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Abstract—In this paper, we will generate the wreath product 

1211wrMM  using only two permutations. Also, we will show the 

structure of some groups containing the wreath product 1211wrMM . 
The structure of the groups founded is determined in terms of wreath 
product kCwrwrMM )( 1211 . Some related cases are also included. 

Also, we will show that 1132 +KS  and 1132 +KA  can be generated 

using the wreath product kCwrwrMM )( 1211  and a transposition in 

1132 +KS  and an element of order 3  in 1132 +KA . We will also show 

that 1132 +KS and 1132 +KA  can be generated using the wreath 

product 1211wrMM  and an element of order 1k + .  
 
Keywords—Group presentation, group generated by n-cycle, 

Wreath product, Mathieu group. 

I. INTRODUCTION 

AMMAS and Al-Amri [1], have shown that 2 1nA +  of 

degree 2 1n +  can be generated using a copy of nS  and 

an element of order 3  in 2 1nA + . They also gave the 

symmetric generating set of Groups 1knA + and 1knS +  using 

nS  [5] .  

Shafee [2] showed that the groups 1knA +  and 1knS +  can 

be generated using the wreath product  wr m aA S  and an 
element of order k+1. Also she showed how to generate 

1knS +  and 1knA +  symmetrically using n elements each of 
order k+1. 

In [3], Shafee and Al-Amri have shown  that  the groups 

1110 +kA  and 1110 +kS  can be generated using the wreath 

product 1211wrMM  and an element of order k+1.  
The Mathieu group  11M  and 12M  are two groups of the 

well known simple groups. In [6], they are fully described. In 
a matter of  fact, they can be faintly presented in different 
ways. They have presentations in [6] as follows : 
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can be generated using two permutations, the first is of order 
13 and an involution as follows : 

>=< )10,9,5,8,4)(6,7,3,2,1)(11,...,2,1(11M . 12M can be 
generated using two permutations, the first is of order 17 and 
an involution as follow: 

12M (1,2,...,11)(1,2,3,7,6)(4,8,5,9,10)(1,12)(2,11)(3,6)
(4,8)(5,9)(7,10) .

=<
>

      

In this paper, we will generate the wreath product 
1211wrMM  using only two permutations. Also, we show the 

structure of some groups containing the wreath product 
1211wrMM . The structure of the groups founded is determined 

in terms of wreath product kCwrwrMM )( 1211 . Some related 
cases are also included. Also, we will show that 1132 +KS  and 

1132 +KA  can be generated using the wreath product 

kCwrwrMM )( 1211 and a transposition in 
1132 +KS  and an 

element of order 3  in 1132 +KA . We will also show that 

1132 +KS and 1132 +KA  can be generated using the wreath 
product 1211wrMM  and an element of order 1k + .  

II.  PRELIMINARY RESULTS 

DEFINITION 2.1  Let A and B be groups of permutations 
on non empty sets 

1Ω  and 
2Ω  respectively. The wreath 

product of A and B is denote by A wr B and defined as A wr 
B= 2 BΩ

θΑ × , i.e., the direct product of |
2Ω | copies of A and 

a mapping θ   
 
THEOREM 2.2 [4]   Let G  be the group generated by the 

n-cycle (1, 2, …, n) and the 2-cycle (n, a). If  1< <a n is an 
integer with n = am , then wr .m aG S C≅  

 
THEOREM 2.3 [4] Let 1 a b n≤ ≠ <  be any integers. Let n 

be an odd integer and let G be the group generated by the n-
cycle (1,2,…,n) and the 3-cycle ( , , )n a b . If the hcf ( , , )n a b =1, 
then nG A= . While if n can be an even then .nG S=   

 
THEOREM 2.4 [4] Let 1≤ <a n  be any integer. Let 

(1, 2,..., ) , ( , )= 〈 〉G n n a . If h.c.f. ( , ) 1=n a , then .nG S=  
 
THEOREM 2.5 [4] Let 1 a b n≤ ≠ <  be any integers. Let 

n be an even integer and let G  be the group generated by the 
(n-1)-cycle (1, 2,..., 1)n − and 3-cycle (n,a,b). Then .nG A=  
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III. THE RESULTS 

THEOREM 3.1 The wreath product 
1211wrMM  can be 

generated using two permutations, the first is of order 132 and 
the second is of order 4. 

 
Proof : Let G = 〈X,Y〉, where: X=(1, 2, 3, 4, …, 132), which 

is a cycle of order 252, Y=(1, 9)(2, 6)(4, 5)(7, 8)(12, 20, 23, 
31)(13, 17)(15, 16)(18, 19)(24, 28)(26, 27) (29, 30)(34, 42, 
56, 64)(35, 39)(37, 38)(40, 41)(45, 53)(46, 50)(48, 49)(51, 
52)(57, 61)(59, 60)(62, 63)(67, 75)(68, 72)(70, 71)(73, 74), 
which is the product of two cycles each of order 4 and twenty 
four transpositions. Let  ( )186 5

1 ( ) [ , ]XY X Yα = . Then 

1α =(11, 22, 33, 44, 55, 66, 132), 
which is a cycle of order 7. Let 1

2 1 Xα α −= . It is easy to show 
that  

2α =(1, 2, 3, …, 17)(18, 19, 20, …, 22) … (67, 68, 69, 
132), 

which is the product of seven cycles each of order 11. Let: 
182 )

1 )( XYYβ = ( =(9, 20)(12, 23)(31, 53)(34, 56), 
1

2 1Yβ β −= =(1, 9, 12, 20)(2, 6)(4, 5) (7, 8)(13, 17)(15, 
16)(18, 19)(23, 31, 45, 53)(24, 28)(26, 27)(29, 30)(34, 42)(35, 
39)(37, 38)(40, 41)(46, 50)(48, 49)(51, 52)(56, 64)(57, 
61)(59, 60)(62, 63)(67, 75)(68, 72)(70, 71) (73, 74), 

3 2
3 2( )Yβ β= =(1, 45)(12, 23), 

1 3
2 1

4 3
( )α αβ β

−

= =(11, 

44)(55, 66) and 
1

23
5 4

αββ β
−

=  = (17, 221)(68, 85). 

 Let 3α = 
2 1

1( )
3

5

α α
ββ

−

. Hence 

3α =(12, 24)(48, 60). 

Let 4α = 1 1
3Y X Xα− − . We can conclude that 

4α =(1,9)(2,6)(4,5)(7,8)(12,20)(13,17)(15,16)(18,19)(23,3
1)(24,28)(26,27)(29,30)(34,42)(35,39)(37,38)(40,41)(45,53)(4
6,50)(48,49)(51,52)(56,64)(57,61)(59,60)(62,63)(67,75)(68,7
2)(70,71)(73,74),  
which is the product of twenty eight transpositions. Let 

2 4,K α α= 〈 〉 . Let ): 12MK →θ  be the mapping defined by 

θ (12i+j) = j  ∀ 101 ≤≤ i , ∀  121 ≤≤ j  
Since 2( )θ α = (1, 2, …, 12) and 4( )θ α = (1, 9)(2, 6)(4, 

5)(7, 8), then 12)( MKK =≅ θ . Let 0 1 3,H α α= 〈 〉 . 
Then

110 MH ≅ . Moreover, K conjugates 0H  into 
1H , 

1H  into 

2H  and so it conjugates 
16H  into 0H  , where  

>++++++++++=< )68,34)(12,)(221,....,102,85,68,51,34,12,( iiiiiiiiiiiiHi
 

∀ 1 10i≤ ≤ . Hence we get GwrMM ⊆)1211 . On the other 

hand, Since X= 1 2α α  and Y= 4 3 ,Xα α then 1211wrMMG ⊆ . 

Hence 1211wrMMG = ◊  
 

THEOREM 3.2 The wreath product 
kCwrwrMM )( 1211
 can 

be generated using two permutations, the first is of order 132k 
and an involution, for all integers k ≥ 1. 

 
Proof :  Let σ = ( 1, 2, …, 132k) and τ =(k, 9k)(2k, 6k)(4k, 

5k)(7k, 8k)(12k,  20k, 23k, 31k)(13k, 17k)(15k, 16k)(18k, 
19k)(24k, 28k)(26k, 27k)(29k, 30k)(34k, 42k,  56k, 64k)(35k, 
39k)(37k, 38k)(40k, 41k)(45k, 53k)(46k, 50k)(48k, 49k)(51k, 
52k)(57k, 61k) (59k, 60k) (62k, 63k)(67k, 75k)(68k, 72k)(70k, 
71k). If k=1, then we get the group 1211wrMM  which can be 
considered as the trivial wreath product 

kCwrwrMM )( 1211 wr<id>. Assume that 1k > . Let 

α = ik

i

στ∏
=

12

0

, we get an element δ = 45α =(k, 2k, 3k, …, 

132k). Let iG =〈
i

δ σ ,
i

τ σ 〉, be the groups acts on the sets 

Γ i ={ i, k+i, 2k+i,…, 131k+i }, for all 1≤ ≤i k . 

Since
1

k

i
iΓ ϕ

=
=∩ , then we get the direct product 1G  × 2G  × 

… × kG , where, by theorem 3.1 each
1211wrMMGi ≅ . Let 

1β δ σ−= = (1, 2, …, k)(k+1, k+2, …, 2k) … (76k+1, 76k+2, 

…, 132k). Let kH Cβ= 〈 〉 ≅ . H  conjugates 1G  into 2G , 

2G  into 3G ,…and kG into 1G . Hence we get the wreath 

product GwrCwrMM K ⊆))( 1211 . On the other hand, 

since δ  β = (1, 2, …, k, k+1, k+2, …, 2k, …, 131k+1, 
131k+2, …, 132k)=σ , then KwrCwrMM )( 1211∈σ . 
Hence KwrCwrMMG )(, 1211>≅=< τσ .◊ 

 
THEOREM 3.3 The wreath product 

kSwrwrML ))11(( 122
 

can be generated using three permutations, the first is of order 
132k, the second and the third are involutions, for all k ≥ 2. 

 
Proof :  Let σ = ( 1, 2, …, 132k), τ =(k, 9k)(2k, 6k)(4k, 

5k)(7k, 8k)(12k,  20k, 23k, 31k)(13k, 17k)(15k, 16k)(18k, 
19k)(24k, 28k)(26k, 27k)(29k, 30k)(34k, 42k,  56k, 64k)(35k, 
39k)(37k, 38k)(40k, 41k)(45k, 53k)(46k, 50k)(48k, 49k)(51k, 
52k)(57k, 61k)(59k, 60k)(62k, 63k)(67k, 75k)(68k, 72k)(70k, 
71k) and μ  = (1, 2)(k+1, k+2)(2k+1, 2k+2) … (131k+1, 
131k+2). Since by  Theorem 3.2, 

>=< τσ ,
kCwrwrMM )( 1211
and (1, 2, …, k)(k+1, k+2, …, 

2k) … (131k+1, …,132k)∈ kCwrwrMM )( 1211  then 

〈(1,…,k)(k+1,…,2k)…(131k+1,…,132k) , μ 〉 ≅ kS . Hence 

,  ,  =G σ τ μ  
kwrSwrMM )( 1211≅  . ◊ 

 
COROLLARY 3.4 The wreath product 

kAwrwrMM )( 1211  can be generated using three 
permutations, the first is of order 132k, the second is an 
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involution and the third is of order 3, for all odd integers k ≥ 
3. 

 
THEOREM 3.5 The wreath product 

)()( 1211 am CwrSwrMwrM  can be generated using three 

permutations, the first is of order 132k, the second and the 
third are involutions, where k am=  be any integer with 
1 a k< < . 

 
Proof : Let σ = (1, 2, …, 132k), τ =(k, 9k)(2k, 6k)(4k, 

5k)(7k, 8k)(12k,  20k, 23k, 31k)(13k, 17k)(15k, 16k)(18k, 
19k)(24k, 28k)(26k, 27k)(29k, 30k)(34k, 42k,  56k, 64k)(35k, 
39k)(37k, 38k)(40k, 41k)(45k, 53k)(46k, 50k)(48k, 49k)(51k, 
52k)(57k, 61k)(59k, 60k)(62k, 63k)(67k, 75k)(68k, 72k)(70k, 
71k) and μ  = (k, a)(2k, k+a)(3k, 2k+a) … (132k, 131k+a). 
Since by Theorem 3.2, >≅< τσ , kCwrwrMM )( 1211  and 

(1, …, k)(k+1, …, 2k) … (131k+1, … ,132k)∈ 
kCwrwrMM )( 1211  then 

  〈(1, …, k)(k+1, …, 2k) …(131k+1, …, 
132k, μ 〉 ≅ ( wr )m aS C . 

Hence ,  ,  =G σ τ μ )()( 1211 amwrCSwrwrMM≅ .◊ 

 
THEOREM 3.6 1132 +kS and 1132 +kA  can be generated 

using the wreath product kCwrwrMM )( 1211  and a 

transposition in 1132 +kS  for all integers 1k > and an element 

of order 3  in 1132 +kA  for all odd integers 1k > .  
  
Proof:  Let σ = ( 1, 2, …, 132k), τ =(k, 9k)(2k, 6k)(4k, 

5k)(7k, 8k)(12k,  20k, 23k, 31k)(13k, 17k)(15k, 16k)(18k, 
19k)(24k, 28k)(26k, 27k)(29k, 30k)(34k, 42k,  56k, 64k)(35k, 
39k)(37k, 38k)(40k, 41k)(45k, 53k)(46k, 50k)(48k, 49k)(51k, 
52k)(57k, 61k)(59k, 60k)(62k, 63k)(67k, 75k)(68k, 72k)(70k, 
71k), μ =(132k+1,1) and ′μ =(1,k, 132k+1) be four 
permutations, of order 132k, 2, 2 and 3 respectively. Let 

,  =H σ τ . By  theorem 3.2  ≅H kCwrMwrM )( 1211
.   

Case 1:  Let ,  ,  =G σ τ μ . Let α =σμ  , then 
)1132,132,...,2,1( += kkα  which is a cycle of 

order 1132 +k .  
By theorem 2.4 >≅>≅<′< μαμτσ ,,,G  1132 +kS . 

Case 2: Let ,  , ′=G σ τ μ   

By theorem 2.5 >≅′< μσ , 1132 +KA . Since τ  is an even 

permutation, then ≅G 1132 +KA . 
 
THEOREM 3.7 1132 +kS and 1132 +kA  can be generated 

using the wreath product 122 )11( MwrL and an element of 

order 1k +  in 1132 +kS and 1132 +kA  for all integers 1k ≥ . 

Proof: Let G= ,  ,σ τ μ , where, σ = (1, 2, 3, …, 

132)(132(k-(k-1))+1, …, 132(k-(k-1))+132) … (132(k-1)+1, 
…, 132(k-1)+132), τ =(1, 9)(2, 6)(4, 5)(7, 8)(12, 20,  23, 
31)(13, 17)(15, 16)(18, 19)(24, 28)(26, 27)(29, 30)(34, 42, 56, 
64)(35, 39)(37, 38)(40, 41)(45, 53)(46, 50)(48, 49)(51, 
52)(57, 61)(59, 60)(62, 63)(67, 75)(68, 72)(70, 71)(73, 74) … 
(132(k-1)+1, 132(k-1)+9) … (132(k-1)+73, 132(k-1)+74), and 
μ =(132, 154, …,132k, 132k+1), where  k-i >0, be three 
permutations of order 132, 4 and k+1 respectively. Let  

,  =H σ τ . Define the mapping θ  as follows;   

θ (12(k- i)+j) = j  ∀ 1 i k≤ ≤ , ∀  121 ≤≤ j  
Hence >≅=< τσ ,H 1211 MwrM . Let =α μσ  it is easy to 

show that )1132,...,3,2,1( += kα , which is a cycle of 

order 1132 +k .Let
)1132,1)1(132,...,133,1( ++−==′ kkσμμ  and 

[ ],  ′= =β μ μ )1132,132,1( +k . 

Since )1132,132,1(.. +kfch , then by theorem 2.3 

, ,=G σ τ μ ,≅ α β 1132 +kS  or 1132 +KA  depending on 

whether k is an odd or an even integer respectively. ◊  
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