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Abstract—Timetabling problems are often hard and time-

consuming to solve. Most of the methods of solving them concern 
only one problem instance or class. This paper describes a universal 
method for solving large, highly constrained timetabling problems 
from different domains. The solution is based on evolutionary 
algorithm’s framework and operates on two levels – first-level 
evolutionary algorithm tries to find a solution basing on given set of 
operating parameters, second-level algorithm is used to establish 
those parameters. Tabu search is employed to speed up the solution 
finding process on first level. The method has been used to solve 
three different timetabling problems with promising results. 
 

Keywords— Evolutionary algorithms, tabu search, timetabling.  

I. INTRODUCTION 
IMETABLING problems are quite popular to be seen 
about and arouse interest of many researchers for more 

than thirty years. Their practical importance should not be 
underestimated – institutions involved in education, 
healthcare, transporation, sports, courts of law, production 
enterprises and many others devote considerable resources to 
establish effective plans of their actions. This often makes 
planning the most serious administrative task of institutions of 
such kind. As the planning process is usually time-consuming 
(and often plain boring) over the years many approaches to 
their partial or complete automatization have been presented.  
Artificial Intelligence (AI) research community is quite active 
in the area of timetabling and scheduling and has developed a 
variety of approaches for solving such problems. They can be 
roughly divided into four types [1]:  
 

- sequential methods – these methods order events 
using domain heuristics and then assign the events 
sequentially into valid time periods (also called 
timeslots) so that no events in the period are in 
conflict with each other; events are most often 
ordered in such way that events that are most difficult 
to schedule are assigned into timeslots first [2]; 
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- cluster methods – in this methods events are collected 
in clusters where any two events in a particular 
cluster do not conflict with each other; the main 
drawback of these approaches is that the clusters of 
events are formed and fixed at the beginning of the 
algorithm and that may result in a poor quality 
timetable [3]; 

- constraint-based approaches – in these methods a 
timetabling problem is modelled as a set of variables 
(i.e., events) that have a finite domain to which 
values (i.e., resources such as time periods) have to 
be assigned to satisfy a number of constraints; a 
number of rules is defined for assigning resources to 
events and when no rule is applicable to the current 
partial solution a backtracking is performed until a 
solution is found that satisfies all constraints; as the 
satisfaction of all constraints may not be possible, 
algorithms are generally allowed to break some 
constraints in a controlled manner in order to produce 
a complete timetable ([4], [5]); 

- meta-heuristic methods – variety of meta-heuristic 
approaches such as simulated annealing, tabu search, 
evolutionary algorithms and hybrid approaches have 
been investigated for timetabling; meta-heuristic 
methods begin with one or more initial solutions and 
employ search strategies to find optimal solution, 
trying to avoid local optima in the process ([3], [6]–
[9]). 

 
     The application of case-based reasoning to timetabling has 
also become increasingly popular in last ten years ([10], [11], 
[12]). Most approaches use heuristics because traditional 
combinatorial optimization methods usually have a 
considerable computational cost. Although they can produce 
high quality solutions, they are not suitable for solving large, 
highly constrained problems.  

Basing on above enumeration one could conclude, that AI-
based automatic planning is at a quite mature level, all the 
problems solved in principle, and the research tend to steer 
towards making existing methods faster, more effective and 
giving better quality solutions for more complex and larger 
problems. However it must be pointed out that vast majority 
of the solutions concern only one, specific problem type (e.g. 
[13], [14]) or some particular problem class ([15], [16]) and to 
be employed in concrete, practical case time and resources 
have to be devoted to adapt the solution to the specifics of the 
considered problem.  
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This paper presents an attempt to create a universal method, 
i.e. that capable of solving problems from different areas with 
minimum user-side interaction. Three different problems have 
been chosen for testing. The typical univesity course 
timetabling problem is one of the most popular and widely 
features in research ([1]–[3], [6]–[8], [10]–[14], [16]) thus 
making the access to test data, both real and artificially 
generated, very easy. Similar, but more specific problem, with 
some different constraints, is timetabling on Faculty of 
Computer Science and Management of Wroclaw University of 
Technology ([7]). The last problem belongs to personnel 
scheduling class – it’s the problem of making monthly duties 
plan in the ward of one of the polish hospitals [17]. 

II. DESCRIPTION OF THE PROBLEMS 
The typical timetabling problem consists in assigning a set 

of activities/actions/events (e.g. work shifts, duties, classes) to 
a set of resources (e.g. physicians, teachers, rooms) and time 
periods, fulfilling a set of constraints of various types. 
Constraints stem from both nature of timetabling problems 
and specificity of the institution involved. In other words, 
timetabling (or planning) is a process of putting in a sequence 
or partial order a set of events to satisfy temporal and resource 
constraints required to achieve a certain goal, and is 
sometimes confused with scheduling, which is the process of 
assigning events to resources over time to fulfill certain 
performance constraints (however, many scientists consider 
scheduling as a special case of timetabling and vice versa) [8]. 

Timetable problems are subject to many constraints that are 
usually divided into two categories: “hard” and “soft”. Hard 
constraints are rigidly enforced and have to be satisfied in 
order the timetable to be feasible. Soft constraints are those 
that are desirable but not absolutely essential.  

The first problem considered is a typical university course 
timetabling problem (UCTP). It consists of a set of events 
(classes) to be scheduled in a certain number of timeslots, and 
a set of rooms with certain features and size which events can 
take place in. There is a defined set of students attending each 
event and the number of timeslots is 45 (5 days, 9 timeslots 
each). Test sets for this problem come from International 
Timetabling Competition (ITTC) [18] – this allows the 
outcomes to be compared with the results reported by other 
researchers.   

In UCTP a feasible timetable is one in which all the events 
have been assigned a timeslot and a room, and the following 
hard constraints are satisfied: 

- only one event is scheduled in each room at any 
timeslot,  

- the room is big enough for all the attending students 
and satisfies all the features required by the event, 

- no student attends more than one class at the same 
time. 

There are also three soft constraints defined; they are 
broken if: 

- a student has a class in the last slot of the day, 

- a student has more than two classes in a row, 
- a student has a single class on a day. 

The second problem – timetabling on Faculty of Computer 
Science and Management of Wroclaw University of 
Technology – is similar to the first, but has additional 
constraints related to teachers and the set of students attending 
each event is undefined (only number of students and faculty 
they attend was known) and has to be concluded from other 
data. In this problem the number of timeslots is 35 (5 days, 7 
timeslots each) and each event had a defined course (the class 
is a part of particular university course). Some test sets for this 
problem come from real data from FCSM and some have been 
artificially generated. In this problem feasible timetable is one 
in which all the events have been assigned a timeslot and a 
room, so the following hard constraints have to be satisfied: 

- only one event is scheduled in each room at any 
timeslot; 

- the room is big enough for all the attending students 
and satisfies all the features required by the event; 

- no teacher carries on more than one class at the same 
time; 

- no teacher carries on any class in timeslot which is 
forbidden for him; 

- if particular course has only one class assigned, no 
class with students from the same faculty is 
scheduled at the same timeslot with this course (this 
covers the obligatory courses which are usually 
taught for all the faculty’s students). 

Third problem depicts a typical hospital department which 
employs about a dozen or so physicians of various specialties. 
On each day one or more doctors has a duty. Number of 
doctors on duty may vary from day to day. A period of time 
for which the problem must be solved (planning horizon) 
amounts one month. If specialties of physicians in particular 
department are not homogenous (e.g. casualty ward employs 
surgeons and anesthesiologists) there are often requirements 
for specialty of doctors on duty. The following hard 
constraints are defined: 

- all the timeslots (i.e. days) have a proper number of 
physicians of appropriate specialties assigned; 

- no physician has a duty in two (or more) consecutive 
days; 

- no physician has more than two duties in the week; 
- at least one physician on each duty is able to perform 

duties single-handed (that means that particular 
doctor has a certain degree of medical education and 
is experienced and responsible enough). 

In order to consider and model fairness and job satisfaction 
issues, the following soft constraints are introduced: 

- physicians have duties on preferred days of the 
month and, symmetrically, they have no duties 
assigned in timeslots they don’t want to have duties; 

if more than one physician has a duty assigned in particular 
time period social preferences are taken into consideration 
(doctors have duties with persons they like). 
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III. SOLUTION DETAILS  
Evolutionary algorithms (EA) are considered to be a good 

general-purpose optimization tool due to their high flexibility 
accompanied by conceptual simplicity. Moreover, they have 
proven to be quite an effective tool for solving timetabling 
problems ([6], [7], [8]), thus EA framework has been chosen 
as a basis to build universal timetable problems solver.  

A. Representation of the Solutions 
In order to assure universality of the approach each solution 

(genotype) of particular problem’s instance is represented 
directly – each timeslot has a list assigned events and each 
event – a list of resources. Genotype’s length is constant for 
particular problem – in case of hospital duties genotype has a 
length of number of physicians on duty times number of 
timeslots; course timetable’s genotype’s length amounts 
number of timeslots times number of rooms. The data (e.g. 
constraints) needed to describe particular problem class is 
abstract and unified for all the problem classes. 

B. Evaluation Function 
Penalty-based evaluation function was used. Penalty for 

genotype g amounts  

ij
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i
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j jg nwf ∑ ∑<

=

<

=
=

0 0  (1) 
where t is the number of timeslots, c is the number of 

constraint types (in case of weak constraint with more than 
two preference levels, all preference level are considered to be 
separate constraints), wj is the weight assigned to particular 
constraint type, and nij is the factor determined by penalization 
method. Four different methods have been considered: 

- the timeslot is penalized once for every type of 
constraint broken (i.e. nij amounts either 0 or 1); 

- the timeslot is penalized every time the particular 
type of constraint is broken; 

- as in the first method, but additionally for each 
subsequent constraint of the particular type broken, 
the penalty is doubled; 

- binary penalty – if the timeslot with events planed 
breaks no constraints, penalty for this timeslot 
amounts 0 (1 otherwise); this is an exception from 
(1), as no weights are used to determine value of the 
penalty. 

Value of the evaluation (fitness) function for solution g is 
calculated by dividing the lowest penalty value in the 
population by penalty value for g.  

g
g f

fF min=
                                        (2) 

After generating the initial population the evolutionary 
algorithm begins to operate. Creation of population in 
subsequent generations (iterations) is archived by means of 
classical genetic roulette, as described in [20], but 20% of the 
population is always preserved from previous generation. 10% 
consists of best solutions (in terms of evaluation function 
described above). The remaining 10% are the solutions that 

are most distant from the rest of the population, in order to 
preserve population diversity. The distance between two 
timetables can be measured in three ways: 

- number of events planned with the same resources in 
the same timeslot in both timetables; 

- number of pairs of events planned with the same 
resources in the same timeslot in both timetables; as 
described in [1] this method is favored because it 
allows to represent diversity as a single value average 
and did not have the drawback of method where 
absolute positions of the events in timetables are 
considered; 

- search space coverage – how often the tuple <event, 
resources, timeslot> appears in the whole population. 

The higher the score is, the smaller the distance between 
timetables.  

Additionally, three methods of determining the weights 
have been proposed: 

- unified weights (all weights amount 1); 
- weak constraints have a weight value of one, strong 

constraints have a weight which amounts the number 
of weak constraints; 

- automatic weight assignment – this procedure allows 
establishing the weights basing on how frequently 
constraints of particular type are broken in randomly 
generated solution; a set of solutions is generated at 
random and the least frequently broken constraint is 
assigned a weight of one – the rest of the weights are 
established proportionally (the more frequent the 
constraint is broken, the higher the weight is). 

C. Genotype Initialization Strategies 
In most of the approaches either random or heuristics 

initialization is used to provide EA with initial population of 
solutions. Random method has the least computational 
complexity and does not take into consideration problem’s 
domain knowledge. Heuristic approaches have proven to be 
more effective though, i.e. final solution tend to be found 
faster than in case of random initialization [19]. Nevertheless, 
heuristics always employ some kind of event sequencing 
strategy – the events are placed in the timetable in order of 
their decrementing “difficulty” to plan, i.e. the events that are 
the most difficult to schedule are allocated first. Either some 
kind of graph coloring or problem-specific heuristics is used. 
In the approach described in this paper, random initialization 
has been used as point of reference to grade the other method 
– peckish initialization method [21]. In this approach for each 
timeslot k sets of events (and resources) are chosen at random; 
the set that breaks the least number of hard constraints is 
assigned to the timeslot. The number k is called greediness 
level – when k amounts 1 this method corresponds to random 
initialization; when k aspires to the number of combination of 
events and resources, the algorithm becomes greedy. After 
assigning the weights (by means of any aforementioned 
method), greediness level is established. A dozen or so sets of 
solutions are generated with ascending greediness level (due 
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to increasing time needed for the generation process, the 
highest greediness level considered has been arbitrarily set up 
to amount number of timeslots in the particular solution). 
Then the average fitness for each set of solutions is calculated, 
along with average time in which the solutions were 
generated. The greediness which gives the best score (shortest 
time and biggest average fitness) is chosen. 

D. Genetic Operators 
In classic evolutionary algorithm in each iteration after 

selection some solutions are exposed to genetic operators – 
mutation and crossover. The contents of operator’s set and 
their operation depend strongly on both specifics of problem 
being solved and approach chosen. In this particular case 
recombination operator would probably have high 
computational and conceptual complexity. Even simple, one-
point crossover operator would be quite complicated – after 
swapping parts of different timetables the integrity of resulting 
solution would have to be assured. That means checking if no 
event appears in the timetable twice and removing the copies 
accordingly. Thus, only mutation operators are used. 
Resources, events and timeslots can be mutated – that gives a 
set of three different types of mutation operators. In “classic” 
EA mutation operator is “blind”, i.e. changes the solution at 
random. This approach however has proven to be ineffective 
([7]). The place in genotype (tuple <event, resources, 
timeslot>), which breaks the most constraints (so it is most 
difficult to schedule) is selected to be mutated (if a few places 
are tied to be most difficult to schedule, one is chosen at 
random). The operators try to reschedule event in such way, 
that they would eliminate one particular type of conflict 
(broken constraint of particular type), caused by this event – k 
possible variants are examined, and the one, that breaks the 
least constraints of particular type is chosen (like in peckish 
initialization algorithm – in typical approaches either only one 
random change is considered [22] or some form of local 
search is employed [3]; the method proposed is a simple, yet 
effective alternative to that). 

E. Tabu Search Phase 
Preliminary tests have shown an interesting phenomenon 

which appears about half-way through the solution finding 
process. If the average value of penalty function for a 
particular solution is being observed, one can notice a steady, 
steep drop until population reaches a certain plateau, where 
the value oscillates slightly (about 1% up and down). That 
phenomenon proves that although directed genetic operators 
have been used, the algorithm still searches solution space 
somewhat blindly. Therefore it tends to be stuck in local 
optima and is only able to escape through random mutation. 
To speed up the solution finding process and avoid 
aforementioned oscillations, tabu search (TS) has been 
employed. If for fifty generations the average penalty for 
population deviates less than 20%, the genetic roulette is 
stopped and tabu search begins to operate. Tabu list length 
amounts 10*k (all the parameters for tabu search operation has 

been arbitrary established and fixed to avoid introducing new 
variables into the method). The algorithm operates as follows: 

(1) Find place in solution (tuple <event, resources, 
timeslot>) which breaks the most constraints (if there 
are a few such places, choose one at random) 

(2) Generate k solutions with event rescheduled with 
different resources and/or timeslot.  

(3) Choose the solution which has lowest penalty score 
and is not on the tabu list, add it to tabu list and go to 
(1). The chosen solution is now the current one. 

The tabu search algorithm operates for 50 iterations – after 
that evolutionary algorithm takes over again. The results of 
experiments with tabu search application are described in 
chapter 4. 

F. Hyper-Heuristic 
As it can be seen in method’s description, there are some 

parameters that have to be established in order the method to 
work. Ordinarily such parameters are being established either 
arbitrarily (e.g. based on the domain knowledge) or 
experimentally.  However, in the ‘‘knowledge poor’’ 
algorithms, designed to solve range of problems such 
approach proves impossible to be applied. It has recently been 
suggested ([1]), that hyper-heuristic methods can be used to 
cope with this setback. A hyper-heuristic denotes a heuristic 
that selects heuristics for a wide variety of problems, 
including timetabling. It differs from the widely used term 
“metaheuristic” in that the term meta-heuristic usually refers 
to a heuristic which manages one other heuristic for a 
particular problem. A hyper-heuristic can be thought of as a 
heuristic to choose or to create heuristics. Current applications 
of hyper-heuristic to timetabling tend to steer towards using 
metaheuristic to search for permutations of graph heuristics 
which are then used for constructing timetables [23]. In the 
method described in this paper, metaheuristic is used to find 
the best parameters for another metaheuristic. Automatic 
weight assignment and establishing greediness level 
procedures are both part of the hyper-heuristics. 

To find out which methods of penalization, measuring the 
distance between solutions and weight assignment, along with 
the order of conflict elimination and greediness level of 
genetic operators constitute the most effective (in terms of 
solution’s quality and time to reach feasible solution), 
evolutionary algorithm is used. The genotypes represent the 
aforementioned parameters (greediness level is a natural 
number no greater than number of timeslots, order of conflict 
elimination is an ordered sequence, the rest of attributes are 
nominal). In each iteration of the algorithm the solution of 
particular problem is generated using the parameters given in 
every genotype (to avoid infinite operation the first-level 
algorithm ceases to operate after finding a feasible solution or 
after 1000 iterations). The genotypes that did not give feasible 
solutions are scrapped, the rest are evaluated – the value of the 
evaluation function is the value of the binary penalty function 
for best genotype in population. The best set of parameters is 
memorized, and then the genetic operators of mutation and 
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crossover are applied to the solutions. Mutation (acting with 
the probability of 0.2) changes one of the parameters at 
random (in case of the conflict elimination order, changes that 
order). Crossover (with the probability of 0.05) swaps random 
parts of two parameter sets (treating conflict elimination order 
as one parameter) – in case of second-level algorithm there is 
no threat that crossover operator could compromise data 
integrity (as in the first-level algorithm), as it just mixes the 
parameters from two solutions. The procedure stops after 
fixed number of iterations or if no improvement has been 
made in two subsequent iterations. 

IV. RESULTS OF EXPERIMENTS 
During some preliminary experiments the task was to 

prove, that the method is able to find a feasible solution for all 
the test problems. Fifteen sets from International Timetabling 
Competition [18] has been used for first problem, three real 
datasets for the second and one real and nine artificially 
generated for the third. The feasible solution has been found 
for all the test sets. More extensive experiments were 
conducted on UCTP, as the problem is widely recognized and 
the results can be compared with those found in other 
publications. As there’s no analytical means to compare 
complexity of particular problem instances, only empirical 
comparison makes sense. To make it possible, the results 
presented in the tables have the fitness function’s values 
recalculated to match the method used for evaluating solution 
in ITTC (all weights equal one, second penalization method). 
All the ITTC datasets depict problems of similar sizes (about 
400 events, 200 students and a dozen rooms and features).  

A. First Level Algorithm – EA vs. Tabu Search 
First set of experiments has been conducted to answer the 

underlying question: is using EA as a first-level algorithm is 
sensible. Many researches report excellent results using only 
some variation of tabu search ([24], [25]), so the importance 
of this question cannot be underestimated. Every dataset has 
been used fifty times for each method variation (using only 
EA to obtain solution, using only tabu search, and EA with 
tabu search used to escape from local optima). Both 
algorithms operated until feasible solution has been found (or 
for 1000 generations if no such solution has been found).  
Greediness level for EA amounted 15, tabu list length was 150 
and the population size 500. Second penalization method with 
automatic weight assignment has been used. The results are 
presented in Table I – first column is the best result obtained 
only with evolutionary algorithm, the second is the average of 
the best solutions in fifty runs, the next two columns are the 
best and average results using tabu search, last two – 
evolutionary algorithm combined with tabu search phase. 

The feasibility of the solutions found has not been taken 
into account (most of the time the algorithms were not able to 
find one in only 1000 iterations) – it is possible, that two 
solutions with the same score exist, and only one of them is 
feasible.  
 

TABLE I 
RESULTS OF THE EXPERIMENTS WITH FIRST-LEVEL ALGORITHM 

Dataset EA 
best 

EA 
avg. 

TS 
best 

TS 
avg. 

Both 
best 

Both 
avg. 

1 176 191 168 181 166 187 
2 135 163 174 195 145 156 
3 201 249 228 245 192 210 
4 551 610 511 536 510 570 
5 391 412 388 391 357 386 
6 207 257 201 226 175 242 
7 159 199 148 158 144 163 
8 186 206 211 241 197 254 
9 212 281 217 247 184 255 
10 167 199 159 178 157 163 
11 186 199 179 187 163 176 
12 254 263 243 251 231 244 
13 295 301 271 289 262 278 
14 281 297 269 285 261 278 
15 184 190 155 179 164 176 
 
Tabu search shows better average result, although not all 

“best” results has been better than these of the EA. Probable 
cause of this phenomenon is that tabu search operates in more 
organized and predictable way, than EA. That comes with the 
price – EA is more likely to find a better solution by pure 
chance. The combination of TS and EA shows improvement 
in both best and average results – incorporating tabu search 
phase speeds up the search process. It is possible that using 
only tabu search would produce better overall solution but 
with considerably larger computational cost (spent on looking 
through tabu list).  

B. Experiments with Second-Level Algorithm 
For all the experiments described in this chapter second-

level EA had a population size of 100, and the first-level of 
500. Second-level EA ran for 1000 iterations, and then the 
best 10 sets of parameters were selected to run first-level 
algorithm for additional 5000 generations. This allows 
achieving best possible results from first-level algorithm 
without time overhead from second-level algorithm searching 
through solution space. 

Table II presents results archived by ITTC participants, 
which will be used as comparison to the method presented in 
this paper. It has to be noted that the best results has been 
gathered from all the participants and the winner hasn’t 
achieved best known solutions for all the problem instances.  
The experiment has been conducted fifty times and the table II 
shows averages of the best result. In all the experiments, 
feasible solution(s) has been found for all the problem 
instances before second-level algorithm ceased to operate. As 
it can be seen, most of the results are better than average of 
the ITTC score, but none is near the best score achieved by 
competitors. Nevertheless, it has to be emphasized, that the 
methods used in ITTC were designed to perform only one 
task, and the parameters of their operation were chosen 
intentionally to perform that task the most effective way 
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possible. On the contrary the method described in this paper is 
designed to be fully universal and provide feasible solutions 
irrespective of the problem given. 

 
TABLE II 

RESULTS OF THE EXPERIMENTS WITH SECOND-LEVEL ALGORITM 
Dataset ITTC 

best 
ITTC 

average 
Withou

t TS 
With 
TS 

Best 
10 

with 
TS 

1 45 137 158 141 130 
2 25 87 103 101 93 
3 65 150 156 145 139 
4 115 289 399 340 320 
5 77 248 336 271 264 
6 6 143 146 138 136 
7 12 145 125 107 104 
8 29 129 110 98 92 
9 17 123 154 146 138 
10 61 153 153 139 128 
11 53 148 163 151 146 
12 110 206 220 218 211 
13 109 234 268 255 248 
14 93 229 255 234 227 
15 62 149 158 149 136 

V. CONCLUSIONS AND FUTURE WORK 
The question whether universal, “knowledge-poor” method 

is able to perform better or at least comparably well as the 
domain-specific one remains open.  In terms of computation 
time it’s probably not possible, as the general method searches 
the parameter space blindly. Nevertheless, universal methods 
will always have one distinctive advantage over the 
specialized ones – they won’t need laborious and time 
consuming process of redesigning and fine-tuning to fit 
specific needs. The results of the experiments look appealing 
– the method is able to produce satisfactory solutions for 
problems from different domains.   

Results of second-level algorithm’s operation have to be 
looked into – it is possible, that some methods of penalization, 
weight assignment and distance measurement may prove 
useless for all the problem’s variations and as such they may 
be removed from the search space. This would be especially 
important in case of personnel scheduling problems (like 
doctor’s duty assignment problem described in this paper). In 
most cases duty roster changes only slightly from one 
planning horizon to another ([9], [17], [26]), so there’s no 
need to search through parameter space every time particular 
problem class is solved – set of “best” parameters from 
previous runs can be used.  
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