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Abstract—Consumer electronics are pervasive. It is impossible to 

imagine a household or office without DVD players, digital cameras, 
printers, mobile phones, shavers, electrical toothbrushes, etc. All 
these devices operate at different voltage levels ranging from 1.8 to 
20 VDC, in the absence of universal standards. The voltages 
available are however usually 120/230 VAC at 50/60 Hz. This 
situation makes an individual electrical energy conversion system 
necessary for each device. Such converters usually involve several 
conversion stages and often operate with excessive losses and poor 
reliability. The aim of the project presented in this paper is to design 
and implement a multi-channel DC/DC converter system, 
customizing the output voltage and current ratings according to the 
requirements of the load. Distributed, multi-agent techniques will be 
applied for the control of the DC/DC converters. 
 

Keywords—DC/DC converter, energy efficiency, multi-agent 
control, parallel converters.  
 

I. INTRODUCTION 
ODAY still, the energy distribution system suffers from its 
lack of flexibility, which seriously hinders optimization 

efforts or the large-scale introduction of home power plants 
connected to the grid. In the past, this scheme was not 
problematic because electrical energy was almost exclusively 
used for lighting and fixed-speed rotary motors. Today most 
loads do not directly use 120/230 VAC (50/60 Hz), but need 
other (often low DC voltages) for proper operation. The 
inflexibility of the system forcibly moves the problem of 
conversion to the consumers, which have to handle it on an 
individual basis. Neither the efficiency nor the costs of this 
approach are sustainable. The situation is similar in the case of 
renewable energy sources connected to the power distribution 
network. Normally several conversion stages are required to 
interconnect these systems with the grid (DC-to-AC or AC-to-
DC-to-AC). 

This research paper focuses on future intelligent, low-power 
residential electrical distribution systems with multi-channel 
dc-dc converters as shown in Fig. 1. The single input/multiple 
output converters, investigated in this paper, are supplied with 
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DC power and the output voltage of each converter channel is 
controlled by the intelligent agent associated with the load. 
The agent-based control determines also which converters are 
to be turned on or off in order to ensure optimized power 
transfer. The aim of the optimization of the research was the 
maximization of the efficiency of the power conversion stage. 

 

 

Fig. 2 Multichannel DC/DC converters in local power distribution 

 

II. TOPOLOGY 
For this project the buck (step-down) converter was chosen 

both because of its simple topology and for the wide range of 
control algorithms that can be implemented. 

Digital control, which sports extreme flexibility and 
(re)configurability, was chosen over analog control. The 
parallel converters are controlled by a microcontroller, which 
runs the multi-agent software. 

The basic configuration of the proposed agent-based control 
is shown in Fig. 2. The converters are assigned to control 
agents, while the output load is assigned to consumer agents. 
The consumer agents have the same basic tasks: measuring the 
output voltage and calculating the global current reference 
Iref,total from the reference output voltage Vout,ref and the 
measured output voltage Vout. A negotiation between the 
consumer agents is initiated after turning on the system, which 
results in the selection of the only active agent, while the other 
ones become passive, that is, they do not initiate any 
communication or make decisions, only accept incoming 
messages. Thus, a simple hierarchy is established. During 
normal operation the same consumer agent will stay active 
until the next start-up, however in the event of malfunction or 
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According to the efficiency curve (Fig. 5), this equation has 
a minimum at IL,OPT (and conversely, efficiency reaches its 
maximum). When the converter is turned off, its power loss is 
nearly zero. A cost function, penalizing the power losses, is 
assigned every single converter: 
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To define optimization strategies a cost function was 

created, which is minimized by the control agents. To 
demonstrate the viability of the control scheme the following 
simple function was selected: 
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1

,1...cos
,1,

∑
=

=
n

i
iLiit IWf

nLL

μ  (5) 

where W1 is a weighting factor. 
 

 

Fig. 5 Typical efficiency vs. load current curves of the buck converter 
for different output voltages 

 
Control agents share their currents to minimize this cost 

function and, in addition, two conditions must be satisfied: 
 

1. IL,i < IL,max for all converters that are on; 
2. Iref,total = Iref,1 + Iref,2 + … + Iref,n. 

 
It is worth noting here that various other cost functions can 

be defined, e.g. output power maximization, voltage ripple 
minimization, etc. Several such criteria can be incorporated 
into a cost function, with different weighting factors Wi, to 
prioritize one or the other criterion, depending on the needs of 
a specific application. 

Identical DC/DC converters are used to reduce costs, 
implying that the efficiency curves of the converters are also 
the same. To minimize the cost function, a possible solution 
for load current distribution can be that m-1 DC/DC converters 
are operated in their optimal point (with maximum efficiency), 
while the mth converter provides the remaining current, 
resulting in: Isum = (m-1) Iopt + Im, the total current required by 
the consumer. This is also in line with the “selfishness” 
principle of intelligent agents. This principle states that every 
intelligent agent seeks to minimize its own costs. 

Each of the control agents decides about turning on or 
turning off their respective converter. At any load current 
value, an optimal number of turned on converters always exist, 
which assures the minimum value of the cost function. 
Increasing or decreasing the number of the converters, which 
are turned on, that is, having a different number of converters 
working than the optimal number, the cost function is 
monotonically increasing. 

Let us assume that m is the number of the turned on 
converters at a certain moment, and n is the total number of 
the paralleled converters. The process to find the optimal 
number of turned on converters is presented in Fig. 6.  

 

 

Fig. 6 Process leading to determine the optimal converter number 

 
This method guarantees that the control agents find the 

minimum of the cost function for every value of the load 
current. When more than one converter should be turned on or 
off due to a sudden significant change of the load current, the 
control agents will perform it in several consecutive steps. It 
means that the transients will appear consecutively in the load 
current, and in the output voltage. 

 
 
 

 

Determining of load 
current.: 

iLoad=Sum(iL) 

Soft Start 
No. of active converters: m:=1 

Calculation of 
fcost,1(iLoad/(m-1), m-1) 
m-1  no. of active 
converters 

 

Calculation of 
fcost,2(iLoad/m, m)  
m  no. of active 
converters 

min(fcost,1, fcost,2, fcost,3) 
updating parameter m 

Calculation of 
fcost,3(iLoad/(m+1),m+1) 
m+1  no. of active 
converters 
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development board facilitates the agent-based control and 
investigation of parallel DC/DC converter units. In the 
laboratory measurement, two parallel converters on a board 
have been used. The parameters of the converters are the same 
as the simulated ones. The PI voltage control algorithm and 
the inner SMC current control algorithms are also 
implemented with the same parameters. The load resistance at 
the output of the converters is selectable; it can be switched 
between 5 Ω, 3 Ω and 1 Ω. Another 5 Ω load is attached to the 
output through a MOSFET that can be switched on or off by 
the microcontroller. Turning on this auxiliary MOSFET, the 
additional load resistance is connected in paralleled to the load 
at the converter output terminals. The cost function is defined 
so that the control agent turns on the 2nd converter when the 
load current exceeds the prescribed maximum value for 
efficient operation for the 1st converter, and turns off the 2nd 
converter when the load current drops below the 
aforementioned level. For this reason, during the laboratory 
measurement one of the converters was always on, 
establishing a sort of hierarchy between the converters. 

 
The experimental results confirmed the theoretic 

considerations laid out in the previous sections. The results of 
the measurement are explained below. 

 
As can be seen in Fig. 12, the first signal (CONV_1) is the 

switching signal of one of the converters, the second 
(CONV_2) is that of the other buck converter (which stays 
always on) and the last signal is the output voltage (V_OUT). 
In Fig. 12 (a), (b) and (c) the output voltage is Vout = 2.5 V. 
The load is set to 5 Ω, 3 Ω and 1 Ω, respectively. It can be 
seen that as long as the load draws a current, which is below 
1 A, only one converter will operate (resistance of 5 Ω and 
3 Ω). When the load exceeds the prescribed limit, the second 
converter kicks in, supplying the rest of the required current 
(Fig. 12 (c)). 

 
As a consequence of using the SMC algorithm for current 

control, the switching frequency of the converters is not 
constant, despite the constant sampling frequency, which is 
400 kHz in this case (Fig. 13). 

 
The transients in the output voltage Vout, resulting from the 

converters switching on and off can be seen in Fig. 14. 
 
 

 

(a) 

 

 

(b) 

 

(c) 

Fig. 12 Experimental readings: (a) Vout = 2.5 V, Rload = 5 Ω, (b) 
Vout = 2.5 V, Rload = 3 Ω, (c) Vout = 2.5 V, Rload = 1 Ω 
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Fig. 13 Variation of switching frequency due to SMC  
(Vout = 5 V, Rload = 5 Ω) 

 

(a) 

 

(b) 

Fig. 14 Transients resulting from a converter switching on or off  
(Vout = 5 V, Rload = 5 Ω) 

 
 
 

VI. CONCLUSION 
A multi-agent controlled energy conversion system 

consisting of parallel buck converters was presented as well as 
experimental results. 

Future work will include demonstrations with more 
converters in parallel. Also, new cost functions will be 
implemented, to accommodate more optimization criteria 
(output voltage ripple, transferred power, etc.), which can be 
weighed against each other and thus prioritized. 
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