>
<LOCATION>Khafaji</LOCATION>
<PERIOD>Sumerian, Early Dynastic,2600
B.C.</PERIOD>
<STATUS>Stolen</STATUS>
<URL>http://MySite/ImageGallery/Images/st
anding_pic4.jpg</URL>

 </IMAGE>

</IMAGES>

Fig. 2 Some cases in XML case-representation

Suppose the user entered the data in Table 1 during an

interactive session with the system. In the transformation of

the measurement this table, the fuzzifier handles the

quantitative values that need to be converted into qualitative

data. Usually, we classify the artifact height into three classes:

tall, medium and small. Using the membership functions,

given above, the fuzzifier converts the height value 0.65 into

membership grades of the respective classes: 0.88 for tall,

0.25 for medium and 0.13 for small. However, if the α-cut is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1622

set to 0.5, then the height, in this case, is classified as tall/0.88

only.

TABLE I

AN IMAGE INSTANCE

Attribute Value

MuseumNumber

CATEGORY multicasts
MATERIAL Limestone

KEYWORDS Female Standing

DESCRIPTION Standing female, eyeballs of shell
HEIGHT 65
LOCATION Tell Asmar

PERIOD/YEAR 2600
STATUS Stolen

URL Standing_Pic1.jpg

Once a problem instance is indexed, four additional

attributes are added before it becomes a case to be stored in

the case base (CB). These additional attributes are: the case

number, the unusual or the interesting property. Artifacts can

be characterized of having unusual properties if their heights

or sizes are too small or too large, i.e. out of the usual height

or size ranges. Angles or animals that take human shape and

vice versa are examples of artifacts with interesting property.

At the final stage a case number is assigned and the case is

added to the case base (CB). Fig. 3 depicts the result of this

analysis and transformation processes.
<IMAGE>

<SERNO>4</SERNO>
<MuesumNumber>IM9659</MuesumNumber>
<CATEGORY>Female, Stone,

Standing</CATEGORY>
<MATERIAL>Stone, Limestone</MATERIAL>
<KEYWORDS>Female, Standing,

Stone</KEYWORDS>
<DESCRIPTION>Statue of female wearing

flounced garment leaving one shoulder
bare, hands folded, standing on flat
base </DESCRIPTION>

<DIMENSION>HEIGHT/LENGTH/ 36cm, tall/0.059,
medium/0.8, small//0.4 </DIMENSION>

<LOCATION>Khafaji</LOCATION>
<PERIOD>Sumerian, Early Dynastic,2600

B.C.</PERIOD>
<STATUS>Stolen</STATUS>
<URL>http://MySite/ImageGallery/Images/sta

nding_pic4.jpg</URL>
</IMAGE>

Fig. 3 XML case, which is the result obtained from the

transformation of the data in Table I

Retrieval is an important process in case-based reasoning.

Faced with a problem instance, the case based reasoning

(CBR) first ranks cases in CB based on their degree of

similarity with the problem instance. A similarity score that is

computed by comparing each case with the problem instance

quantifies this. Next, CBR retrieves the most similar cases.

For improving retrieval we used a fuzzy method that combines

the fuzzy terms with known qualitative attributes and uses

them as keys for retrieval of similar cases. The selection of

past cases that best match the present problem depends on

being able to identify and evaluate relevant attributes and

being able to perform simple matching between cases. Given

the cases in Table II, suppose the goal is to retrieve an image

similar to that described by Table II. After transformation of

data in Table 1, the following problem instance is produced

and added to be a new entry in the XML database.

Based on the matching attributes of the problem instance,

the case retrieval can easily select the cases 1, 2, 6 and 7 from

the CB to be used as bases for performance evaluation of this

new problem instance. Fuzzy retrieval often results in a set of

candidate cases for reasoning. The issue following fuzzy

retrieval is to find the most similar case among candidates.

There are several ways of finding the most similar case. In this

work, we use the following algorithm (similarity measure).

The similarity measure, dq, is calculated as follows:

1) dq= ; where n is the number of the attributes.

2) The parameter, ai, is set to -1 if the unusual-property for

both the problem instance and the case has the same

value; ai is set to 0 if the attribute’s value for the case is

equal to the attribute of the problem instance; ai is set to

0.5 if the attribute’s value for the case is a wildcard.

Otherwise the measure for the attribute is set to 1.

3) The similarity measure for fuzzy attributes is calculated as

follows:

4) Where xijk and xijn are the grades of attribute i, class j, for

cases k and n respectively.

5) The similarity measure for the case is the sum of the

results obtained from (1) and (2).

dc=dq+ di

Table II displays the results of applying this algorithm to

the problem instance and the cases in Table 3. Uruk

concludes that case 6 is, therefore, the most similar case to the

problem instance and displays the associated image along with

the close relative images on the screen, see Fig. 4.

TABLE II
DISTANCES BETWEEN THE PROBLEM INSTANCE OF FIG. 3 AND THE CANDIDATE

CASES

Case Fuzzy Height Distance

1 tall/0.62, medium/0.25,
small/0.13

0.85

2 tall/0.54, medium/0.9,

small/0.45

0.2

6 tall/0.57, medium/0.85,

small/0.42

0.09

7 tall/0.92,

medium/0.15, small/0

1.38

Inst. tall/0.59, medium/0.8, small/0.4 0

1

n

i
i
a

=
∑

()i ijk ijn

j

d abs x x= −∑

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1623

Fig. 4 The results of searching for images when the data in Table 1

are entered

Clicking on any of the retrieved images, more information

on that image along with its large size will be displayed. Fig. 5

shows the result of this last action.

Fig. 5 Image along with its details

IV. THE VISUAL INTERACTIVE COMPONENT

The main components of this system are XML documents,

XML database, XML processor, and Graph Manager. The

XML processor, which is supported by XML parser (JAXP),

has two functions: transforming the XML database into proper

XML documents and vice versa. The Graph Manager,

supported by the graph library Jung, is the interface module. It

accepts an XML document and produces a tree-like structure

that is displayed on the screen. The Graph Manager has also

another task; it converts the tree-like documents to XML

documents. Fig. 6 shows the interaction of these components.

TABLE III

CASES IN SAMPLE BASE CASE (CB)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1624

Fig. 6 The architecture of VIC

A. Visualizing an Exiting XML file

1) User chooses to import the XML file and selects the file.

2) The file address on disk is sent to XML Loader (part of

XML Processor).

3) XML Loader verifies the file's structure according to the

standard schema.

4) If any error is found, then exception is thrown.

5) If no error, the file loads in memory as an XML

Document object.

6) Document object is sent to Plotter (Part of Graph

Manager).

7) Plotter reads the Document object's contents and

generates the graph by creating the corresponding vertices

and connecting those using edges.

8) The graph is sent to the currently active Canvas window

to be inserted and shown to the user.

9) User chooses to add/remove/modify a node.

9.1. Receive required information/confirmation.

9.2. Modify the Document object accordingly.

9.3. Go to step 6.

B. Visualization of XML Documents - Screenshots and

Workflow

When an XML file is visualized, VIC allows users to carry

out many actions including update, delete, relocate

collapse/explode nodes and reconnect a node (s) on another

branch of the tree-like structure. In addition, the system allows

the user to rotate the whole image. If the user clicks on a node,

the color of that node will be changed from red to yellow and

the associated information to that node will be displayed. The

user can select a number of nodes by holding down the Shift

Key while clicking on these nodes. Again, the color of those

nodes will be changed to yellow and the association

information will be displayed, see Fig. 7.Nodes can be

collapsed to improve complex graphs' readability, see Fig. 8.

When a node is collapsed, its shape will change according to

the number of immediate successors it has e.g. Square if it has

4 children. Users can Collapse and Expand the nodes by right

clicking on them in “Picking" mode.

Fig. 7 Circular display of the XML document

Fig. 8 Collapse of the nodes

V. CONCLUSION

The current research shows not only promising public

domain data-centric visualization software systems running on

the personal computer platform but also the effectiveness and

the usefulness of such systems to the users.

In this paper we have described the Uruk system for

visualization of data-centric XML collections of images. The

system is based on an efficient visualization method that

utilizes the JUNG software library in order to improve its

capabilities. To get some insights into the functionality of

Uruk, we showed some of its features using an XML

document. Further research areas include the visualization and

management of multiple XML documents. This is important to

allow users visually moving a node (s) from one document to

another.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1625

 REFERENCES

[1] Art History Virtual Library, (2008). Retrieved 10 11, 2011, from the
World Wide Web Virtual Library:
http://www.chart.ac.uk/vlib/images.html

[2] Photography Defence. (2010). Retrieved 10 10, 2011, from defence
image database:

http://www.defenceimagedatabase.mod.uk/fotoweb/Grid.fwx.

[3] The Virtual Museum of Japanes Art. (n.d.). Retrieved 10 11, 2011, from
Japan Museum Web Site: http://web-japan.org/museum/menu.html

[4] The Web Gallery of Art. (2004). Retrieved 10 11, 2011, from The Web
Gallery of Art: http://www.wga.hu/index1.html

[5] The Web Gallery of Art Retrieved 5 11, 2011: http://www.wga.hu/

[6] Tourism Image Australia Gallery, (2009). Retrieved 10 11, 2011, from
Tourism Australia: http://www.images.australia.com/

[7] Iraqi Museum Database. (2003, May 27). Retrieved 10 12, 2011, from
Oriental Institute of the University of Chicago:
http://oi.uchicago.edu/OI/IRAQ/dbfiles/Iraqdatabasehome.htm

[8] Burch, M., Diehl, S., and Weissgerber, P. Visual data mining in software
archives. ACM Symposium on Software Visualization. ACM Press, pp.
37--46, 2005.

[9] Collberg, C., Kobourov, S., Nagra, J., Pitts, J., and Wampler, A system
for graph-based visualization of the evolution of software. ACM
Symposium on Software Visualization. ACM Press 77--86, 212, (2003)

[10] Shihab, K., Ramadhan, H. and Al-Chalabi, N. An Integrated Approach
to Digital Objects Storage and Retrieval, Journal of Computer Science, 2
(9), pp. 683--689, (2006)

[11] Khalil Shihab and Doreen Ying YingSim, Development of a
Visualization Tool for XML Documents, INTERNATIONAL
JOURNAL OF COMPUTERS, Issue 4, Volume 4, pp. 153-160, 2010.

[12] Shihab Khalil. An Intelligent XML-Based Image System, Wseas
Transactions on Computers, Vol. 5, pp. 2885-2893, 2006

[13] http://www.graphviz.org/, last accessed April 2011

[14] http://hydra3d.sourceforge.net/indexFrames.html, last accessed April
2011.

