
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:4, 2008

256

Abstract—A parallel block method based on Backward

Differentiation Formulas (BDF) is developed for the parallel solution
of stiff Ordinary Differential Equations (ODEs). Most common
methods for solving stiff systems of ODEs are based on implicit
formulae and solved using Newton iteration which requires repeated
solution of systems of linear equations with coefficient matrix, I -
hβJ . Here, J is the Jacobian matrix of the problem. In this paper,
the matrix operations is paralleled in order to reduce the cost of the
iterations. Numerical results are given to compare the speedup and
efficiency of parallel algorithm and that of sequential algorithm.

Keywords—Backward Differentiation Formula, block, ordinary

differential equations.

I. INTRODUCTION

E consider block method for the parallel solution of
Ordinary Differential equations (ODEs)

 ()yxfy ,=′ (1)

with initial values () 0yay = in the interval []bax ,∈ .
Various parallel block methods have been proposed for the

parallel solution of (1). Watts and Shampine [5], Worland [6],
Birta and Abou-Rabia [1], Chu and Hamilton [2] to name a
few. Earlier work on parallelism in ODE are found in Rosser
[4], Watts [5] and Gear [3]. Gear classifies parallelism into
two categories: (i) parallelism across time which is also
referred as “parallelism across the method” and (ii) parallelism
across the systems. In parallelism across time, each processor
executes a different part of the method. Parallelism across the
systems where the systems are divided into a set of
subsystems and each subsystem is assigned to a different
processor.

In the next section, we reviewed a class of block methods
proposed by Zarina et. al in [7] which are based on Backward
Differentiation Formulas (BDF) for solving stiff ODEs. Such
methods are called Block Backward Differentiation Formulas
(BBDF).

II. THE BBDF METHOD
Traditionally, the BDF computation proceeds to an

approximation 1+ny of ()1+nxy one step at a time while in 2-
point BBDF, the approximation solutions 1+ny and 2+ny are
obtained simultaneously in every step. The simultaneous
sequence of computation symbolized as PECE.

The first point approximation is
):():():():(1111 EEvaluatefCCorrectyEEvaluatefPredicty c

n
c
n

p
n

p
n ++++ →→→→ P

and the second point approximation is
):():():():(2222 EEvaluatefCCorrectyEEvaluatefPredicty c

n
c
n

p
n

p
n ++++ →→→→ P

In 2 point BBDF method, the interval [a,b] is divided into

series of blocks with each block containing two equally
spaced points (see Fig. 1).

 rh rh h h

 [)[)

 2−nx 1−nx nx 1+nx 2+nx

Fig. 1 2-point block method

Let the step size, h of the computed block be 2h and the
step size of the previous block be 2rh where r is the step size
ratio. In the step size selection, the decrease of the step size
when there is a step failure is limited to halving while the
increment of the step size is increased by a factor of 1.6h to
ensure zero stability. The BBDF method expressed in the
general form is giveb by

⎭
⎬
⎫

++=
++=

+++

+++

222122

111211
ψαθ
ψαθ

nnn

nnn
hfyy

hfyy (2)

with 1ψ and 2ψ are the backvalues.

Equation (2) written in matrix-vector form is equivalent to

() 2,12,12,1 ++++++ +=− nnnnnn hBFYAI ξ with

⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

I , ⎥
⎦

⎤
⎢
⎣

⎡
=

+

+
++

2

1
2,1

n

n
nn y

y
Y , ⎥

⎦

⎤
⎢
⎣

⎡
=

0
0

2

1
θ

θ
A ⎥

⎦

⎤
⎢
⎣

⎡
=

2

1
0

0
α

α
B

⎥
⎦

⎤
⎢
⎣

⎡
=

+

+
++

2

1
2,1

n

n
nn f

f
F and ⎥

⎦

⎤
⎢
⎣

⎡
=++

2

1
2,1 ψ

ψ
ξ nn .

Let () 0ˆ
2,12,12,12,1 =−−−= ++++++++ nnnnnnnn hBFYAIF ξ .

To approximate this solution, select ()i
nnY 2,1 ++ and generate

()1
2,1

+
++

i
nnY by applying Newton’s Iteration to the system (2) to

obtain,

Parallel Block Backward Differentiation
Formulas for Solving Ordinary Differential

Equations
Khairil Iskandar Othman, Zarina Bibi Ibrahim, and Mohamed Suleiman

W

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:4, 2008

257

() ()

() ()() () () ()()[]2,12,12,1

1

2,1

2,1
1

2,1

++++++

−

++

++
+

++

−−−⎥⎦
⎤

⎢⎣
⎡

∂
∂

−−−=

−

nn
i

nn
i

nn
i

nn

i
nn

i
nn

YhBFYAIY
Y
FhBAI

YY

ξ

where ()()i
nnnn Y

Y
FJ 2,12,1 ++++ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

= is the Jacobian matrix of F

with respect to Y

III. PARALLEL IMPLEMENTATION OF BBDF
This section describes the parallel implementation on the

matrix multiplication. Parallelism is obtained using the
Message Passing Interface (MPI) library which runs on a High
Performance Computer (HPC).

In BBDF code, the matrix multiplication is

 ()()⎥⎦
⎤

⎢⎣
⎡

∂
∂

++
i

nnY
Y
FhB 2,1 .

In order to parallel the matrix multiplication, the matrices
involved must be assigned to different processors. This is
done by first distributing the matrix JACBN(calculates the
Jacobian) to all processors using the command
MPI_BCast(JACBN). Next, rows of the matrix can be formed
independently and in parallel by partitioning the rows in
matrix NEWB to all the processors available. This is done by
the formula,

)processors of(number int
) rows ofnumber (int range =

This will divide evenly the number of rows to the number
of processors. If it cannot be divided evenly, the above
operation which is an integer division will truncate the value
and assigned it to the processors. Any remainder rows will be
assigned to the last processor. The master will assign each
partition rows of the matrix NEWB to each processor using
the command MPI_Send() and MPI_Recv(). The
multiplication is done by multiplying the processors to each
column of matrix JACBN, and the results are transferred back
to master into the matrix JACBN1. This process is done
simultaneously. The setting up of the matrix multiplications is
done as follows,

Procs. NEWB JACBN JACBN1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

nn

n

y
f

y
f

y
f

y
f

y
f

nnnn

n

c...c

...

...

...
c...cc

...

...

...

...
...

...

..
...
...
...

...

nn

nn

n

1,1

2,

1,1

2,

,1

1,1

2,1

1,1

1,1

1,1
11211

,2,1,

,12,11,1

ααα

ααα

IV. NUMERICAL RESULTS
Two test problems are considered. Problem 1 is given to

validate the method BBDF works. Problem 2 is a reaction-
diffusion problem, the Brusselator system.

Problem 1:

ODEs:
212

211
2019

1920
yyy

yyy
−−=′
−−=′

Initial values: () () 00,20 21 == yy
Interval: 200 ≤≤ x

Solution:
()
() xx

xx

eexy

eexy
−−

−−

−=

+=
39

2

39
1

Problem 2: Brusselator system

 PDE:
()

2

2
2

2

2
2 1

x
vvuBu

t
v

x
uuBvuA

t
u

∂

∂
+−=

∂
∂

∂

∂
++−+=

∂
∂

α

α

where A, B are constant parameters, 0≥α . We consider
parameters 1=A , 3=B , 02.0=α

ODEs: () ()
() ()11

22
11

22

213

2141

+−

+−

+−++−=′

+−++−+=′

iiiiiii

iiiiiii

vvvNvuuv

uuuNuvuu

α

α

 where () ()tutu N 10 1 +==
 () ()tvtv N 10 3 +==

() ()
() 30

 2sin10
=

+=

i

ii
v

xu π

 with
1+

=
N

ixi , Ni ,...,1= and is solved on the time

interval 100 ≤≤ x .

The notations used in the tables take the following meaning:

TOL : Tolerance used
TS : Total steps used
FA : Total number of rejected steps
IST : Total number of accepted steps
MAXE : Magnitude of the maximum error of the

computed solution
BDF : Backward Differentiation Formulas
BBDF : Block Backward Differentiation Formulas

pS : Speedup

pE : Efficiency
EQN : Number of equations
TIME : The execution time in seconds

The numerical results are tabulated in Table I and II.

TABLE I
NUMERICAL RESULT FOR PROBLEM 1

TOL MTD FA IST TS MAXE TIME
210− BDF

BBDF
11
0

60
32

71
32

1.9588e-01
2.7778e-04

19064
 6083

410− BDF
BBDF

21
2

120
63

141
65

5.5911e-03
3.5710e-06

25568
 9866

610− BDF
BBDF

26
0

197
170

223
170

3.2120e-05
2.6545e-08

34418
19231

P1

.

.

.

Pn

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:4, 2008

258

Tables II shows the speedup and efficiency for the
Brusellator problem when run with different number of
processors.

TABLE II

NUMERICAL RESULT FOR PROBLEM 2
 EQN 2P 4P 6P 8P

pS 20
60
100

0.876
1.146
1.158

2.151
3.381
3.454

2.987
5.556
5.712

3.245
7.434
7.259

pE 20
60
100

0.438
0.573
0.579

0.538
0.845
0.863

0.498
0.926
0.952

0.406
0.929
0.907

1P= 1 processor, 2P= 2 processor, 4P=4 processor,
6P= 6 processor, 8P= 8 processor.

V. CONCLUSION
The numerical results showed that the speedup improves as

the problem size increases. In fact, the speed up is
approaching the linear speedup as the number of equations
increased. Therefore, the parallel implementation of the BBDF
methods shows significance gains over the sequential BDF.

ACKNOWLEDGEMENT
This research was supported by Universiti Technology

MARA under Fundamental Research Grant Scheme (FRGS).

REFERENCES
[1] Birta, L.G. and Abou-Rabia, O. (1987), Parallel Block Predictor

Corrector Methods for ODEs, IEEE Transactions on Computers, c-
36(3):299-311.

[2] Chu, M.T. and Hamilton, H. (1987), Parallel solution of ODE’s by
multi-block methods,SIAM J. Sci. Stat. Comput. 8: 342-353.

[3] Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary
Differential Equations, New Jersey: Prentice Hall, Inc.

[4] Rosser, J.B. 1967. A Runge-Kutta for All Seasons. Siam Review 9(3):
417-452.

[5] Watts, H.A. and Shampine, L.F. 1972. A-Stable Block Implicit One-Step
Methods. BIT 12:252-266.

[6] Worland, P.B., (1976). Parallel Methods for the Numerical Solution of
Ordinary Differentials Equations, IEEE Transactions on Computers C-
25:1045-1048.

[7] Zarina Bibi, I., Khairil Iskandar, O.,Suleiman, M., 2007. Variable
Stepsize Block Backward Differentiation Formula For Solving Stiff
ODEs, Proceedings of World Congress on Engineering 2007, London,
U.K. Vol II: pg 785-789. ISBN: 978-988-98671-2-6.

