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Analytical Model Based Evaluation of Human
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Abstract—Cognitive models allow predicting some aspects of util-
ity and usability of human machine interfaces (HMI), and simulating
the interaction with these interfaces. The action of predicting is based
on a task analysis, which investigates what a user is required to do
in terms of actions and cognitive processes to achieve a task. Task
analysis facilitates the understanding of the system’s functionalities.
Cognitive models are part of the analytical approaches, that do not
associate the users during the development process of the interface.
This article presents a study about the evaluation of a human
machine interaction with a contextual assistant’s interface using ACT-
R and GOMS cognitive models. The present work shows how these
techniques may be applied in the evaluation of HMI, design and
research by emphasizing firstly the task analysis and secondly the
time execution of the task. In order to validate and support our
results, an experimental study of user performance is conducted at
the DOMUS laboratory, during the interaction with the contextual
assistant’s interface. The results of our models show that the GOMS
and ACT-R models give good and excellent predictions respectively
of users performance at the task level, as well as the object level.
Therefore, the simulated results are very close to the results obtained
in the experimental study.

Keywords—HMI, interface evaluation, Analytical evaluation, cog-
nitive modeling, user modeling, user performance.

I. INTRODUCTION

THE evaluation of human machine interfaces is becoming
increasingly important. While their development presents

some challenges, the evaluation of interfaces needs rigorous
methods to ensure that they fulfill the initial specifications as
well as the quality of accessibility and the usability of these
interfaces [1], [2].
Two main approaches are currently used for the evaluation
of HMI. The first one is empirical approaches, which are es-
sentially based on performances or opinions of users gathered
in laboratories or other experimental situations. The second
one is analytical approaches, which are not based directly on
the user performance, but on the interfaces’ examination using
well defined structures and rigorous analytical techniques [3].
Analytical approaches allow to predict mainly user perfor-
mance, time execution of tasks, performance design and the
explanation of an existing interface’s performance [4]. Since
these approaches can predict time execution of tasks, this latter
should be accurately measured and evaluated. This can be done
by adding each time the user interacts physically with the
interface, either by the stroking on a keyboard, pointing with
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the mouse on the screen, or even by pointing with a human
finger on a touch screen.
Paul M Fitts has defined the law of physical components
of the interaction with the interface by making the analogy
between the interface and the target to reach [5]. However,
reaching physically a component of the interface supposes
that, a cognitive process was engaged before choosing the
component to interact with. Therefore, the interaction process
with the interface implies three human components. The first
component is perceptual, which concerns more specifically the
visual and aural perceptions in HMI. The second component
is cognitive, implying the human to reason and retrieve in
his memory the application of rules and the remembrance of
objects in order to satisfy specific goals [6]. The third and the
last component is motor, where the user reaches and interacts
with the specific interface component.
The most important challenge of analytical methods is their
capability to define and simulate the three components elicited
in the HMI, in order to predict the users behavior.
The action of prediction can be performed using predictive
models, which are an integral part of analytical approaches.
The GOMS is a predictive model, which estimates the time
a user interacts with the interface, taking in account the time
requested for the cognitive process to select the appropriate
interaction [7]. ACT-R, a cognitive architecture, predicts the
time needed to perceive stimulus, either aural or visual, to
retrieve knowledge in memory and to execute the motor
actions [6]. The two methods give opportunity to explain the
way users accomplish goals.
In this study, we aim to evaluate the interaction with the
interface of a contextual assistant application, developed to
help persons with cognitive disabilities perform autonomously
their daily living tasks. This application assists people while
preparing meals in the kitchen by using cognitive assistance
[8]. Due to the related population and the kind of errors they
commit, we need to take in account the cognitive part involved
in the interaction with the HMI. Then we use a powerful
analytical methods based specifically on cognitive models to
evaluate the contextual assistant’s interface, emphasizing the
cognitive analysis of the tasks in one side, and the time
execution of these tasks on the other side.
Our analytical evaluation is based on two methods. The first
method simulates the task thanks to the cognitive architecture
ACT-R [6] in which the interaction is decomposed in rules
simulating the behavior of a human interacting with contextual
assistant’s interface. The second method is the GOMS model
(Goals, Operators, Methods and Selection rules), which is
a formalized representation that can be used to predict task
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performance [9]. The GOMS model is a way in which users
achieve goals by solving subgoals in a divide-and-conquer
fashion [10].
In order to create an effective evaluation, an empirical study is
conducted at the DOMUS laboratory over ten healthy persons.
The results of our models are compared with those obtained
in the experimental study.
After introducing a theoretical background about the concept
of evaluation (section II), we present an overview of the
analytical methods chosen to evaluate the contextual assistant’s
interface: the cognitive architecture ACT-R and the GOMS
model (section III). The interface to be evaluated is presented
in (section IV) and the experimental study is then introduced
in (section V). The models developed are then presented in
(section VI) and the results of the simulation are compared to
the results obtained in the experimental study (section VII).

II. THEORETICAL BACKGROUND

The evaluation of systems focuses on two main aspects : the
utility and the usability. The utility is defined as the question of
whether the functionality of the system can do what is needed
[11], and the usability is defined as the easiness of learning
and using the system [12]. The evaluation of HMI ensures that
the applications fulfill the users needs and requirements, and
ensures that the interaction is motivate and enjoyable. Due to
the usability problems detected during the evaluation process,
more efficiency, adaptability and accessibility are expected in
the interface [13], [14].
According to J. Preece and al, the evaluation can be defined as
“ the process of systematically collecting data that informs us
about what it is like for a particular user or group of users
to use a product for a particular task in a certain type of
environment” [12].
The evaluation is either empirical or analytical depending
on the used methods. While the empirical methods evaluate
the performance of an interface when users interact with it,
the analytical methods simulate a user behavior based on
theoretical knowledge.
The empirical methods are widely used in the literature to
evaluate interfaces in various situations, either for traditional
interaction with computers [15], [16], [17], mobile devices
[18], [19] or pervasive interfaces [20]. Caution is needed
for these methods to ensure that the subjects selected for
the experimentation are representatives of the final users.
During the test, the tasks to perform need also to be carefully
designed to evaluate the way the final users will interact
with the application. The evaluation of the interactions in real
settings with a numerous set of people constitutes the trends
of empirical evaluation. For example, the evaluation of cell
phone menu’s interaction requires fourteen experienced cell
phone users performing tasks [18].

Pervasive computing systems involve different systems that
make the process of evaluation difficult. The necessity to
evaluate interfaces in real settings leads to long experiments
when pervasive computing is evaluated at home, for instance
three month period test by a young couple living in a
smart apartment were needed to evaluate pervasive computing

system at home [19], [20]. Thus, the empirical evaluation
necessitates high costs and time consuming.
To mitigate these drawbacks, analytical evaluation allows to
simulate as much users as needed to perform various tasks on
different versions of the interface. The analytical evaluation
of HMI is based on theories and methods and the results
bring a clear understanding of the way the users interact with
the interface [21]. Analytical methods predict and identify
practical errors and usability problems [14]. The analytical
evaluation process should be conducted to evaluate the ap-
plications as well as the HMI. P Antunes and al propose to
evaluate the groupware design (collaborative tool), which is
a multi-user context using an analytical method derived from
the GOMS model [22]. The tasks, users and the environment
are then modeled. Therefore, different situations are simulated
varying upon the different versions of the interface, the tasks to
perform and the abilities of the user. According to St. Amant
and al, the analytical evaluation of the smart phone menu’s
interaction increases the optimum version of menu on small
screens [18]. The cognition evaluation should also demonstrate
how the time is shared between the three components in-
volved during the interaction [23]. Through ACT-R model, D.
Salvucci demonstrates the impact of phone call during driving
[24].

III. ANALYTICAL METHODS TO EVALUATE THE
CONTEXTUAL ASSISTANT’S INTERFACE

The contextual assistant application aims to help people to
complete daily living’s activities. It is dedicated for people
with cognitive deficits to foster autonomy, such as people
with mental retardation. These users fail due to difficulties in
planing, memory and attention. The interface must be specially
designed for this population. However, the involvement of this
kind of population during the evaluation process must remain
limited. To do so, the researchers develop analytical methods
to avoid numerous empirical evaluation problems as mentioned
previously.
Due to the related population, the analytical approaches should
emphasize the cognitive and perceptual processes required
while using the contextual assistant. Therefore, we choose
analytical methods based on cognitive theories, which are
GOMS and ACT-R. Those methods are derived respectively
from the human model processor theory and from the unified
theories inspired by the work of Allen Newell [25], [26]. The
objective of the study is to validate the cognitive simulation
using these two methods and to analyze how they provide
theoretical explanations upon the errors committed by the
users. The two next sections present the analytical methods
used in the simulation.

A. Cognitive Architecture ACT-R

The cognitive architecture ACT-R is built to simulate and
understand human cognition [6], [27]. It consists of a set
of modules such as the visual, aural, motor, intentional and
declarative module that are integrated through a central pro-
duction system. ACT-R is an hybrid architecture that combines
two subsystems: symbolic system including semantic and
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procedural knowledge, and subsymbolic system evaluating
knowledge activations.
Each knowledge in the ACT-R’s declarative memory is called
chunk, and is associated with a level of activation computed
by the subsymbolic system [26]. The activation level reflects
the degree of availability of the chunk at any particular time.
The subsymbolic system assigns also utility values to rules
(procedural knowledge) to determine the predominant knowl-
edge available at a specific time. The predominant knowledge
is defined as the rule with the highest utility.
In ACT-R, the perceptual and motor modules are used to
simulate interfaces between the cognitive modules and the
real world. The perceptual modules allow the model to attend
to visual and aural stimuli, while the motor modules are
responsible for preparing and executing basic motor actions
such as key presses and mouse movements [28], [29].
The visual module is decomposed in two subsystems, the
positional system (where) and the identification system (what),
that work together in order to send the visual stimulus to the
visual buffer. The positional system is used to find objects.
When a new object is detected, the chunk that represents the
location of that object is placed in the visual-location buffer
according to some constraints provided by the production
rule. The identification system is used to attend to locations,
which have been found by the positional system. The chunk
represents a visual location that will request the identification
system to shift visual attention to that location. The result of
an attention operation is a chunk, which will be placed in the
visual buffer [28], [29].
The motor module contains only one buffer through which it
accepts requests. Two actions are available in ACT-R, to click
with the mouse or press a key on a virtual keyboard.

B. GOMS model

GOMS is an acronym for Goals, Operators, Methods and
Selection rules. It is a formalized method used to predict task
performance [7], [9], [10]. A GOMS description consists of
these 4 elements:

1) Goals: The user’s goals describe what the user wants to
achieve.

2) Operators: The basic actions that the user must perform
in a lowest level of analysis in order to use the system.

3) Methods: Methods are sequences of steps consisting of
operators and subgoal invocations that the user performs in
order to accomplish a goal.

4) Selection rules: Selection rules choose the appropriate
method depending on the context when choice of methods
arises.
Each task is decomposed hierarchically in goals and subgoals
according to the divide and conquer technique. The subgoals
are also decomposed down until reaching the basic operations
description. The total execution time is then estimated by
summing the times of basic operations.

IV. CONTEXTUAL ASSISTANT

After having presented the tow analytical methods selected
to conduct our evaluation, we present now the application to

be evaluated.
The Contextual assistant is an application developed to assist
persons with cognitive disabilities [30], [31]. The aim is to
foster autonomy in daily living tasks, and particularly during
complex cooking tasks such as preparing spaghetti [8]. The
cooking task is decomposed of steps that are displayed on
a touch screen. The two first steps consist of gathering the
utensils and ingredients necessary to the recipe (Fig. 1). The
other steps explicit the recipe using photo and video on the
screen and also explicit the information dispatched all around
the kitchen. The contextual assistant is specifically designed
to help people remembering the places where the objects
are stored. To do so, the contextual assistant contains an
interface called the object locator that displays the objects
to search. When an object is selected on the main interface,
the contextual assistant looks for the location of that object in
the environment using techniques of pervasive computing, and
indicates the object location by highlighting the appropriate
locker containing that object. In this study we simulate the first
two steps of the spaghetti recipe. They consist of first, knowing
the list of objects to gather, either utensils or ingredients, and
second to use the object locator in order to locate each object
in the environment.

Fig. 1. The contextual assistant’s interface representing the gathering
ingredients task

The contextual assistant’s interface is displayed on a 1725L
17” LCD Touchscreen, with 13.3” (338 mm) horizontal and
10.6” (270 mm) vertical useful screen area. It is configured
to 1024 x 768 optimal native resolution running Macintosh.
The screen is fixed under a closet nearby the oven in order
to be easily accessible and also protected against the cooking
splashes.

V. EXPERIMENTAL STUDY

In this section, we describe the conducted experiment at
the DOMUS laboratory in terms of users, apparatus and
applications used to perform this study.
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A. Apparatus and Application

The experiment consists on selecting items in the contextual
assistant’s interface. The items correspond to the list of utensils
and ingredients needed to realize the cooking task. Each item
is displayed with a large button in the contextual assistant’s
interface (Fig. 1). The experiment is conducted according to
three main criteria:

1) The time to select items is measured accurately.
2) The order in which the objects are displayed does not

affect the speed of selection.
3) The experiment is uniform for all subjects.

To ensure the first criterion, we decide to isolate the time of
object recognition and the time of selection in the contextual
assistant’s interface. Therefore, we measure the time needed
to decide which object to get out and we measure the time to
push on that object in the interface.
The first action corresponding on deciding which object users
want to get out is presented experimentally using a PDA
(Personal Digital Assistant). The name of the object to get
out is displayed on the PDA in order to highlight the phase
of objects recognition involved in the cognitive processes.
To avoid automatic selection on the contextual assistant’s
interface, the names of objects displayed on the PDA are
chosen randomly.
Knowing the object name, the subject executes the second
phase which consists of pushing the correspondent button on
the contextual assistant’s interface. For each object needed in
the experiment, the two phases’ times are recorded in a log
file and recovered at the end of experiments.

B. Subjects

Ten students of Sherbrooke’s University participate to the
study. All subjects are male and their ages range from 27 to
32 years. The subjects have good vision with no physical im-
pairments being reported. All subjects have a good knowledge
in computer science, but they have no prior knowledge in the
application and the cognitive assistance field.

C. Method

The PDA is placed at a distance of 15 cm from the touch
screen, subjects remain standing at a distance of approximately
30 cm from the touchscreen during the entire test as shown in
Fig. 2.

The subjects familiarize themselves with the interface dur-
ing a practical stage. When the test begins, the subjects look
first on the PDA to know the name of the object to get out
and second, push the corresponding button in the contextual
assistant’s interface using the index finger. To know the next
object to reach, the subjects click on the PDA to display its
name.
The experiment continues until the last object of the gathering
objects’ task is reached. The objects displayed on the PDA are
presented to subjects under a random order. This emphasizes
the recognition of object’s phase in the cognitive process.
Each subject accomplishes 5 trials, where a trial is composed
of two tasks, which are gathering utensils and gathering

Fig. 2. The human machine interaction during the experimental study

ingredients. Each trial needs 25 actions “pressing on the PDA”
and 25 actions “pushing button in the contextual assistant’s
interface”. Altogether 2500 (10 subjects x 5 trials x (25 actions
x 2 interfaces ) = 2500) actions are observed during the
experiment.

In our study, the action of getting out the objects from their
locations in the environment is not modeled.

Table I shows the mean duration with the standard deviation
in selecting each object in the two tasks, over all subjects in
our study.

TABLE I
USER PERFORMANCE DATA ACROSS OBJECTS WITH MEAN AND

STANDARD DEVIATION

Objects Duration Standard Deviation
(s) (S)

LOOK-FOR-OBJECT (1) 5.299 1,052
CAN-OPENER 2.291 0,717
COLANDER 2.966 0,786
MEASURING-SPOON 2.167 0,605
LADLE 2.847 0,829
SMALL-SAUCEPAN 1.980 0,371
WOODEN-SPOON 2.590 0,536
KNIFE 2.328 0,430
BIG-SAUCEPAN 1.779 0,308
CUTTING-BOARD 2.000 0,309
HELP-ME-TO-DO-THE-TASK (1) 2.039 0,386
NEXT 2.142 0,540
LOOK-FOR-OBJECT (2) 1.955 0,265
PEPPER 2.448 0,825
SPAGHETTI 1.939 0,552
TOMATOES-BOX 1.794 0,377
GROUND-BEEF 2.491 0,591
ONION 2.021 0,484
TOMATO-SOUP 1.970 0,422
SALT-AND-PEPPER 2.490 0,481
OIL 1.965 0,348
MUSHROOMS 1.809 0,369
SUGAR 1.774 0,341
ITALIAN-SPICE 1.736 0,436
HELP-ME-TO-DO-THE-TASK (2) 2.432 0,614
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VI. MODELING THE INTERACTION WITH THE
CONTEXTUAL ASSISTANT

In this section, we present the modeling process of the
tasks evaluated in our study, which are gathering utensils and
gathering ingredients. After analyzing the tasks to modelize,
we present first the model with ACT-R and second the model
with GOMS.

A. Task analysis: gathering utensils and ingredients

The two first steps of the recipe gathering utensils and
ingredients require three subtasks (Fig. 3). The first subtask
consists of activating the object locator in order to locate
each needed object for the recipe. This is done by pushing
the button “LOOK-FOR-OBJECT (2)”, which is displayed in
the main contextual assistant’s interface (Fig. 1). The second
subtask consists of locating each object, either utensils or
ingredients, needed in the current step by pushing the button
corresponding to the object in the object locator. The third
task consists of coming back to the main contextual assistant’s
interface in order to know the next step of the recipe. The tree
decomposition of the gathering ingredients’ task is presented
in Fig. 3. The nodes in capital indicate the action to click on
the named button, while the other nodes represent the tasks to
be decomposed.

Fig. 3. Tree representation of the gathering ingredients task

B. Modeling The Interaction With The Contextual Assistant
using ACT-R

The model uses ACT-R to emphasize the cognitive pro-
cesses involved, when looking on an object and when choosing
the button to push. The model is subdivided in three phases,
the visual phase, the recognition phase and the motor phase.
The visual phase consists of two steps: localizing the object
to perceive and identifying it. We consider that all buttons
displayed on the screen are objects, either the buttons used
to locate a utensil or ingredient, or the buttons to navigate

in the interface. The first object is the button “LOOK-FOR-
OBJECT (2)” as described in Fig. 3. Then, all the utensils
(or ingredients) needed for the recipe are presented in the
visual interface of ACT-R. Finally, to complete the current
step of the recipe, the button “HELP-ME-TO-DO-THE-TASK
(2)” is presented in order to come back to the main contextual
assistant’s interface and pursue the next step of the recipe.
Each object of the interface is displayed at defined coordinates
(x, y) on the screen. These coordinates specify the made
request to the visual-location buffer of ACT-R, which creates
a chunk representing the location of the specified object.
When the location’ step is over, the identification system
identifies the name of the object and creates a chunk. This
chunk is placed in the visual buffer. The steps of location
and identification last 185 (ms) [28], [29]. The objects are
presented to the visual module of ACT-R by the mean of a
list of all the objects (buttons of the interface) to be pushed
on.
The recognition’s phase begins when the chunk of the object
is stored in the visual buffer. This phase implies to recover
that specific chunk from the declarative memory. The result
of this phase is a chunk that represents the object with some
characteristics as color, localization on the screen, name, and
kind of object. The motor’s phase consists of activating the
motor actions through a request to the motor buffer in order
to click on the object.
The three phases are applied for each object displayed in the
interface for the two steps of the recipe. The gathering utensils
and ingredients model finishes when the last object of the
gathering ingredients’ task is reached.

In our ACT-R model, the contextual assistant’s interface
is simulated using a virtual display based on a vertical list
in the Lisp environment. The virtual display maintains a
representation of each object used in the interface at a given
time by displaying its name surrounded by a red circle, which
reflects the shift attention to that object as shown in Fig. 4.

Fig. 4. Shift attention representation in the ACT-R model

The ACT-R model is developed using the ACT-R 6 envi-
ronment. All memory chunks get the same value of activation
and all requests to the retrieval buffer are correctly satisfied
without errors. These characteristics lead to a deterministic
model where no error could happen.
Fig. 5 shows in a very low detailed form an example of the
execution trace of the ACT-R model. The visual phase is
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principally based on the shift attention and the visual encoding
actions, which are presented in the section I of Fig. 5 followed
by the recognition phase in section II of Fig. 5. Finally, the
motor phase is presented in section III of Fig. 5. The visual-
location request takes place at time 0.050 (seconds) and the
request to move-attention is made at time 0.100 (seconds).
The encoding still needs 0.085 (seconds) to be completed and
stores the chunk into the visual buffer. During the recognition
phase, a retrieval request is made on the retrieval buffer in
order to recover the specified chunk from the declarative
memory. This phase will finish at time 0.397 (seconds). Finally
a request on the motor buffer starts at time 0.447 (seconds).
In the experimental study, users interact with the PDA and
the screen. Each device involves three cognitive processes
including the visual, cognitive and motor phase. Therefore, the
ACT-R model simulates the time twice during the interaction
with each object, on the PDA firstly and on the touch screen
secondly. The simulation time is computed as the summation
of the time estimated for each object to click on the PDA and
on the touch screen.

S e c t i o n 1 . V i s u a l Phase

0 .0 0 0 GOAL SET−BUFFER−CHUNK GOAL FIRST−GOAL REQUESTED NIL
0 . 0 0 0 PROCEDURAL CONFLICT−RESOLUTION
0 . 0 5 0 PROCEDURAL PRODUCTION−FIRED START−APPLICATION
THE SUBJECT STARTS TO LOOK FOR NEW OBJECT
0 .05 0 PROCEDURAL CLEAR−BUFFER IMAGINAL
0 . 050 PROCEDURAL CLEAR−BUFFER VISUAL−LOCATION
0 . 0 5 0 PROCEDURAL CLEAR−BUFFER GOAL
0 .0 5 0 VISION F i n d− l o c a t i o n
0 .0 5 0 VISION SET−BUFFER−CHUNK VISUAL−LOCATION LOC1
0 .0 5 0 GOAL SET−BUFFER−CHUNK GOAL GET−OBJECT0
0 . 0 5 0 PROCEDURAL CONFLICT−RESOLUTION
0 . 1 0 0 PROCEDURAL PRODUCTION−FIRED ATTEND−UTENSIL
SHIFT ATTENTION TO A SPECIFIED LOCATION ON THE SCREEN
0 . 1 0 0 PROCEDURAL CLEAR−BUFFER VISUAL−LOCATION
0 . 1 0 0 PROCEDURAL CLEAR−BUFFER VISUAL
0 . 1 0 0 PROCEDURAL CONFLICT−RESOLUTION
0 . 1 8 5 VISION Encoding−complete LOC1−0 NIL
0 . 1 8 5 VISION SET−BUFFER−CHUNK VISUAL TEXT1
0 . 1 8 5 PROCEDURAL CONFLICT−RESOLUTION

S e c t i o n 2 . R e c o g n i t i o n Phase

0 . 2 3 5 PROCEDURAL PRODUCTION−FIRED ENCODE−UTENSIL
ENCODING THE OBJECT AFTER VISUAL ATTENTION
0 . 2 3 5 PROCEDURAL CLEAR−BUFFER VISUAL
0 . 2 3 5 PROCEDURAL CLEAR−BUFFER IMAGINAL
0 . 2 3 5 IMAGINAL SET−BUFFER−CHUNK IMAGINAL OBJECT1
0 . 2 3 5 PROCEDURAL CONFLICT−RESOLUTION
0 . 2 8 5 PROCEDURAL PRODUCTION−FIRED FOUND−OBJECT
RETRIEVE THE CORRESPONDING CHUNK FROM THE DECLARATIVE MEMORY
0 . 2 8 5 PROCEDURAL CLEAR−BUFFER IMAGINAL
0 . 2 8 5 PROCEDURAL CLEAR−BUFFER RETRIEVAL
0 . 2 8 5 DECLARATIVE START−RETRIEVAL
0 . 2 85 PROCEDURAL CONFLICT−RESOLUTION
0 . 3 97 DECLARATIVE RETRIEVED−CHUNK OBJECT1−0
0 .39 7 DECLARATIVE SET−BUFFER−CHUNK RETRIEVAL OBJECT1−0
0 .3 9 7 PROCEDURAL CONFLICT−RESOLUTION

S e c t i o n 3 . Motor Phase

0 .4 4 7 PROCEDURAL PRODUCTION−FIRED MOTOR−ACTION
THE SUBJECT PUSHS THE CORRESPONDING ICON OF THE OBJECT
0 .4 4 7 PROCEDURAL CLEAR−BUFFER VISUAL
0 .44 7 PROCEDURAL CLEAR−BUFFER RETRIEVAL
0 .44 7 PROCEDURAL CLEAR−BUFFER MANUAL

Fig. 5. Example of execution trace of the ACT-R model

C. Modeling The Interaction With The Contextual Assistant
Using GOMS

The first two steps of the recipe, gathering utensils and
gathering ingredients have been described previously, which
can be interpreted in the GOMS language by a method that is
divided in three steps as shown in Fig. 6. Each step defines a
new goal to be reach.

Method fo r goa l : A r c h i p e l E v a l u a t i o n

S tep 1 . Accompl i sh goa l : S e l e c t U t e n s i l s .

S t ep 2 . Accompl i sh goa l : S e l e c t I n g r e d i e n t s .

S t ep 3 . R e t u r n w i t h g o a l a c c o m p l i s h e d .

Fig. 6. Main method of the GOMS model

For each step in our study, a method is defined according
to the concepts of GOMS methods in the definition of goals
and subgoals. The GOMS model is based on a hierarchical
representation of goals. In fact, by solving subgoals the
user achieves goals until reaching the basic operations called
“operators”, which can not be subdivided [10]. The methods
have a hierarchical structure. Therefore, a method may call
for subgoals to be accomplished [32]. Fig. 7 shows explicitly
the subgoal’s invocations in the hierarchy of the “Select
Ingredients” subgoal.

Method fo r goa l : S e l e c t I n g r e d i e n t s

S tep 1 . Accompl i sh goa l : S e l e c t NEXT.
S tep 2 . Accompl i sh goa l : S e l e c t LOOK−FOR−OBJECT( 2 ) .
S t ep 3 . Accompl i sh goa l : S e l e c t ONION .
S tep 4 . Accompl i sh goa l : S e l e c t PEPPER .
S tep 5 . Accompl i sh goa l : S e l e c t GROUND−BEEF.
S tep 6 . Accompl i sh goa l : S e l e c t MUSHROOMS.
S tep 7 . Accompl i sh goa l : S e l e c t TOMATO−SOUP.
S tep 8 . Accompl i sh goa l : S e l e c t ITALIAN−SPICE .
S tep 9 . Accompl i sh goa l : S e l e c t OIL .
S tep 1 0 . Accompl i sh goa l : S e l e c t SUGAR.
S tep 1 1 . Accompl i sh goa l : S e l e c t SALT−AND−PEPPER.
S tep 1 2 . Accompl i sh goa l : S e l e c t TOMATOES−BOX.
S tep 1 3 . Accompl i sh goa l : S e l e c t SPAGHETTI .
S t ep 1 4 . Accompl i sh goa l : S e l e c t HELP−ME−TO−DO−THE−TASK( 2 ) .
S t ep 1 5 . R e t u r n w i t h g o a l a c c o m p l i s h e d .

Fig. 7. GOMS Method for Select Ingredients task

The main method presented in Fig. 6 constitutes the root
of the tree hierarchy and all the other methods are generated
automatically using the divide-and-conquer technique [10]. In
our GOMS model, each object is defined as visual object.
The selected methods have the same form for all objects.
Fig. 8 explains the tree decomposition corresponding to the
main method of the GOMS model.

The duration of a step in the GOMS model can be defined as
the sum of the production cycle’s duration and the duration of
all actions included inside the step. Therefore, the production
cycle’s duration equals to 50 (ms) and for instance, the
performance of key presses is estimated to 280 (ms) [33],
[18].
Our GOMS model is executed using the GLEAN3 modeling
tool [33].
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Fig. 8. Tree decomposition of the main method in the GOMS model

VII. COMPARISON OF RESULTS

We describe the performance of our models at two levels:
the accuracy with which our models predict the overall dura-
tion of the tasks, and the accuracy to predict the duration to
push each object displayed in the interface.

A. Object level performance

Table II shows the comparison of the time needed by the
user, the ACT-R and GOMS model predictions. Values in
parentheses represent the smallest and greatest time needed
by the user to press each object. The objects “LOOK-FOR-
OBJECT (1)” and “LOOK-FOR-OBJECT (2)” are displayed
respectively on the gathering utensils and gathering ingredients
interfaces and the same thing is applied for the objects “HELP-
ME-TO-DO-THE-TASK (1)” and “HELP-ME-TO-DO-THE-
TASK (2)”. Fig. 9 and Fig. 10 show respectively the predicted
time of each object during the gathering utensils and gathering
ingredients tasks in a detailed graphical form. According to
Fig. 9 and Fig. 10, the results of both ACT-R and GOMS
models are very close and have approximately the same
predicted time values for several objects.

B. Task level performance

Table III shows the user performance data, the ACT-R and
GOMS model predictions in both tasks: gathering utensils and
gathering ingredients. Fig. 11 shows the same data in a detailed
graphical form.

Fig. 12 shows the progression in performing tasks over the
time in the experimental study, ACT-R and GOMS models.
Since the prediction’s procedure is applied for each object in
the interface, the two models follow a linear model. This is
supported by some scientific literature [18]. The predicted time
in both ACT-R and GOMS models is very close depending on
the time progression of tasks of user performance as shown
in Fig. 12.

TABLE II
COMPARISON OF USER DATA, ACT-R AND GOMS MODEL PREDICTIONS

BY OBJECT

Objects User ACT-R GOMS
Performance (s) (S) (S)

LOOK-FOR-OBJECT (1) 5.299 (3.838 7.052) 2.230 4.250
CAN-OPENER 2.291 (1.308 3.676) 2.165 2.550
COLANDER 2.966 (1.703 4.130) 2.250 2.550
MEASURING-SPOON 2.167 (1.206 3.262) 2.250 2.550
LADLE 2.847 (1.434 4.143) 2.165 2.550
SMALL-SAUCEPAN 1.980 (1.351 2.652) 2.080 2.550
WOODEN-SPOON 2.590 (1.561 3.622) 2.250 2.550
KNIFE 2.328 (1.676 2.947) 2.165 2.550
BIG-SAUCEPAN 1.779 (1.284 2.330) 2.165 2.550
CUTTING-BOARD 2.000 (1.600 2.451) 2.165 2.550
HELP-ME-TO-DO-THE-TASK (1) 2.039 (1.349 2.680) 2.165 2.550
NEXT 2.142 (1.289 3.082) 2.165 2.550
LOOK-FOR-OBJECT (2) 1.955 (1.384 2.362) 2.165 2.650
PEPPER 2.448 (1.159 3.847) 2.250 2.550
SPAGHETTI 1.939 (1.311 3.180) 2.165 2.550
TOMATOES-BOX 1.794 (1.265 2.382) 2.165 2.550
GROUND-BEEF 2.491 (1.634 3.643) 2.165 2.550
ONION 2.021 (1.391 2.906) 2.165 2.550
TOMATO-SOUP 1.970 (1.373 2.714) 2.165 2.550
SALT-AND-PEPPER 2.490 (1.546 3.227) 2.165 2.550
OIL 1.965 (1.389 2.544) 2.165 2.550
MUSHROOMS 1.809 (1.232 2.477) 2.250 2.550
SUGAR 1.774 (1.213 2.300) 2.250 2.550
ITALIAN-SPICE 1.736 (1.217 2.772) 2.250 2.550
HELP-ME-TO-DO-THE-TASK (2) 2.432 (1.265 3.654) 2.165 2.550

Fig. 9. User data, ACT-R and GOMS model predictions for the gathering
utensils task

VIII. GENERAL DISCUSSION

The ACT-R and GOMS models, which we developed have
proved robust and efficient. In fact, the results of both models
are very close to the user performance data obtained in the
experimental study. The GOMS and ACT-R models give good
to excellent predictions of time execution of tasks as well as
objects as shown respectively in Table II and Table III.

As shown in Table II, the object “LOOK-FOR-OBJECT
(1)” needs more time to be pushed using the GOMS model

TABLE III
COMPARISON OF USER DATA, ACT-R AND GOMS MODEL PREDICTIONS

BY TASK

Task User ACT-R GOMS
Performance (s) (s) (s)

Gathering utensils (11 objects) 28.290 24.050 29.750

Gathering ingredients (14 objects) 28.973 30.650 35.800
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Fig. 10. User data, ACT-R and GOMS model predictions for the gathering
ingredients task

Fig. 11. User data, ACT-R and GOMS model predictions by task

4.250 (seconds) than the ACT-R model 2.230 (seconds). This
significant difference can be interpreted by the fact that the
GOMS model includes mental operator at the beginning of
the gathering utensils task. This mental operator takes more
than one second to be accomplished. The same difference is
observed in the predicted time of the object “LOOK-FOR-
OBJECT (2)” with the GOMS model. This object necessitates
more time to be pushed 2.650 (seconds), which can be inter-
preted by the addition of a mental operator at the beginning
of the task gathering ingredients.

Fig. 12. Progression in accomplishing tasks over the time

Some differences in the predicted time of some objects
using the ACT-R model are observed in Table II. This is
due to several rules such as visual processing when a new
object is detected in the visual field, information retrieval and
motor actions. The visual part in the ACT-R model is explicitly
defined using requests to the visual buffers unlike the GOMS
model in which the visual part is implicitly defined. Both ACT-
R and GOMS models do not take into account the fact that the
objects are not displayed in the same location on the screen,
but subjects in the experimental study performed differently
depending on the exact position of the objects on the screen.
For instance, the object “PEPPER”, which is displayed at the
top of the screen as shown in Fig. 1, needs more time to be
selected 2.448 (seconds) than the object “TOMATOES-BOX”,
which is displayed in the center of the screen and needs 1.794
(seconds) to be selected.

In Table III, an important remark must be mentioned. The
time taken to accomplish the first task in the experimental
study, which equals to 28.290 (seconds) is very close to the
time taken to accomplish the second task, which equals to
28.973 (seconds). Although the number of objects needed for
the first task (11 objects) is lower than the one needed for the
second task (14 objects). Two interpretations are possible:

1) The first interpretation is that the user learns gradually
the position of objects in the interface and the navigation
in the interface. Due to the learning, the second task
will be performed faster than the first one and the last
experiments will be performed generally faster than the
first experiments.

2) The second interpretation is related to the nature of
objects displayed in the contextual assistant’s interface.
At each name given on the PDA corresponds an image
on the contextual assistant’s interface. Some objects of
the first task seem to be more difficult to identify such
as the one shown in Fig. 13. This should provoke delay
in the execution of the tasks.

Fig. 13. Example of an object not easily identifiable

Our results show that the evaluation of HMI designed for
persons with cognitive disabilities at a detailed low level
is possible using cognitive modeling techniques, particularly
ACT-R and GOMS models.

IX. CONCLUSION

This study empirically demonstrated that cognitive models
are a powerful tool for evaluating interfaces and predicting
user’s performance. The main goal of our study is to build
and validate models for the evaluation of the contextual
assistant’s interface by simulating the HMI focusing on the
time execution of tasks. We used two efficient and powerful
cognitive models to evaluate the specified interface. The first
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model is based on the cognitive architecture ACT-R and the
second one is based on the GOMS model. Table III shows that
both models ACT-R and GOMS give good approximations of
user performance at the task level. The results of our models
are considered suitable and correct comparing them to the
user performance data obtained in the experimental study.
The results show that the GOMS model can predict user’s
performance at good level and the ACT-R model can predict
user’s performance at more detailed level and performs almost
as well. Our models are powerful and realistic as demonstrated
with the comparison of the time taken by subjects performing
the same tasks.
According to these results, the two models could be used to
improve the design of the contextual assistant’s interface and
to optimize it.
During the conception of the GOMS and ACT-R models,
we observed that the GOMS model gives more flexibility
in modeling than the ACT-R model, which constitutes the
complicated part in our study. However, the ACT-R model
proposes a more accurate explanation about the cognitive
processes involved during the interaction with the contextual
assistant’s interface, and hence, the possibility of introducing
cognitive errors.
Our study makes two main contributions, the first contribution
is to design an analytical evaluation of HMI designed for
cognitively impaired people. It constitutes a new study in that
field. The second contribution is the use of cognitive models
to evaluate these interfaces emphasizing on the cognitive
processes involved during the human machine interaction.

X. FUTURE IMPROVEMENTS

Some improvements should be brought to our models.
First, our models are deterministic and do not make errors.
They should be extended to allow errors in the pointing
actions such as pushing an object several times before or after
looking for the location of that object in the environment or
pushing an object instead of another one. These errors are
essentially related to memory problems that may occur in the
task modeling and during the interaction with the contextual
assistant’s interface [20], [34], [35].
Second, since the contextual assistant is designed to assist
cognitively impaired people in smart homes, it would be
interesting to do some experiments with this population. The
comparison between the results of a non deterministic model
and the experiments’ results allows us to study the behavior of
our models in real situations and to evaluate their performance
and effectiveness.
Finally, the action of searching an object is summarized into
the human machine interaction with the touch screen. The
contextual assistant offers an interaction with the environment
to help people recovering utensils and ingredients dispatched
in the kitchen. It would be interesting in the future to model
this part and simulate the movement of users picking up the
objects in the kitchen.

REFERENCES

[1] J. Nielsen and V. L. Phillips, “Estimating the relative usability of
two interfaces: heuristic, formal, and empirical methods compared,”

Proceedings of the INTERACT ’93 and CHI ’93 conference on Human
factors in computing systems, pp. 214–221, 1993.

[2] B. D. Eugenio, S. Haller, and M. Glass, “Development and evaluation
of nl interfaces in a small shop,” AAAI Spring Symposium on Natural
Language Generation in Spoken and Written Dialogue, pp. 1–8, 2003.

[3] B. Yen, P. Hu, and M. Wang, “Towards effective web site designs: A
framework for modeling, design evaluation and enhancement,” Proceed-
ings of IEEE International Conference on e-Technology, e-Commerce,
and e-Service (EEE05), pp. 1–6, 2005.

[4] L. M. Leventhal and J. A. Barnes, Usability Assessment, pearson prentice
hall ed., ser. Usability Engineering: Process, Products, and Examples,
2007, ch. 11, pp. 206–220.

[5] P. M. Fitts, “The information capacity of the human motor system
in controlling the amplitude of movement,” Journal of Experimental
Psychology, vol. 47, NO. 6, pp. 381–391, 1954.

[6] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and
Y. Qin, “An integrated theory of the mind,” Psychological Review, vol.
111, 136-1060, 2004.

[7] B. E. John and D. E. Kieras, “Using goms for user interface design and
evaluation: Which technique?” ACM Transactions on Computer-Human
Interaction, vol. 3, pp. 287–319, 1996.

[8] H. Pigot, D. Lussier-Desrochers, J. Bauchet, Y. Lachapelle, and
S. Giroux, “A smart home to assist recipes’ completion.” in Festival
of International Conferences on Caregiving, Disability, Aging and Tech-
nology (FICCDAT), 2nd International Conference on Technology and
Aging (ICTA), 2007.

[9] D. E. Kieras, “Goms models for task analysis,” Handbook of task
analysis for human-computer interaction, Lawrence Erlbaum Associates,
no. Diaper D, Stanton N, pp. 83–116, 2003.

[10] A. Dix, J. Finlay, G. D. Abowd, and R. Beale, Human-Computer
Interaction Third edition. England: Pearson, Prentice-Hall, Inc, 2004.

[11] J. Nielsen, Usability Engineering. Boston, MA: Academic Press, 1993.
[12] J. Preece, Y. Rogers, and H. Sharp, Introducing evaluation, ser. Inter-

action Design: Beyond Human-Computer Interaction. John Wiley and
Sons, 2002, ch. 10, pp. 317–337.

[13] J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,” in
Proceedings of the SIGCHI conference on Human factors in computing
systems. ACM New York, NY, USA, 1990, pp. 249–256.

[14] L.-O. Bligard and A.-L. Osvalder, An Analytical Approach for Predicting
and Identifying Use Error and Usability Problem, a. holzinger. ed., ser.
HCI and Usability for Medicine and Health Care, 2007, vol. 4799/2007,
ch. 38, pp. 427–440.

[15] C. Stephanidis, D. Akoumianakis, M. Sfyrakis, and A. Paramythis,
“Universal accessibility in hci: Process-oriented design guidelines and
tool requirements,” in Proceedings of the 4th ERCIM Workshop on User
Interfaces for All, 1998, pp. 1–15.

[16] A. C. Siochi and D. Hix, “A study of computer-supported user interface
evaluation using maximal repeating pattern analysis,” in Proceedings of
the SIGCHI conference on Human factors in computing systems, 1991,
pp. 301–305.

[17] J. H. Goldberg and X. P. Kotval, “Computer interface evaluation using
eye movements: methods and constructs,” International Journal of
Industrial Ergonomics, vol. 24, no. 6, pp. 631–645, 1999.

[18] R. S. Amant, T. E. Horton, and F. E. Ritter, “Model-based evaluation of
expert cell phone menu interaction,” ACM Transactions on Computer-
Human Interaction, vol. 14(1), pp. 1–24, 2007.

[19] T. koskela, K. V.-V. Mattila, and L. Lehti, “Home is where your phone
is: Usability evaluation of mobile phone ui for a smart home,” in
Proceedings of MobileHCI 2004, vol. 3160, 2004, pp. 74–85.

[20] B. E. John and D. D. Salvucci, “Multi-purpose prototypes for assess-
ing user interfaces in pervasive computing systems,” IEEE pervasive
computing, vol. 4, no4, pp. 27–34, 2005.

[21] B. Chikhaoui and H. Pigot, “Simulation of a human machine interaction:
Locate objects using a contextual assistant,” in procedeengs of the
1st International North American Simulation Technology Conference,
M. Beldjehem, Ed., 2008, pp. 75–80.

[22] P. Antunes, M. R. S. Borges, J. A. Pino, and L. Carrio, Analytic
Evaluation of Groupware Design, ser. Computer Supported Cooperative
Work in Design II, 2006, vol. 3865/2006, ch. 4, pp. 31–40.

[23] B. Chikhaoui and H. Pigot, “Evaluation of a contextual assistant inter-
face using cognitive models,” in procedeengs of the 5th International
Conference on Human-Computer Interaction, waset, Ed., vol. 34, 2008,
pp. 36–43.

[24] D. D. Salvucci and K. L. Macuga, “Predicting the effects of cellular-
phone dialing on driver performance,” Cognitive Systems Research,
vol. 3, no. 1, pp. 95–102, 2002.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4157

[25] B. E. John and D. E. Kieras, “The goms family of analysis techniques:
Tools for design and evaluation,” Carnegie Mellon University School of
Computer Science, Technical Report CMU-CS-94-181, 1994.

[26] A. Newell, Unified Theories of Cognition. Cambridge (Mass): Harvard
University Press, 1990.

[27] J. R. Anderson, N. A. Taatgen, and M. D. Byrne, “Learning to achieve
perfect time sharing: Architectural implications of hazeltine, teague ivry
(2002),” Journal of Experimental Psychology: Human Perception and
Performance, vol. 31, No. 4, pp. 749–761, 2005.

[28] M. D. Byrne, “Act-r/pm and menu selection: Applying a cognitive
architecture to hci,” International Journal of Human-Computer Studies,
vol. 55, pp. 41–84, 2001.

[29] D. Bothell, “Act-r 6.0 reference manual,” Working Draft, 2004.
[30] H. Pigot, J. Bauchet, and S. Giroux, Assistive devices for people

with cognitive impairments, ser. The Engineering Handbook on Smart
Technology for Aging, Disability and Independence. John Wiley and
Sons, 2007, ch. 12.

[31] D. Lussier-Desrochers, Y. Lachapelle, H. Pigot, and J. Bauchet, “Apart-
ments for people with intellectual disability: Promoting innovative
community living services,” in Proceedings of the 2nd International
Conference on Intellectual Disabilities/Mental Retardation., 2007.

[32] B. E. John and D. E. Kieras, “The goms family of user interface analysis
techniques: Comparison and contrast.” ACM Transactions on Computer-
Human Interaction, vol. 3, pp. 320–351, 1996.

[33] D. E. Kieras, S. D. Wood, K. Abotel, and A. Hornof, “Glean: A
computer-based tool for rapid goms model usability evaluation of user
interface designs,” Proceedings of the 8th ACM Symposium on User
Interface Software and Technology, no. ACM, pp. 91–100, 1996.

[34] A. Serna, H. Pigot, and V. Rialle, “Modeling the performances of persons
suffering alzheimers disease on an activity of the daily living,” in 18th
Congress of the International Association of Gerontology, 2005.

[35] A. Dion and H. Pigot, “Modeling cognitive errors in the realization of

an activity of the everyday life,” in Cognitio, 2007.

Belkacem Chikhaoui received the Eng. degree in
computer science from the University of Boumerdès.
Algeria, in 2004. He is currently pursuing the Master
degree in computer science at the University of
Sherbrooke. Sherbrooke, QC, Canada. His research
interests include smart homes, cognitive modeling
and evaluation of Human-Machine Interfaces.

Dr. Hélène Pigot is professor in computer science at
Sherbrooke University, Canada. She co-founded the
DOMUS laboratory. She is director of the Center
on smart environment of the Sherbrooke University.
Hélène Pigot received his PhD on speech recognition
in 1985, at P.M. Curie University, France. She was
then graduated in occupational therapy at Montreal
University, Canada. Professor at Montreal University
during five years, she worked on spatial orienta-
tion deficits in Alzheimer disease. Since 2000, she
dedicates her research on smart home, cognitive

modeling and cognitive assistance for people with cognitive deficits.


