
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

442

Abstract—In today’s new technology era, cluster has become a

necessity for the modern computing and data applications since many
applications take more time (even days or months) for computation.
Although after parallelization, computation speeds up, still time
required for much application can be more. Thus, reliability of the
cluster becomes very important issue and implementation of fault
tolerant mechanism becomes essential. The difficulty in designing a
fault tolerant cluster system increases with the difficulties of various
failures. The most imperative obsession is that the algorithm, which
avoids a simple failure in a system, must tolerate the more severe
failures. In this paper, we implemented the theory of watchdog timer
in a parallel environment, to take care of failures. Implementation of
simple algorithm in our project helps us to take care of different
types of failures; consequently, we found that the reliability of this
cluster improves.

Keywords—Cluster, Fault tolerant, Grid, Grid Computing
System, Meta-computing.

I. INTRODUCTION
N cluster environment during parallel application execution
if any of the node failed, the computation cannot be

completed because task allocated to that node remains
incomplete. This is mainly because the other nodes are not
aware of this failure and thus do not take care of such task. It
is necessary that a computation should be continued despite
the failure of individual node for reliable execution of parallel
programs. A technique is required for detecting and
responding to node failures by allocating job to the different
node so that any application should be executed properly.
Such technique is called fault tolerance technique [1],[2], and
[3], which many times results in lower performance because
of the overheads required for re-allocation of job. These
systems are subject to graceful degradation mode. However, it
is important to know the reliability of the system. A gracefully
degradable system is one in which the user does not see errors
except, perhaps, as a reduced level of system functionality.
Current practice in building reliable systems is not sufficient
to efficiently build graceful degradation [10] into any system.
In a system with an automatic reconfiguration mechanism,
graceful degradation becomes fairly easy to accomplish. After

Meenakshi B. Bheevgade is with the Visvesvaraya National Institute of

Technology, Nagpur, Maharashtra State - 440010, India (phone: 091-0712-
2801291, e-mail: mbbhivgade@vnit.ac.in).

Rajendra M. Patrikar, PhD, was with Visvesvaraya National Institute of
Technology and is now with CRL, Pune, Maharashtra State, India (e-mail:
rajendra@computer.org).

each error is detected, a new system reconfiguration is done to
obtain maximal functionality using remaining system
resources, resulting in a system that still functions, albeit with
lower overall utility. Thus, Graceful degradation may define
as a property that enables a system to continue operating
properly in the event of the failure of some of its nodes. If its
operating quality decreases at all, the decrease (D) is
proportional to the severity of the failure (SF) (i.e. D α SF).

Although fault tolerant clusters are being researched for
some time now, implementation of the fault tolerance
architecture is a challenge. There are various types of failures
which may occur in the cluster. Prediction of failure
mechanism [3],[4],and [5] is very difficult task and strategies
based on a particular failure mode may not help.

II. DIFFERENT TYPES OF FAILURES
There are Different types of failures that are encountered in

the system.
1) Hardware Failures – It need physical attention and

human intervention for replacing the unit / element or part of
the system.

2) Software Failures – Failures occur in operating system,
or in process or at the time of application computation.

The two basic definitions of a failure have been stated. The

first can be stated as the termination of the ability of the
system as whole to perform its required function. The second
one has stated that the termination of the ability of any
individual component or process to perform its required
function but not the termination of the ability of the system as
a whole to perform.

In order to complete the computation properly availability
of the system is also an important issue. A system fault can
be caused by internal or external factors. Examples of internal
factors could include specification and design errors,
manufacturing defects, component defects and component
wear out. Regardless of how well a system is designed, or
how reliable the components are, failure cannot be eliminated
completely. However, it is possible to minimize the impact on
a system.

An error is the occurrence of a system fault in the form of
an incorrect binary output. If an error prevents a system (or
process) from performing its intended functions, a failure has
taken place. If the incorrect data causes the system to crash or
reboot then the error becomes a failure.

Implementation of Watch Dog Timer for Fault
Tolerant Computing on Cluster Server

Meenakshi Bheevgade, and Rajendra M. Patrikar

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

443

The system outages are classified into two categories.

1) Unplanned System Outages (failures): Unplanned

outages are the result of uncontrollable random system
failures, which occurs within hardware component (or
process)..Unplanned system outages can be minimized
through cluster environment.

2) Planned system outages (maintenance)-Planned outages
should be scheduled to have a minimum availability impact on
a system. Planned outages are the result of maintenance events
revolving around repair, backup or upgrades system. Repairs
are intended to remove faulty components and restore a
system to a functional state.

III. GENERAL STRATEGIES FOR HANDLING FAULTS
In general, it is difficult for user to monitor a faulty node.

Typically, fault detection [4] can be done by some sort of
response and respond method. Assuming that the node has
been faulty and not responding, in such cases the software
testing has done to re-check that the node has been
responding. If the fault is transient then rechecks are to be
done and if repeated re-checks show the failure of the system
then the system is re-booted. If the fault persists after re-
booting of the system then the node implied to be faulty and
has to be removed from the list of available nodes. For this,
the two algorithms have been studied.

Fault Detection Algorithm

A fault detection algorithm has been conveniently classified
according to the time of the application with respect to normal
operation of the system.

• Initial testing is required prior to normal use and serves to
identify system elements containing imperfections, which
introduces during the programming application.

• Concurrent detection, takes place simultaneously with the
normal operation of the system

• Pre-emptive detection takes place after normal operation
has been temporarily interrupted.

• Redundancy testing serves to verify the various forms of
protective redundancy and takes place either concurrently or
at scheduled intervals.

Recovery Algorithm

When fault is detected, the recovery algorithm has invoked
to recover the system. We classified this recovery technique
into four classes:

• Recovery of original performance
• Recovery of degraded performance
• Execution of safe shutdown
• Recovery by fault masking

The fault tolerance design evaluation [6] and [7] has

performed by means of simulation, experiments or
combination of all these techniques. The reliability prediction
of the system has compared to that of the system without fault

tolerance. Physical parameters, quality of fault detection and
recovery [1],[2],[3],and [5] algorithms has used as parameters
in generating reliability predictions. When degradation of
performance takes place during recovery, reliability
predictions need to be generated for various levels of
performance. A different evaluation is needed when the
reliability includes a specification of a minimum number of
faults that are to be tolerated, regardless where in the system
occurs.

In addition to the above algorithm, we also studied the
theory of watchdog timer. The theory is as follows-

Watch Dog Timer

A watchdog timer[8],[9] is a computer hardware timing
device that triggers a system reset, if the main program does
not respond due to some fault condition such as a hang or
neglects to regularly service the watchdogtimer. The intention
is to bring the system back from the hung state into normal
operation. Watchdog timer may be more complex, attempting
to save debug information onto a persistent medium; i.e.
information useful for debugging the problem that caused the
fault. The watchdog timer does not report completion of its
information saving task within a certain amount of time, the
system will reset with or without the information saved. The
most common use of watchdog timer is in embedded systems,
where the specialized timer is often a built-in unit of a
microcontroller.

Watchdog timer may also trigger control systems to move
into a safety state, such as turning off motors, high-voltage
electrical outputs, and other potentially dangerous subsystems
until the fault is cleared.

The watchdog timer has been utilized for a fault tolerant
technique in many serial applications. Usual implementation
of this technique requires hardware implementation of
timer/counter that usually interrupts CPU for corrective
actions.

IV. IMPLEMENTATION OF THE CODE
We have implemented the fault tolerant technique (we

called this technique as watchdog timer algorithm) for a
cluster by writing routines on a master server. The method
implemented in our project includes re-checks to take care of
transient faults included in the initial allocation phase. The
cluster environment had booted by using only available nodes.
If the failure had detected while allocating the task, then task
had reallocated again. After allocation, the state of entire
parallel application had checked at specific intervals of time-
period as it had done by hardware watchdog timer. In this
phase, master server node monitored an output data of the
program at client node at specific time intervals. At the same
time, the data had stored on the reliable storage on the local
disk as well as on the master disk of the node. The storage had
done for all the nodes in the available list of the nodes. If any
of the node had not reported or not responding when a master
node send a message to the all cluster environment nodes,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

444

then that node had to be checked three times. In this phase, the
master server reallocates the task if failure had detected. This
was again to avoid the transient faults after certain interval of
time. Then the task had allocated once again after the
application had terminated. Here, the checkpoint has done
thrice because of the following reasons:

1. If at first call, the CPU utilization of client node had
100%, it will not be able to respond about its existence. In
second call, the client node may respond and update the status.

2. If the application crashed and it takes a lot of time for
computation and still not responding or not able to save the
data after specific interval of time, then the application gets
terminated and resumes the application once again from the
last saved point.

3. If link failure occurs due to network failure or due to
some other reason and the node link had resumed once again
then the client node, may respond to the query of the Master
node and thus resume the application computation. Therefore,
the next call may help the client to respond and update the
status.

After the allocation phase starts, the client nodes had

checked at regular intervals. If the allocation of job failed or
the computation of the application failed due to network
failure or node failure or some hardware component failure,
then the flag had set to 1, indicates that the node will not be
usable for the computation. Lastly, within stipulated time-
period, if any of the above options was not feasible and there
was no response from client node, the Master node will drop
the current node from the list, add a new node and resume the
job from the last best check-pointed state on this new node. It
was possible to calculate the checksum that indicates correct
behavior of a computation node. The watchdog timer
algorithm will periodically test the computation with that
checksum.

The algorithm has given in following pseudo code:
1. Boot the Cluster environment by using available nodes.
2. Execute the application in Cluster Environment.
3. Check at regular intervals of time.
4. Drop the node, if not responding.
5. Add a new node and allocate the job to the newly added

node.
6. Calculate the total time required to execute the program.
The server node collects the data, which it determine the

“state” of the client node when queried by the server.

V. RESULTS
Watch dog timer algorithm was implemented in a SMP

cluster based on the Linux. The LAM MPI system is
implemented. The Monte Carlo application has tested in a
parallel mode. The time required for the execution without
applying the watchdog timer algorithm and no failure occurs,
it takes about 768.10 seconds for execution. The watchdog
timer algorithm was implemented and no failure occurs, the
time taken by the application for computation is 793.94

seconds. If the two values had compared, then we had seen
that the time required was not so high. After the
implementation of watchdog timer algorithm and one failure
had injected into one of the node, the application had still
completed the computation but the time required was 940.175
seconds.

Th graph shown in Fig. 1 indicates the time required for
completing the computation when with and without
WatchDog Timer algorithm is implemented.

Fig. 1The graph between the computation and the faults encountered

when the fault tolerance mechanism is applied

VI. CONCLUSION
In this paper we have implemented a fault detection and

avoidance in a cluster based on the watchdog timer. This
method can take care of hardware as well as software faults.
The actual implementation of this method helped to detect the
faults. The application had resumed on the newly added node
from the last saved data. Thus helps to recover the
computation with the help of watchdog timer algorithm. Thus
using the fault detection algorithm, recovery algorithm and
watchdog theory we are able to improve the new algorithm.
Thus, this method helps us to improve the reliability of the
application although the performance may degrade slightly
because of computation overheads.

ACKNOWLEDGMENT
M. Bheevgade thanks Dr. C. S. Moghe for helpful

discussions. She also thanks Ms. M. Ghoshal for correcting
the English Grammer in this paper.

REFERENCES
[1] Ian Foster and A. Iamnitchi,”A problem –Specific Fault-Tolerance

Mechanism for Asynchronous, Distributed Systems”, IEEE, p.4-13
2000.

[2] Ian Foster, C. Kesselman, Craig Lee, G.v.Lazzewski,,”A Fault Detection
Service for Wide Area Distributed Computations”, Cluster Computing,
v.2 n.2,p.117-128, 1999.

[3] Sriram Rao, Lorenzo Alvisi, Harrick M.Vin , “Egida : An Extensible
Toolkit For Low-overhead Fault-Tolerance, Fault-Tolerant Computing”,
Digest of Papers. Twenty-Ninth Annual International Symposium, p. 45-
55, 1999.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

445

[4] Paul Toenend and Jie Xu, ”Replication-based Fault-Tolerance in a Grid
Environment”, citeceer, 2003.

[5] Pascal Felber, Proya Narasimhan, Member, IEEE, “Experiences,
Strategies, and Challenges in Building Fault-Tolerant CORBA
Systems”, IEEE transactions on Computers , Vol.53, NO.5, May 2004.

[6] Object Management Group, “Fault Tolerant CORBA (Final Adopted
Specification)” CMG Technical Committee Document formal/01-12-
29.,Dec., 2001.

[7] R.Friedman and E.Hadad, “FTS: A High Performance CORBA Fault
Tolerance Service”, Proc. IEEE Workshop Object Oriented Real-time
Dependable Systems., Jan. 2002.

[8] Jack G. Ganssle, “Great Watchdogs”, V-1.2, Gaanssel Group, updated
January, 2004.

[9] http://en.wikipedia.org/wiki/Watchdog_timer
[10] http://en.wikipedia.org/wiki/graceful degradation

