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Abstract—A parallel block method based on Backward 

Differentiation Formulas (BDF) is developed for the parallel solution 
of stiff Ordinary Differential Equations (ODEs). Most common 
methods for solving stiff systems of ODEs are based on implicit 
formulae and solved using Newton iteration which  requires repeated 
solution of systems of linear equations with coefficient matrix, I - 
hβJ . Here, J   is the Jacobian matrix of the problem. In this paper, 
the matrix operations is paralleled in order to reduce the cost of the 
iterations. Numerical results are given to compare the  speedup and 
efficiency of parallel algorithm and  that of sequential algorithm.   

 
Keywords—Backward Differentiation Formula, block, ordinary 

differential equations. 

I. INTRODUCTION 

E consider block method for the parallel solution of 
Ordinary Differential equations (ODEs)  

                          ( )yxfy ,=′                                       (1) 

with initial values  ( ) 0yay =  in the interval [ ]bax ,∈ .  
Various parallel block methods have been proposed for the 

parallel solution of (1). Watts and Shampine [5], Worland [6], 
Birta and Abou-Rabia [1], Chu and Hamilton [2] to name a 
few. Earlier work on parallelism in ODE are found in Rosser 
[4], Watts [5] and Gear [3]. Gear classifies parallelism into 
two categories: (i) parallelism across time which is also 
referred as “parallelism across the method” and (ii) parallelism 
across the systems. In parallelism across time, each processor 
executes a different part of the method. Parallelism across the 
systems where the systems are divided into a set of 
subsystems and each subsystem is assigned to a different 
processor.  

In the next section, we reviewed a class of block methods 
proposed by Zarina et. al in [7] which are based on Backward  
Differentiation Formulas (BDF) for solving stiff ODEs. Such 
methods are called Block Backward Differentiation Formulas 
(BBDF). 

II. THE BBDF METHOD 
Traditionally, the BDF computation proceeds to an 

approximation 1+ny of ( )1+nxy one step at a time while in 2-
point BBDF, the approximation solutions 1+ny  and 2+ny  are 
obtained simultaneously in every step. The simultaneous 
sequence of computation symbolized as PECE.  

The first point approximation is  
):():():():( 1111 EEvaluatefCCorrectyEEvaluatefPredicty c

n
c
n

p
n

p
n ++++ →→→→ P

and the second point approximation is 
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In 2 point BBDF method, the interval [a,b] is divided into 

series of blocks with each block containing two equally 
spaced points (see Fig. 1).  
 
                     rh               rh                 h              h 
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         2−nx         1−nx         nx            1+nx        2+nx  

Fig. 1 2-point block method 
 

Let the step size, h of the computed block be 2h and the 
step size of the previous block be 2rh  where  r is the step size 
ratio. In the step size selection, the decrease of the step size 
when there is a step failure is limited to halving while  the 
increment of the step size is increased by a factor of 1.6h to 
ensure zero stability. The BBDF method expressed in the 
general form is giveb by 
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with 1ψ  and 2ψ  are the backvalues. 

Equation (2) written in matrix-vector form is equivalent to  

( ) 2,12,12,1 ++++++ +=− nnnnnn hBFYAI ξ  with 
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Let    ( ) 0ˆ
2,12,12,12,1 =−−−= ++++++++ nnnnnnnn hBFYAIF ξ .                   

To approximate this solution, select ( )i
nnY 2,1 ++  and generate 

( )1
2,1

+
++

i
nnY  by applying Newton’s Iteration to the system (2) to 

obtain, 
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III. PARALLEL IMPLEMENTATION OF BBDF 
This section describes the parallel implementation on the 

matrix multiplication. Parallelism is obtained using the 
Message Passing Interface (MPI) library which runs on a High 
Performance Computer (HPC).  

In BBDF code, the matrix multiplication is       
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In order to parallel the matrix multiplication, the matrices 
involved must be assigned to different processors. This is 
done by first distributing the matrix JACBN(calculates the 
Jacobian) to all processors using the command 
MPI_BCast(JACBN).  Next, rows of the matrix can be formed 
independently and in parallel by partitioning the rows in 
matrix NEWB to all the processors available.  This is done by 
the formula, 
 

)processors of(number int 
) rows ofnumber  (int range =  

 

This will divide evenly the number of rows to the number 
of processors.  If it cannot be divided evenly, the above 
operation which is an integer division will truncate the value 
and assigned it to the processors.  Any remainder rows will be 
assigned to the last processor. The master will assign each 
partition rows of the matrix NEWB to each processor using 
the command MPI_Send( ) and MPI_Recv( ).  The 
multiplication is done by multiplying the processors to each 
column of matrix JACBN, and the results are transferred back 
to master into the matrix JACBN1.  This process is done 
simultaneously. The setting up of the matrix multiplications  is 
done as follows, 
 
Procs.              NEWB                    JACBN                                 JACBN1 
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IV. NUMERICAL RESULTS 
Two test problems are considered. Problem 1 is given to 

validate the method BBDF works. Problem 2 is a reaction-
diffusion problem, the Brusselator system.  

 
 

Problem 1:   

ODEs:             
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Initial values:  ( ) ( ) 00,20 21 == yy          
Interval:          200 ≤≤ x                     

Solution:        
( )
( ) xx

xx

eexy

eexy
−−

−−

−=

+=
39

2

39
1                        

Problem 2: Brusselator system       
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where A, B are constant parameters, 0≥α . We consider 
parameters 1=A , 3=B , 02.0=α  
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  with 
1+

=
N

ixi ,  Ni ,...,1=  and is solved on the time 

interval 100 ≤≤ x . 
 
The notations used in the tables take the following meaning: 

TOL : Tolerance used 
TS : Total steps used 
FA : Total number of rejected steps  
IST : Total number of accepted steps 
MAXE : Magnitude of the maximum error of the 

computed solution 
BDF : Backward Differentiation Formulas 
BBDF : Block Backward Differentiation Formulas 

pS  : Speedup 

pE  : Efficiency 
EQN : Number of equations 
TIME : The execution time in seconds 

 

The numerical results are tabulated in Table I and II.  
 

TABLE I 
NUMERICAL RESULT FOR PROBLEM 1 

TOL MTD FA IST TS MAXE TIME 
210−  BDF 

BBDF 
11 
0 

60 
32 

71 
32 

1.9588e-01 
2.7778e-04 

19064 
  6083 

410−  BDF 
BBDF 

21 
2 

120 
63 

141 
65 

5.5911e-03 
3.5710e-06 

25568 
  9866 

610−  BDF 
BBDF 

26 
0 

197 
170 

223 
170 

3.2120e-05 
2.6545e-08 

34418 
19231 
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Tables II shows the speedup and efficiency for the 
Brusellator problem when run with different number of 
processors. 

 
TABLE II 

NUMERICAL RESULT FOR PROBLEM 2 
 EQN 2P 4P 6P 8P 

pS  20 
60 
100 
 

0.876 
1.146 
1.158 

2.151 
3.381 
3.454 

2.987 
5.556 
5.712 

3.245 
7.434 
7.259 

pE  20 
60 
100 

0.438 
0.573 
0.579 

0.538 
0.845 
0.863 

0.498 
0.926 
0.952 

0.406 
0.929 
0.907 

1P= 1 processor, 2P= 2 processor, 4P=4 processor, 
6P= 6 processor, 8P= 8 processor. 
 

V. CONCLUSION 
The numerical results showed that the speedup improves as 

the problem size increases. In fact, the speed up is 
approaching the linear speedup as the number of equations 
increased. Therefore, the parallel implementation of the BBDF 
methods shows significance gains over the sequential BDF. 
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