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Abstract—This paper aims to develop a NOx emission model of 

an acid gas incinerator using Nelder-Mead least squares support 
vector regression (LS-SVR). Malaysia DOE is actively imposing the 
Clean Air Regulation to mandate the installation of analytical 
instrumentation known as Continuous Emission Monitoring System 
(CEMS) to report emission level online to DOE . As a hardware 
based analyzer, CEMS is expensive, maintenance intensive and often 
unreliable. Therefore, software predictive technique is often 
preferred and considered as a feasible alternative to replace the 
CEMS for regulatory compliance. The LS-SVR model is built based 
on the emissions from an acid gas incinerator that operates in a LNG 
Complex. Simulated Annealing (SA) is first used to determine the 
initial hyperparameters which are then further optimized based on the 
performance of the model using Nelder-Mead simplex algorithm. 
The LS-SVR model is shown to outperform a benchmark model 
based on backpropagation neural networks (BPNN) in both training 
and testing data.  
 

Keywords—artificial neural networks, industrial pollution, 
predictive algorithms, support vector machines 

I. INTRODUCTION 
OWER plants, chemical plants, government utilities and 
petroleum refineries typically produce more than the 

plant’s capacity in order to meet demands. Hence these 
industries must continuously monitor their exhaust stacks for 
primary pollutants such as nitrogen oxides, carbon monoxide, 
sulfur dioxide, and carbon dioxide under regulations 
promulgated under the New Source Performance Standards 
(U.S. Environmental Protection Agency (EPA) PA 40 CFR 
Part 60) or the Clean Air Act Amendments Title IV (40 CFR 
Part 75)[1] and Malaysian Environmental Quality Act, 
1978[2].CEMS utilize a sample probe, umbilical and sample 
conditioning system to extract a representative sample of the 
stack gas exhaust stream to provide a continuous flow for 
direct measurement of the pollutant concentration on 
individual analyzers[3]. A data acquisition system (DAS) is 
typically used to collect, calculate emission rates, alarm, and 
store historical data from these continuous emissions 
monitoring systems (CEMS)[4]. The promulgated regulations 
in U.S. EPA 40 CFR covering the monitoring of combustion 
units for primary and other pollutants allow for the use of  
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predictive emissions monitoring systems (PEMS) in lieu of 
CEMS. PEMS is sophisticated software based on a 
sensor/prediction system that is directly interfaced with the 
process control system and inputs from the combustion or 
pollution control process. The U.S. EPA have revealed the 
devastating effects of the continuous release of carbon 
dioxide, methane, nitrous dioxide and other greenhouse (heat-
trapping) gasses to the atmosphere[5]. Climate change 
induced by these gases can cause damage to human health, 
agriculture, natural ecosystems, coastal areas and other 
climate sensitive systems. Currently, emission monitoring is 
done via analytical instruments which are very expensive to 
install and maintain; the cost for an online NOx analytical and 
monitoring system is around $100,000 to $200,000and the 
cost for maintenance is approximately $15,000 per year[6].  

Several works have been done to develop predictive 
systems for industrial emissions. One of the earlier ideas was 
presented by G. Baines[7]; a consultant from Fisher-
Rosemount Solutions. The author proposed the idea of 
predicting the stack contaminants in real time by correlating 
emissions with key unit parameters like fuel type, air and fuel 
flow and combustion temperature. S.S.S Chakravarthy, A.K 
Vohra and B.S Gill [8] have developed a PEMS for industrial 
process heaters. The authors have used heuristic optimizer 
genetic algorithm (GA) to tune the NOx kinetic parameters. J. 
Deng and R. Stobart[9] incepted the idea of using a hybrid 
clustering technique that involves the modifications of Fuzzy 
C-means method and using neural networks to achieve the 
best performance of the fuzzy system; for a diesel engine 
emission model. L.Zheng, S. Yu, M. Yu [10] used generalized 
regression neural network (GRNN) to establish a non-linear 
model between the parameters of the boiler (of 300MW steam 
capacity)and the NOx emissions. Later, the same authors 
proposed the idea of replacing the existing generalized 
regression neural network PEMS with least square support 
vector regression (LS-SVR) model. The authors claim that this 
new algorithm yields better accuracy of a coal combustion 
unit[11].  The main objective of this paper is to develop NOx 
emission model of an acid gas incinerator based on least 
squares-support vector regression algorithm with Nelder-
Mead optimization of its hyperparameters. This paper is 
organized as follows: Section II presents a brief literature on 
artificial neural network and least-squares support vector 
regression. Section III describes the modeling background in 
terms of the parameters used, case study of acid gas 
incinerator and the dataset used. Section IV presents the 
results and analysis and Section V gives a brief conclusion.  
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II. LITERATURE REVIEW 

A. Artificial Neural Network (ANN) 
An ANN is represented as a non-linear interconnected 

layers of processing nodes which are normally referred to as 
neurons, a term borrowed from neurobiology [12] .The most 
common class of ANN is the multilayered feedforward 
network which primarily consist of input layer, one or more 
hidden layer and an output layer. The input layer holds the 
data and distributes them into the network via 
interconnections to neurons in the hidden layer(s) where they 
are processed by the activation function to obtain the output 
signal. This type of network is also known as multilayer 
perceptrons (MLP)[13]; a typical MLP network is shown in  
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Where A, is the element activation function and it is 
represented by (4):  
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The variable iw is the weight term and ix is the network input. 
The network uses these weights to identify the strength of the 
interconnections between neurons. These weights are adjusted 
throughout the learning process. For MLP network, learning 
algorithms based on the gradient or Jacobian of the network 
error with respect to the weights is preferred because of their 
superior performance. A common Jacobian-based algorithm is 
the backpropagation algorithm. The backpropagation neural 
network however has been widely used to develop soft 
sensors for prediction of NOx[14]. However, BPNN has some 
weaknesses, including the need for numerous controlling 
parameters, difficulty in obtaining a stable solution and the 
danger of overfitting. The solution shown by Zheng et al [10] 
points to the fact that BPNN is unreliable even if all of the 
network objects are pre-determined. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Typical Backpropagation Neural Network 

B. Least Squares Support Vector Regression (LS-SVR) 
Standard support vector machine formulation leads to a 

quadratic programming (QP) problem with linear constraints. 
The size of the matrix involved in the QP problem is directly 
proportional to the size of the training data[11]. Therefore to 
reduce the complexity of the optimization problem, Suykens 
et al[15] introduced a modified version of SVM called least 
squares – SVM. LS-SVM formulation results in a set of linear 
equations instead of a quadratic programming problem. LS-
SVM is used for both classification and regression problems. 
The formulation for LS-SVR starts by taking a training set and 
estimate using a non-linear function:  

bxwxf T += )()( φ where hnn RR →:(.)φ is a mapping 
function to a high dimensional and potentially infinite 
dimensional feature space; in this paper, there are 22 
dimensions in the low dimensional space and 484 dimensions 
in high dimension space. Next, the optimization is formulated 
in primal weight space; 
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The optimization formulation in (5) is ridge regression cost 
function formulated in feature space. Constructing the 
Lagrangian of the problem, the dual space problem is derived; 
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The conditions for optimality are given by[15]; 
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Upon elimination of the variables w and e and solving in α and 
b the following solution in dual space is obtained 
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where ],;...;[ 1 lyyy = ]1;,,,;1[1 =v and ];...;[ 1 lααα = . The 
“kernel trick”[16]is applied here as shown; 
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Hence the resulting LS-SVR model becomes; 
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In this paper, RBF kernel function is used; 
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where iα and b  are solutions to the linear system represented 

by (8). The LS-SVR formulation can be used to handle large 
datasets with no dimensionality problem. In (10), a kernel 
function is used to replace the high order mapping function. In 
this paper, the RBF kernel will be used exclusively for all 
computations involving kernel operations. In the case of RBF 
kernel, there are only two hyperparameters to be tuned, which 
is less than standard SVM. 

III. MODELING BACKGROUND 

A.  BPNN Model  
Two models will be developed in this paper using two 

distinctive algorithms. The first model is developed as a 
benchmark using BPNN.The optimal network parameters are 
chosen by varying the number of layers and number of hidden 
neurons per layer. The parameter that gives the best 
performance is chosen and shown below: 

• Number of layers = 2 
• No of neurons (hidden layer) = 20 
• Transfer functions (input layer) = tan-sigmoid 
• Transfer function (hidden layer) = linear 
• Training algorithm =Lavenberg-Marquat 

 
 

B.  Nelder-Mead LS-SVR 
It is understood that the hyperparameters involved for the 

standard SVM with RBF kernel areσ , C  and ε . On the other 
hand, LS-SVR algorithm with RBF kernel involves only two 
hyperparameters; γ and σ [15]. The common method to 
optimize these hyperparameters is using the “grid-search” 
method which is a global exhaustive search technique. Based 
on try and error formulation, the hyperparameters are changed 
exponentially to find the ones that give the best performance 
for the model [17].The grid-search is straightforward but it is 
naive, as there are other advanced methods which gives better 
performance results and saves computational cost. One such 
method is the Nelder-Mead simplex algorithm, which will be 
used in this paper. This algorithm is nicknamed the “amoeba” 
due to its biological-like search patterns. In 2-D, it consists of 
a search-triangle or “crawler” or “simplex” with three points 
that represent the highest (worst) point, next highest point and 
the lowest (best) point. Hence the intuition of this algorithm is 
to move away from high point towards the low point. The 
simplex moves in several transformations that are known as 
reflection, contraction, reflection and expansion and multiple 
contractions to find the optimal value for the minimization 
problem[18]. The initial values of the hyperparameters 
( γ andσ ) is found using SA. This technique is borrowed 

from metallurgy where it is a global optimizer for a large 
search space. SA is designed to find an optimized solution in a 
given time, rather than finding the best possible solution[19], 
this saves computation time and it is suitable for finding initial 
values for further optimizations. The performances of the 
models are gauged using standard performance functions in 
the form of correlation factor (R) and root means square error 
(RMSE); 
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where iX is the predicted value, iX̂ is the true value and n is 
the number of testing samples. 
 

C.  Case Study  
In this paper, the NOx emission from a tangentially fired 

acid gas incinerator is modeled. The incinerator train is part of 
an LNG complex. The plant is divided into four sections 
consisting of upstream facilities, gas treating, liquefaction and 
storage/terminal. The first part of the gas treating section deals 
with the acid gas in the feed. CO2 and H2S are removed to 
meet product specification. Amine-based solvent is used in the 
acid gas removal process. Solvent with absorbed acid gases 
are regenerated in regenerator column at high temperature and 
low pressure. The acid gases are then incinerated before being 
discharged safely to the environment.  In this LNG complex, 
acid gases are incinerated using two methods; one is using 
steam boilers and the other is using acid gas thermal 
incinerators [20]. The process flow scheme of the incinerator 
train is shown in Fig.2. The main constituents to the 
incinerator are acid gas, flash gas, fuel gas and combustion 
air. The flue gas that are released to the stack consist of NOx, 
SO2, SO3, CO, CO2and H2S.  

In this paper only NOx emission will be modeled based on 
plant input and output process variable data. The data is 
obtained from the LNG complex incinerator train DCS’ 
historical dataset taken from April 2010 to November 2010 
and contains the data from 29 input process variables and 7 
output process variables. The most relevant process variables 
are selected by reviewing the design and operational 
specifications in the incinerator material balance sheet. Initial 
correlation analysis was also performed to the dataset to 
determine the variables that have the strongest variance with 
each other. As a result, 22 input variables and one output 
variable (i.e. flue gas NOx content) are chosen with 1068 
number of samples, taken at 30 minutes apart for the whole 
month of October, 2010. Tables 1 and 2 outline the 
descriptions of the chosen input process variables the seven 
output variables respectively.  

(10) 

(11) 

(12) 

 (13) 
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Before data are used for modeling, it is first pre-processed 
to remove bad inputs, non-values and outliers. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2 PFS of incinerator train 

 
TABLE I 

SELECTED INPUT PROCESS VARIABLES 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

TABLE II 
OUTPUT PROCESS VARIABLES (ONLY NOX IS SELECTED) 

 
 
 
 
 
 

For both models, 70% of the data is reserved for training, 
10% for validation (i.e. crossvalidation for LS-SVR) and 20% 
for testing.  

IV. RESULTS AND ANALYSIS 
The individual model performance of BPNN and LS-SVR 

will be presented in this section. Tables 3 and 4 presents a 
comparison of the performance of the models in terms of 
correlation, root means squared error and accuracy between 
real and predicted values. The performance of both models in 
terms of computational time is also shown. Fig. 3, 4, 5 and 6 
show how each model is able to track the real value in both 

training and testing data. This will be followed by a brief 
analysis of the results obtained.  

 
TABLE III 

 PERFORMANCE OF BPNN MODEL 
 RMSE R Accuracy Time 

Training 
Data 0.4516 0.9470 95.63% 

21.0 sec Testing 
Data 0.4810 0.9448 95.03% 

 
 

TABLE IV 
PERFORMANCE OF LS-SVR MODEL 

 RMSE R Accuracy Time 
Training 
Data 0.2680 0.9820 97.60% 

65.1 sec Testing 
Data 0.4530 0.9516 95.58% 

 
 
 
 
 
 
 
 
 

Fig. 3 NOx training data for BPNN 

 
 
 
 
 
 
 
 

Fig. 4 NOx testing data for BPNN 

 

 
 
 
 
 
 
 

Fig 5 NOx training and cross validation data for LS-SVR 

 
 
 
 
 
 
 
 

Fig. 6 NOx testing data for LS-SVR 
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The performance of the LS-SVR model depends greatly on 
the values of the hyperparameters selected. The initial values 
for the hyperparameters are: γ = 34.84and σ = 11.89, and 
was computed using SA. These values were then used for 
further optimization using Nelder-Mead simplex algorithm.  

The objective function is to minimize model error (MSE) 
based on several constraints such as maximum number of 
optimization steps, maximum number of function evaluations, 
stopping criterion based on the relative change invalue of the 
function in each step and stopping criterion based on the 
change in theminimizer in each step. Table 5 shows the 
simplex computation for this model.  
 
The optimized values for the hyperparameters are: 

• γ = 32.96 

• σ = 11.43 
 

TABLE V  
HYPERPARAMETERS OPTIMIZATION STEPS 

 
 
 
 
 
 
 
 
 
 
 
 

The NOx emission as shown in Fig. 3, 4, 5 and 6 presents a 
highly non-linear distribution; hence it takes a model with the 
capabilities to map these nonlinearities precision and 
accuracy.  
 As shown in Tables III and IV, the performance of the LS-
SVR model is better in both training and testing data 
compared to the BPNN model. The graphs also show that the 
LS-SVR model is able to track and predict NOx emission with 
much better accuracy than BPNN model. This could be 
because LS-SVR is a much more ‘transparent’ algorithm 
where the resultant model has weights and biases that were 
optimized to suit the particular dataset. Another plausible 
explanation is that, with BPNN, the initial weights are chosen 
randomly and hence the performance varies significantly with 
the number of simulations as shown by Zheng et al [10]. In 
contrast, LS-SVR initial parameters are optimized via SA. The 
solutions provided by support vector machines are unique and 
global in a dual space problem; this is achieved by solving the 
Karush-Kuhn Tucker (KKT) system at its core.  
 SVM algorithms are a kernel based method; hence the 
complexity is in the order of )3( nO which means that the 
computational power and required running time is higher than 
neural network based methods. Moreover, the LS-SVR 
solution comes from solving the linear system in (8) by matrix 
inversion; this is a fairly tedious process to be solved 
numerically and results in a longer overall computation time 

as shown in Table 4. Hence, the usability of LS-SVR depends 
heavily upon the number of samples used and the processing 
power of the machine that it currently runs on. To overcome 
this, several fixes have been proposed such as using quadratic 
Renyi entropy to select the most significant support vectors 
[21], sequential learning LS-SVM [22] and using analytic 
quadratic programming and sparseness [23]. 

V. CONCLUSION 
In a nutshell, this paper has brought to focus the ability to 

model the NOx emission from an acid-gas incinerator using a 
Nelder-Mead LS-SVR algorithm. The modeling was done 
using a series of steps that includes optimizing initial 
hyperparameters and further optimization using the Nelder-
Mead simplex algorithm. As a result, the LS-SVR model 
performs significantly better for both training and testing data, 
in comparison with the benchmark BPNN model. 
Additionally, the ability to track and predict future values of 
NOx emission with remarkable accuracy has also been 
demonstrated by the LS-SVR model. The superiority of the 
LS-SVR model is mostly accounted to the ability to reach a 
global and unique solution for the minimization of a convex 
function. It must be mentioned that the proposed algorithm is 
robust in terms of the class of the problem that it can handle, 
be it classification or complex regression with multiple 
dimensions. However, one of the drawbacks of LS-SVR 
includes heavy computational dependencies when it comes to 
large datasets. Nevertheless this could be improved using the 
latest techniques available such as quadratic Renyi entropy 
and sequential learning LS-SVM. Overall, the primary 
objective of the paper has been achieved, and in the future a 
hybrid model that involves both neural network and support 
vector machines will be developed in order to further improve 
the predictive accuracy and computational efficiencies.  
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