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 Abstract—Vibration of thin cylindrical shells made of a 

functionally gradient material composed of stainless steel and nickel 
is presented. The effects of the FGM configuration are studied by 
studying the frequencies of FG cylindrical shells. In this case FG 
cylindrical shell has Nickel on its outer surface and stainless steel on 
its inner surface. The study is carried out based on third order shear 
deformation shell theory. The objective is to study the natural 
frequencies, the influence of constituent volume fractions and the 
effects of configurations of the constituent materials on the 
frequencies. The properties are graded in the thickness direction 
according to the volume fraction power-law distribution. Results are 
presented on the frequency characteristics, the influence of the 
constituent various volume fractions on the frequencies. 
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I. INTRODUCTION 
TAINLESS STEEL are often used as load bearing structures 
for aircrafts, ships and buildings. Understanding of 

vibration behavior of cylindrical shells is an important aspect 
for the successful applications of cylindrical shells. 
Researches on free vibrations of cylindrical shells have been 
carried out extensively [1-5]. Recently, the present authors 
presented studies on the influence of boundary conditions on 
the frequencies of a multi–layered cylindrical shell [6]. In all 
the above works, different thin shell theories based on Love–
hypothesis were used. Vibration of cylindrical shells with ring 
support is considered by Loy and Lam [7]. The concept of 
functionally graded materials (FGMs) was first introduced in 
1984 by a group of materials scientists in Japan [8-9] as a 
means of preparing thermal barrier materials. Since then, 
FGMs have attracted much interest as heat-shielding 
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materials. FGMs are made by combining different materials 
using power metallurgy methods [10]. Vibration study of FG 
cylindrical shell structures is important. This cylindrical shell 
considered are composed of stainless steel and nickel where 
the volume fractions follow a power-law distribution.  
 

II. FUNCTIONALLY GRADED MATERIALS 
For the cylindrical shell made of FGM the material 

properties such as the modulus of elasticity E , Poisson 
ratioν and the mass density ρ are assumed to be functions of 
the volume fraction of the constituent materials when the 
coordinate axis across the shell thickness is denoted by z and 
measured from the shell’s middle plane. The functional 
relationships between E ,ν  and ρ  with z  for a stainless 
steel and nickel FGM shell are assumed as: 
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The third- order theory of Reddy used in the present study is 
based on the following displacement field: 
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These equations can be reduced by satisfying the stress-free 
conditions on the top and bottom faces of the laminates, which  
are equivalent to 02313 ==∈∈ at 
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III. FORMULATION 

 
Consider a cylindrical shell is shown in Fig.1. R  is the 

radius, L  is the length and h is the thickness. The reference 
surface is chosen to be the middle surface of the cylindrical 
shell where an orthogonal coordinate system zx ,,θ  is fixed. 
The deformations of the shell with reference to this coordinate 
system are denoted by 1U , 2U  and 3U  in the θ,x  and z  
directions, respectively. 
 
 

    
                   
  

Fig. 1 Geometry of a cylindrical shell 
                                   
 For a thin cylindrical shell, plane stress condition can be 
assumed. The constitutive relation for a thin cylindrical shell 
is consequently given by the tow-dimensional Hook's law as 
 

{ } [ ]{ }εσ Q=                                                   (6) 
 
where, { }σ  is the stress vector, { }ε  is the strain vector and 
[ ]Q  is the reduced stiffness matrix. The stress vector for plane 
stress condition is  
 

{ } { }2313122211 σσσσσσ =T                   (7)                                                                                                                        
 
where 11σ is the stress in x direction, 22σ  the stress in the θ  
direction and 12σ  is the shear stress on the θx  plane and 

13σ  is the shear stress on the zx  plane and 23σ  is the shear 
stress on the zθ  plane. The strain vector is defined as  
 

{ } { }2313122211 εεεεεε =T          (8) 
where 11ε  is the strain in x direction, 22ε  the strain in the θ  
direction and 12ε  is the shear strain on the θx  plane and 

13ε  is the shear strain on the zx  plane and 23ε  is the shear 
strain on the zθ  plane. The reduced stiffness [ ]Q  matrix is 
given as 
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For an isotropic cylindrical shell the reduced stiffness ijQ  ( i , 

j=1, 2 and 6) are defined as 
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where E  is the Young's modulus and ν  is Poisson's ratio. 
For a thin cylindrical shell the force and moment results are 
defined as 
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The constitutive equation is obtained as 
 

{ } [ ] { }εSN =                                              (16)                   
                                                                                                                  
where }{N  and { }ε  are, respectively, defined as 
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where A, B, E, D, F, H and G are the extensional, coupling 
and bending stiffness matrices and ijQ  are functions of z  for 

functionally gradient materials. Here ijA  denote the 

extensional stiffness, ijD  the bending stiffness, ijB  the 

bending-extensional coupling stiffness and ijijijij HGFE ,,,  
are the extensional, bending, coupling, and higher-order 
stiffness. Defining 
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The strain energy and kinetic energy of a cylindrical shell can 
be defined as 
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where, ρ  is the mass density, { }ε  is the strain vector and 
{ }σ  is the stress vector. By substituting from Eq. (6), the 
strain and kinetic energies can be written as  
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The displacement fields for a cylindrical shell can be written 
as: 
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where, A , B , C , D  and E  are the constants denoting the 
amplitudes of the vibrations in the θ,x  and z  directions, 

)(xφ  is the axial function that satisfies the geometric 
boundary conditions, n  denotes the number of circumferential 
waves in the mode shape and ω  is the natural angular 
frequency of the vibration. The axial function )(xφ is chosen 
as the beam function as: 
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where )4,...,1( =iiα are some constants with value 0 or 1 
chosen according to the boundary conditions. mλ , are the 
roots of some transcendental equations and mζ  are some 
parameters dependent on mλ . The energy functional Π  
defined by the Lagrangian function as  
                                                                                                                      

maxmax UT −=Π                                                 (27)                   
 
With minimizing the energy functional Π  with respect to the 
unknown coefficients as follows, 
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Tmax and Umax are the maximum kinetic energy and strain 
energy, respectively. In Eq. (28), the five governing 
eigenvalue equations can be obtained. These five governing 
eigenvalue equation can be expressed in matrix from as 
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The eigenvalue equations are solved by imposing the non-
trivial solutions condition and equating the determinant of the 
characteristic matrix ][ ijC  to zero. Expanding this 
determinant, a polynomial in even powers of ω  is obtained 
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where )5,4,3,2,1,0( =iiβ  are some constants. Eq. (30) is 
solved five positive and five negative roots are obtained. The 
five positive roots obtained are the natural angular frequencies 
of the cylindrical shell in the x  , θ  and z  directions. The 
smallest of the five roots is the natural angular frequency 
studied in the present study. 
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VI. RESULTS AND DISCUSSION 

 
The functionally gradient material (FGM) considered is 

composed of stainless steel and nickel and its properties are 
graded in the thickness direction according to the volume 
fraction power-law distribution. The influence of constituent 
volume fractions is studied by varying the volume fractions of 
the stainless steel and nickel. This is carried out by varying the 
value of the power law exponent N . The effects of the FGM 
configuration are studied by studying the frequencies of FG 
cylindrical shells. Type FG cylindrical shell has Nickel on its 
inner surface and stainless steel on its outer surface. The 
material properties for stainless steel and nickel, calculated 
at KT 300= , are presented. In this section variations of 
natural frequencies with the circumferential wave number n 
for functional graded cylindrical shells with different volume 
fractions are presented. Tables 1 and 2 show variations of 
natural frequencies for FG cylindrical shell. The influence of 
the constituent volume fraction on the frequencies for FG 
cylindrical shells has been found to be different. For the FG 
cylindrical shells, the natural frequencies decreased when N  
increased. the natural frequencies for all values of N  lie 
between those for a stainless steel and Nickel cylindrical 
shells. For 1<N , the natural frequencies for FG cylindrical 
shells are higher. 
 

 
TABLE I 

VARIATIONS OF NATURAL FREQUENCIES WITH THE CIRCUMFERENTIAL 
WAVE NUMBER N FOR FG CYLINDRICAL SHELL 

M=1, H/R=0.002, L/R=20 
 

       
n 

f(Hz) 
N=0.5 N=0.7 N=1 N=2 N=5 N=15 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
 

 
 13.319 
4.514 
4.190 
7.101 

11.345 
16.609 
22.848 
29.052 
38.219 
47.347 

 

 
13.267 
4.496 
4.173 
7.074 

11.301 
16.545 
22.760 
29.937 
38.072 
47.166 

 

 
13.209 
4.476 
4.156 
7.044 

11.254 
16.475 
22.664 
29.811 
37.912 
46.967 

 

 
13.101 
4.440 
4.123 
6.989 
11.166 
16.348 
22.489 
29.580 
37.618 
46.604 

 

 
12.996 
4.4046 
4.0914 
6.9357 
11.080 
16.222 
22.315 
29.351 
37.328 
46.244 

 

 
12.930 
4.382 
4.070 
6.899 

11.022 
16.1374 
22.199 
29.198 
37.133 
46.002 

 

  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE II 
VARIATIONS OF NATURAL FREQUENCIES WITH THE CIRCUMFERENTIAL 

WAVE NUMBER N FOR FG CYLINDRICAL SHELL 
M=1, H/R=0.002, L/R=20 

   
   

n

f(Hz) 
N=0.5 N=0.7 N=1 N=2 N=5 N=15 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
 

 
 13.321 
32.679 
91.388 
174.998 
282.855 
414.818 
570.840 
750.900 
954.987 
1183.096 

 

 
13.269 
32.553 
91.037 
174.326 
281.769 
413.225 
568.648 
748.016 
951.319 
1178.552 

 

 
13.211 
32.416 
90.652 

173.590 
280.578 
411.480 
566.246 
750.853 
947.300 
1173.573 

 

 
13.103 
32.165 
89.951 

172.246 
278.407 
408.295 
561.863 
739.091 
939.968 
1164.489 

 

 
12.997 
31.917 
89.258 

170.920 
276.263 
405.151 
557.537 
733.400 
932.731 
1155.52 

 

 
12.932 
31.751 
88.795 
170.035 
274.832 
403.053 
554.650 
729.603 
927.902 

1149.542 
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