
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:3, 2008

165

Abstract—Timetabling problems are often hard and time-

consuming to solve. Most of the methods of solving them concern
only one problem instance or class. This paper describes a universal
method for solving large, highly constrained timetabling problems
from different domains. The solution is based on evolutionary
algorithm’s framework and operates on two levels – first-level
evolutionary algorithm tries to find a solution basing on given set of
operating parameters, second-level algorithm is used to establish
those parameters. Tabu search is employed to speed up the solution
finding process on first level. The method has been used to solve
three different timetabling problems with promising results.

Keywords— Evolutionary algorithms, tabu search, timetabling.

I. INTRODUCTION
IMETABLING problems are quite popular to be seen
about and arouse interest of many researchers for more

than thirty years. Their practical importance should not be
underestimated – institutions involved in education,
healthcare, transporation, sports, courts of law, production
enterprises and many others devote considerable resources to
establish effective plans of their actions. This often makes
planning the most serious administrative task of institutions of
such kind. As the planning process is usually time-consuming
(and often plain boring) over the years many approaches to
their partial or complete automatization have been presented.
Artificial Intelligence (AI) research community is quite active
in the area of timetabling and scheduling and has developed a
variety of approaches for solving such problems. They can be
roughly divided into four types [1]:

- sequential methods – these methods order events
using domain heuristics and then assign the events
sequentially into valid time periods (also called
timeslots) so that no events in the period are in
conflict with each other; events are most often
ordered in such way that events that are most difficult
to schedule are assigned into timeslots first [2];

Manuscript received August 31, 2006. The research was supported by

Grand No. 3 T11C 031 27 from the State Committee for Scientific Research in
Poland.

M. Norberciak is with the Institute of Applied Informatics, Wroclaw
University of Technology, Wroclaw, Poland (phone: +48-71-3202-97; e-mail:
maciej.norberciak@pwr.wroc).

- cluster methods – in this methods events are collected
in clusters where any two events in a particular
cluster do not conflict with each other; the main
drawback of these approaches is that the clusters of
events are formed and fixed at the beginning of the
algorithm and that may result in a poor quality
timetable [3];

- constraint-based approaches – in these methods a
timetabling problem is modelled as a set of variables
(i.e., events) that have a finite domain to which
values (i.e., resources such as time periods) have to
be assigned to satisfy a number of constraints; a
number of rules is defined for assigning resources to
events and when no rule is applicable to the current
partial solution a backtracking is performed until a
solution is found that satisfies all constraints; as the
satisfaction of all constraints may not be possible,
algorithms are generally allowed to break some
constraints in a controlled manner in order to produce
a complete timetable ([4], [5]);

- meta-heuristic methods – variety of meta-heuristic
approaches such as simulated annealing, tabu search,
evolutionary algorithms and hybrid approaches have
been investigated for timetabling; meta-heuristic
methods begin with one or more initial solutions and
employ search strategies to find optimal solution,
trying to avoid local optima in the process ([3], [6]–
[9]).

 The application of case-based reasoning to timetabling has
also become increasingly popular in last ten years ([10], [11],
[12]). Most approaches use heuristics because traditional
combinatorial optimization methods usually have a
considerable computational cost. Although they can produce
high quality solutions, they are not suitable for solving large,
highly constrained problems.

Basing on above enumeration one could conclude, that AI-
based automatic planning is at a quite mature level, all the
problems solved in principle, and the research tend to steer
towards making existing methods faster, more effective and
giving better quality solutions for more complex and larger
problems. However it must be pointed out that vast majority
of the solutions concern only one, specific problem type (e.g.
[13], [14]) or some particular problem class ([15], [16]) and to
be employed in concrete, practical case time and resources
have to be devoted to adapt the solution to the specifics of the
considered problem.

Universal Method for Timetable Construction
based on Evolutionary Approach

Maciej Norberciak

T

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:3, 2008

166

This paper presents an attempt to create a universal method,
i.e. that capable of solving problems from different areas with
minimum user-side interaction. Three different problems have
been chosen for testing. The typical univesity course
timetabling problem is one of the most popular and widely
features in research ([1]–[3], [6]–[8], [10]–[14], [16]) thus
making the access to test data, both real and artificially
generated, very easy. Similar, but more specific problem, with
some different constraints, is timetabling on Faculty of
Computer Science and Management of Wroclaw University of
Technology ([7]). The last problem belongs to personnel
scheduling class – it’s the problem of making monthly duties
plan in the ward of one of the polish hospitals [17].

II. DESCRIPTION OF THE PROBLEMS
The typical timetabling problem consists in assigning a set

of activities/actions/events (e.g. work shifts, duties, classes) to
a set of resources (e.g. physicians, teachers, rooms) and time
periods, fulfilling a set of constraints of various types.
Constraints stem from both nature of timetabling problems
and specificity of the institution involved. In other words,
timetabling (or planning) is a process of putting in a sequence
or partial order a set of events to satisfy temporal and resource
constraints required to achieve a certain goal, and is
sometimes confused with scheduling, which is the process of
assigning events to resources over time to fulfill certain
performance constraints (however, many scientists consider
scheduling as a special case of timetabling and vice versa) [8].

Timetable problems are subject to many constraints that are
usually divided into two categories: “hard” and “soft”. Hard
constraints are rigidly enforced and have to be satisfied in
order the timetable to be feasible. Soft constraints are those
that are desirable but not absolutely essential.

The first problem considered is a typical university course
timetabling problem (UCTP). It consists of a set of events
(classes) to be scheduled in a certain number of timeslots, and
a set of rooms with certain features and size which events can
take place in. There is a defined set of students attending each
event and the number of timeslots is 45 (5 days, 9 timeslots
each). Test sets for this problem come from International
Timetabling Competition (ITTC) [18] – this allows the
outcomes to be compared with the results reported by other
researchers.

In UCTP a feasible timetable is one in which all the events
have been assigned a timeslot and a room, and the following
hard constraints are satisfied:

- only one event is scheduled in each room at any
timeslot,

- the room is big enough for all the attending students
and satisfies all the features required by the event,

- no student attends more than one class at the same
time.

There are also three soft constraints defined; they are
broken if:

- a student has a class in the last slot of the day,

- a student has more than two classes in a row,
- a student has a single class on a day.

The second problem – timetabling on Faculty of Computer
Science and Management of Wroclaw University of
Technology – is similar to the first, but has additional
constraints related to teachers and the set of students attending
each event is undefined (only number of students and faculty
they attend was known) and has to be concluded from other
data. In this problem the number of timeslots is 35 (5 days, 7
timeslots each) and each event had a defined course (the class
is a part of particular university course). Some test sets for this
problem come from real data from FCSM and some have been
artificially generated. In this problem feasible timetable is one
in which all the events have been assigned a timeslot and a
room, so the following hard constraints have to be satisfied:

- only one event is scheduled in each room at any
timeslot;

- the room is big enough for all the attending students
and satisfies all the features required by the event;

- no teacher carries on more than one class at the same
time;

- no teacher carries on any class in timeslot which is
forbidden for him;

- if particular course has only one class assigned, no
class with students from the same faculty is
scheduled at the same timeslot with this course (this
covers the obligatory courses which are usually
taught for all the faculty’s students).

Third problem depicts a typical hospital department which
employs about a dozen or so physicians of various specialties.
On each day one or more doctors has a duty. Number of
doctors on duty may vary from day to day. A period of time
for which the problem must be solved (planning horizon)
amounts one month. If specialties of physicians in particular
department are not homogenous (e.g. casualty ward employs
surgeons and anesthesiologists) there are often requirements
for specialty of doctors on duty. The following hard
constraints are defined:

- all the timeslots (i.e. days) have a proper number of
physicians of appropriate specialties assigned;

- no physician has a duty in two (or more) consecutive
days;

- no physician has more than two duties in the week;
- at least one physician on each duty is able to perform

duties single-handed (that means that particular
doctor has a certain degree of medical education and
is experienced and responsible enough).

In order to consider and model fairness and job satisfaction
issues, the following soft constraints are introduced:

- physicians have duties on preferred days of the
month and, symmetrically, they have no duties
assigned in timeslots they don’t want to have duties;

if more than one physician has a duty assigned in particular
time period social preferences are taken into consideration
(doctors have duties with persons they like).

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:3, 2008

167

III. SOLUTION DETAILS
Evolutionary algorithms (EA) are considered to be a good

general-purpose optimization tool due to their high flexibility
accompanied by conceptual simplicity. Moreover, they have
proven to be quite an effective tool for solving timetabling
problems ([6], [7], [8]), thus EA framework has been chosen
as a basis to build universal timetable problems solver.

A. Representation of the Solutions
In order to assure universality of the approach each solution

(genotype) of particular problem’s instance is represented
directly – each timeslot has a list assigned events and each
event – a list of resources. Genotype’s length is constant for
particular problem – in case of hospital duties genotype has a
length of number of physicians on duty times number of
timeslots; course timetable’s genotype’s length amounts
number of timeslots times number of rooms. The data (e.g.
constraints) needed to describe particular problem class is
abstract and unified for all the problem classes.

B. Evaluation Function
Penalty-based evaluation function was used. Penalty for

genotype g amounts

ij
ti

i

cj

j jg nwf ∑ ∑<

=

<

=
=

0 0 (1)
where t is the number of timeslots, c is the number of

constraint types (in case of weak constraint with more than
two preference levels, all preference level are considered to be
separate constraints), wj is the weight assigned to particular
constraint type, and nij is the factor determined by penalization
method. Four different methods have been considered:

- the timeslot is penalized once for every type of
constraint broken (i.e. nij amounts either 0 or 1);

- the timeslot is penalized every time the particular
type of constraint is broken;

- as in the first method, but additionally for each
subsequent constraint of the particular type broken,
the penalty is doubled;

- binary penalty – if the timeslot with events planed
breaks no constraints, penalty for this timeslot
amounts 0 (1 otherwise); this is an exception from
(1), as no weights are used to determine value of the
penalty.

Value of the evaluation (fitness) function for solution g is
calculated by dividing the lowest penalty value in the
population by penalty value for g.

g
g f

fF min=
 (2)

After generating the initial population the evolutionary
algorithm begins to operate. Creation of population in
subsequent generations (iterations) is archived by means of
classical genetic roulette, as described in [20], but 20% of the
population is always preserved from previous generation. 10%
consists of best solutions (in terms of evaluation function
described above). The remaining 10% are the solutions that

are most distant from the rest of the population, in order to
preserve population diversity. The distance between two
timetables can be measured in three ways:

- number of events planned with the same resources in
the same timeslot in both timetables;

- number of pairs of events planned with the same
resources in the same timeslot in both timetables; as
described in [1] this method is favored because it
allows to represent diversity as a single value average
and did not have the drawback of method where
absolute positions of the events in timetables are
considered;

- search space coverage – how often the tuple <event,
resources, timeslot> appears in the whole population.

The higher the score is, the smaller the distance between
timetables.

Additionally, three methods of determining the weights
have been proposed:

- unified weights (all weights amount 1);
- weak constraints have a weight value of one, strong

constraints have a weight which amounts the number
of weak constraints;

- automatic weight assignment – this procedure allows
establishing the weights basing on how frequently
constraints of particular type are broken in randomly
generated solution; a set of solutions is generated at
random and the least frequently broken constraint is
assigned a weight of one – the rest of the weights are
established proportionally (the more frequent the
constraint is broken, the higher the weight is).

C. Genotype Initialization Strategies
In most of the approaches either random or heuristics

initialization is used to provide EA with initial population of
solutions. Random method has the least computational
complexity and does not take into consideration problem’s
domain knowledge. Heuristic approaches have proven to be
more effective though, i.e. final solution tend to be found
faster than in case of random initialization [19]. Nevertheless,
heuristics always employ some kind of event sequencing
strategy – the events are placed in the timetable in order of
their decrementing “difficulty” to plan, i.e. the events that are
the most difficult to schedule are allocated first. Either some
kind of graph coloring or problem-specific heuristics is used.
In the approach described in this paper, random initialization
has been used as point of reference to grade the other method
– peckish initialization method [21]. In this approach for each
timeslot k sets of events (and resources) are chosen at random;
the set that breaks the least number of hard constraints is
assigned to the timeslot. The number k is called greediness
level – when k amounts 1 this method corresponds to random
initialization; when k aspires to the number of combination of
events and resources, the algorithm becomes greedy. After
assigning the weights (by means of any aforementioned
method), greediness level is established. A dozen or so sets of
solutions are generated with ascending greediness level (due

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:3, 2008

168

to increasing time needed for the generation process, the
highest greediness level considered has been arbitrarily set up
to amount number of timeslots in the particular solution).
Then the average fitness for each set of solutions is calculated,
along with average time in which the solutions were
generated. The greediness which gives the best score (shortest
time and biggest average fitness) is chosen.

D. Genetic Operators
In classic evolutionary algorithm in each iteration after

selection some solutions are exposed to genetic operators –
mutation and crossover. The contents of operator’s set and
their operation depend strongly on both specifics of problem
being solved and approach chosen. In this particular case
recombination operator would probably have high
computational and conceptual complexity. Even simple, one-
point crossover operator would be quite complicated – after
swapping parts of different timetables the integrity of resulting
solution would have to be assured. That means checking if no
event appears in the timetable twice and removing the copies
accordingly. Thus, only mutation operators are used.
Resources, events and timeslots can be mutated – that gives a
set of three different types of mutation operators. In “classic”
EA mutation operator is “blind”, i.e. changes the solution at
random. This approach however has proven to be ineffective
([7]). The place in genotype (tuple <event, resources,
timeslot>), which breaks the most constraints (so it is most
difficult to schedule) is selected to be mutated (if a few places
are tied to be most difficult to schedule, one is chosen at
random). The operators try to reschedule event in such way,
that they would eliminate one particular type of conflict
(broken constraint of particular type), caused by this event – k
possible variants are examined, and the one, that breaks the
least constraints of particular type is chosen (like in peckish
initialization algorithm – in typical approaches either only one
random change is considered [22] or some form of local
search is employed [3]; the method proposed is a simple, yet
effective alternative to that).

E. Tabu Search Phase
Preliminary tests have shown an interesting phenomenon

which appears about half-way through the solution finding
process. If the average value of penalty function for a
particular solution is being observed, one can notice a steady,
steep drop until population reaches a certain plateau, where
the value oscillates slightly (about 1% up and down). That
phenomenon proves that although directed genetic operators
have been used, the algorithm still searches solution space
somewhat blindly. Therefore it tends to be stuck in local
optima and is only able to escape through random mutation.
To speed up the solution finding process and avoid
aforementioned oscillations, tabu search (TS) has been
employed. If for fifty generations the average penalty for
population deviates less than 20%, the genetic roulette is
stopped and tabu search begins to operate. Tabu list length
amounts 10*k (all the parameters for tabu search operation has

been arbitrary established and fixed to avoid introducing new
variables into the method). The algorithm operates as follows:

(1) Find place in solution (tuple <event, resources,
timeslot>) which breaks the most constraints (if there
are a few such places, choose one at random)

(2) Generate k solutions with event rescheduled with
different resources and/or timeslot.

(3) Choose the solution which has lowest penalty score
and is not on the tabu list, add it to tabu list and go to
(1). The chosen solution is now the current one.

The tabu search algorithm operates for 50 iterations – after
that evolutionary algorithm takes over again. The results of
experiments with tabu search application are described in
chapter 4.

F. Hyper-Heuristic
As it can be seen in method’s description, there are some

parameters that have to be established in order the method to
work. Ordinarily such parameters are being established either
arbitrarily (e.g. based on the domain knowledge) or
experimentally. However, in the ‘‘knowledge poor’’
algorithms, designed to solve range of problems such
approach proves impossible to be applied. It has recently been
suggested ([1]), that hyper-heuristic methods can be used to
cope with this setback. A hyper-heuristic denotes a heuristic
that selects heuristics for a wide variety of problems,
including timetabling. It differs from the widely used term
“metaheuristic” in that the term meta-heuristic usually refers
to a heuristic which manages one other heuristic for a
particular problem. A hyper-heuristic can be thought of as a
heuristic to choose or to create heuristics. Current applications
of hyper-heuristic to timetabling tend to steer towards using
metaheuristic to search for permutations of graph heuristics
which are then used for constructing timetables [23]. In the
method described in this paper, metaheuristic is used to find
the best parameters for another metaheuristic. Automatic
weight assignment and establishing greediness level
procedures are both part of the hyper-heuristics.

To find out which methods of penalization, measuring the
distance between solutions and weight assignment, along with
the order of conflict elimination and greediness level of
genetic operators constitute the most effective (in terms of
solution’s quality and time to reach feasible solution),
evolutionary algorithm is used. The genotypes represent the
aforementioned parameters (greediness level is a natural
number no greater than number of timeslots, order of conflict
elimination is an ordered sequence, the rest of attributes are
nominal). In each iteration of the algorithm the solution of
particular problem is generated using the parameters given in
every genotype (to avoid infinite operation the first-level
algorithm ceases to operate after finding a feasible solution or
after 1000 iterations). The genotypes that did not give feasible
solutions are scrapped, the rest are evaluated – the value of the
evaluation function is the value of the binary penalty function
for best genotype in population. The best set of parameters is
memorized, and then the genetic operators of mutation and

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:3, 2008

169

crossover are applied to the solutions. Mutation (acting with
the probability of 0.2) changes one of the parameters at
random (in case of the conflict elimination order, changes that
order). Crossover (with the probability of 0.05) swaps random
parts of two parameter sets (treating conflict elimination order
as one parameter) – in case of second-level algorithm there is
no threat that crossover operator could compromise data
integrity (as in the first-level algorithm), as it just mixes the
parameters from two solutions. The procedure stops after
fixed number of iterations or if no improvement has been
made in two subsequent iterations.

IV. RESULTS OF EXPERIMENTS
During some preliminary experiments the task was to

prove, that the method is able to find a feasible solution for all
the test problems. Fifteen sets from International Timetabling
Competition [18] has been used for first problem, three real
datasets for the second and one real and nine artificially
generated for the third. The feasible solution has been found
for all the test sets. More extensive experiments were
conducted on UCTP, as the problem is widely recognized and
the results can be compared with those found in other
publications. As there’s no analytical means to compare
complexity of particular problem instances, only empirical
comparison makes sense. To make it possible, the results
presented in the tables have the fitness function’s values
recalculated to match the method used for evaluating solution
in ITTC (all weights equal one, second penalization method).
All the ITTC datasets depict problems of similar sizes (about
400 events, 200 students and a dozen rooms and features).

A. First Level Algorithm – EA vs. Tabu Search
First set of experiments has been conducted to answer the

underlying question: is using EA as a first-level algorithm is
sensible. Many researches report excellent results using only
some variation of tabu search ([24], [25]), so the importance
of this question cannot be underestimated. Every dataset has
been used fifty times for each method variation (using only
EA to obtain solution, using only tabu search, and EA with
tabu search used to escape from local optima). Both
algorithms operated until feasible solution has been found (or
for 1000 generations if no such solution has been found).
Greediness level for EA amounted 15, tabu list length was 150
and the population size 500. Second penalization method with
automatic weight assignment has been used. The results are
presented in Table I – first column is the best result obtained
only with evolutionary algorithm, the second is the average of
the best solutions in fifty runs, the next two columns are the
best and average results using tabu search, last two –
evolutionary algorithm combined with tabu search phase.

The feasibility of the solutions found has not been taken
into account (most of the time the algorithms were not able to
find one in only 1000 iterations) – it is possible, that two
solutions with the same score exist, and only one of them is
feasible.

TABLE I
RESULTS OF THE EXPERIMENTS WITH FIRST-LEVEL ALGORITHM

Dataset EA
best

EA
avg.

TS
best

TS
avg.

Both
best

Both
avg.

1 176 191 168 181 166 187
2 135 163 174 195 145 156
3 201 249 228 245 192 210
4 551 610 511 536 510 570
5 391 412 388 391 357 386
6 207 257 201 226 175 242
7 159 199 148 158 144 163
8 186 206 211 241 197 254
9 212 281 217 247 184 255
10 167 199 159 178 157 163
11 186 199 179 187 163 176
12 254 263 243 251 231 244
13 295 301 271 289 262 278
14 281 297 269 285 261 278
15 184 190 155 179 164 176

Tabu search shows better average result, although not all

“best” results has been better than these of the EA. Probable
cause of this phenomenon is that tabu search operates in more
organized and predictable way, than EA. That comes with the
price – EA is more likely to find a better solution by pure
chance. The combination of TS and EA shows improvement
in both best and average results – incorporating tabu search
phase speeds up the search process. It is possible that using
only tabu search would produce better overall solution but
with considerably larger computational cost (spent on looking
through tabu list).

B. Experiments with Second-Level Algorithm
For all the experiments described in this chapter second-

level EA had a population size of 100, and the first-level of
500. Second-level EA ran for 1000 iterations, and then the
best 10 sets of parameters were selected to run first-level
algorithm for additional 5000 generations. This allows
achieving best possible results from first-level algorithm
without time overhead from second-level algorithm searching
through solution space.

Table II presents results archived by ITTC participants,
which will be used as comparison to the method presented in
this paper. It has to be noted that the best results has been
gathered from all the participants and the winner hasn’t
achieved best known solutions for all the problem instances.
The experiment has been conducted fifty times and the table II
shows averages of the best result. In all the experiments,
feasible solution(s) has been found for all the problem
instances before second-level algorithm ceased to operate. As
it can be seen, most of the results are better than average of
the ITTC score, but none is near the best score achieved by
competitors. Nevertheless, it has to be emphasized, that the
methods used in ITTC were designed to perform only one
task, and the parameters of their operation were chosen
intentionally to perform that task the most effective way

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:3, 2008

170

possible. On the contrary the method described in this paper is
designed to be fully universal and provide feasible solutions
irrespective of the problem given.

TABLE II

RESULTS OF THE EXPERIMENTS WITH SECOND-LEVEL ALGORITM
Dataset ITTC

best
ITTC

average
Withou

t TS
With
TS

Best
10

with
TS

1 45 137 158 141 130
2 25 87 103 101 93
3 65 150 156 145 139
4 115 289 399 340 320
5 77 248 336 271 264
6 6 143 146 138 136
7 12 145 125 107 104
8 29 129 110 98 92
9 17 123 154 146 138
10 61 153 153 139 128
11 53 148 163 151 146
12 110 206 220 218 211
13 109 234 268 255 248
14 93 229 255 234 227
15 62 149 158 149 136

V. CONCLUSIONS AND FUTURE WORK
The question whether universal, “knowledge-poor” method

is able to perform better or at least comparably well as the
domain-specific one remains open. In terms of computation
time it’s probably not possible, as the general method searches
the parameter space blindly. Nevertheless, universal methods
will always have one distinctive advantage over the
specialized ones – they won’t need laborious and time
consuming process of redesigning and fine-tuning to fit
specific needs. The results of the experiments look appealing
– the method is able to produce satisfactory solutions for
problems from different domains.

Results of second-level algorithm’s operation have to be
looked into – it is possible, that some methods of penalization,
weight assignment and distance measurement may prove
useless for all the problem’s variations and as such they may
be removed from the search space. This would be especially
important in case of personnel scheduling problems (like
doctor’s duty assignment problem described in this paper). In
most cases duty roster changes only slightly from one
planning horizon to another ([9], [17], [26]), so there’s no
need to search through parameter space every time particular
problem class is solved – set of “best” parameters from
previous runs can be used.

REFERENCES
[1] Burke E.K., Petrovic S., Recent research directions in automated

timetabling, European Journal of Operational Research 140 (2002)
[2] Burke E. K., Newall J. P., Weare R. F., A Simple Heuristically Guided

Search for the Timetable Problem, Proceedings of the International
ICSC Symposium on Engineering of Intelligent Systems, ICSC
Academic Press, Nottingham (1998)

[3] Newall J. P., Hybrid Methods for Automated Timetabling, PhD Thesis,
Department of Computer Science, University of Nottingham (1999)

[4] Do M.B., Kambhampati S., Planning as constraint satisfaction: Solving
the planning graph by compiling it into CSP, Artificial Intelligence 132,
2001

[5] Yakhno T., Tekin E.: Application of Constraint Hierarchy to
Timetabling Problems, Proceedings of EurAsia-ICT 002, Springer-
Verlag, 2002

[6] Colorni A., Dorigo M., Maniezzo V., Genetic Algorithms and Highly
Constrained Problems: the Time-Table Case, Proceedings of the First
International Workshop on Parallel Problem Solving from Nature,
Lecture Notes in Computer Science 496 (1990)

[7] Myszkowski P., Norberciak M., Evolutionary Algorithms for Timetable
Problems, Annales UMCS, Sectio Informatica, vol. I, Lublin (2003)

[8] Ross P., Corne D., Comparing GA, SA and Stochastic Hillclimbing on
Timetabling Problems. Evolutionary Computing; AISB Workshop,
Sheffield 1995, Selected Papers, ed. T. Fogarty, Springer-Verlag Lecture
Notes in Computer Science 993 (1995)

[9] Valouxis C., Housos E., Hybrid optimization techniques for the
workshift and rest assignment of nursing personnel, Artificial
Intelligence in Medicine 20 (2000)

[10] Burke E.K., MacCarthy B., Petrovic S., Qu R., Structured cases in case-
based reasoning – re-using and adapting cases for timetabling problems.
Knowledge-Based Systems 13 (2000)

[11] Foulds L.R., Johnson D.G., SlotManager: a microcomputer-based
decision support system for university timetabling, Decision Support
Systems 27, 2000

[12] Lee S.-J., Wu C.-H., CLXPERT: A Rule-Based Scheduling System,
Expert Systems With Applications, Vol. 9, No. 2, 1995

[13] Carter M.W., A Comprehensive Course Timetabling and Student
Scheduling System at the University of Waterloo, E. Burke, W. Erben
(Eds.): Proceedings of PATAT 2000, Springer-Verlag (2001)

[14] McCollum B., The Implementation of a Central Timetabling System in a
Large British Civic University, E. Burke, M. Carter (Eds.): Proceedings
of PATAT 1997, Springer-Verlag (1998)

[15] Ross P., Hart E., Corne D., Some Observations about GA-Based Exam
Timetabling, E. Burke, M. Carter (Eds.): Proceedings of PATAT 1997,
Springer-Verlag (1998)

[16] Socha K., Knowles J., Sampels M., A MAX-MIN Ant System for the
University Course Timetabling Problem, Proceedings of ANTS 2002,
Springer-Verlag (2002)

[17] Norberciak M., Artificial Intelligence Technique for Planning Duties in
Hospital , Journal of Medical Informatics & Technologies, Vol. 7 (2004)

[18] International Timetabling Competition, Available:
http://www.idsia.ch/Files/ttcomp2002/ (2002)

[19] Norberciak M., Feasible genotype initialization for evolutionary
timetabling, Proceedings of 9th International Conference on Soft
Computing MENDEL 2003, Brno (2003)

[20] Michalewicz Z., Genetic Algorithms + Data Structures = Evolution
Programs, Springer Verlag (1996)

[21] Corne D., Ross P., Peckish Initialisation Strategies for Evolutionary
Timetabling. Proceedings of the First International Conference on the
Theory and Practice of Automated Timetabling, Napier University,
Edinburgh (1995).

[22] Corne D., Ross P., Fang H.-L., Improving Evolutionary Timetabling
with Delta Evaluation and Directed Mutation, Parallel Problem Solving
from Nature III, Springer Verlag (1994)

[23] Burke E.K., Petrovic S., Meisels A., Qu R., A Graph-Based Hyper
Heuristic for Timetabling Problems, Computer Science Technical Report
No. NOTTCS-TR-2004-9, University of Nottingham (2004)

[24] Dowsland K.: Nurse scheduling with Tabu Search and Strategic
Oscillation. EJOR 106, (1998)

[25] Di Gaspero and Schaerf A. Tabu search techniques for examination
timetabling. In: Burke E and Erben W (eds). The Practice and Theory of
Automated Timetabling: Selected Papers from the 3rd International
Conference. Lecture Notes in Computer Science, Vol. 2079. Springer-
Verlag, Berlin, (2000).

[26] Ernst A.T., Jiang H., Krishnamoorthy M., SIER D., Staff scheduling and
rostering: A review of applications, methods and models, European
Journal of Operational Research 153 (2004)

