
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

254

Abstract—Higher-order Statistics (HOS), also known as
cumulants, cross moments and their frequency domain counterparts,
known as poly spectra have emerged as a powerful signal processing
tool for the synthesis and analysis of signals and systems. Algorithms
used for the computation of cross moments are computationally
intensive and require high computational speed for real-time
applications. For efficiency and high speed, it is often advantageous
to realize computation intensive algorithms in hardware. A promising
solution that combines high flexibility together with the speed of a
traditional hardware is Field Programmable Gate Array (FPGA). In
this paper, we present FPGA-based parallel architecture for the
computation of third-order cross moments. The proposed design is
coded in Very High Speed Integrated Circuit (VHSIC) Hardware
Description Language (VHDL) and functionally verified by
implementing it on Xilinx Spartan-3 XC3S2000FG900-4 FPGA.
Implementation results are presented and it shows that the proposed
design can operate at a maximum frequency of 86.618 MHz.

Keywords—Cross moments, Cumulants, FPGA, Hardware
Implementation.

I. INTRODUCTION

IGHER-ORDER STATISTICS (HOS) (greater than two) also
known as cumulants, cross moments and their associated

Fourier transforms known as higher-order spectra or poly
spectra, are commonly used as powerful signal processing tool
in diverse application domains such as digital
communications, sonar, radar, speech, biomedical,
geophysical, plasma physics, image processing, signal
reconstruction, array processing, harmonic retrieval, time-
delay estimation, adaptive filtering and blind equalization [1]–
[6] etc.

HOS, unlike the second-order statistics are well known for
their robustness to additive Gaussian noise and their ability to

Manuscript received May 6, 2008; revised June 6, 2008. This work was
supported by the Research Centre, College of Engineering, King Saud
University under research grant no. 426/7.

 Syed Manzoor Qasim is with the Electronics Group, Department of
Electrical Engineering, College of Engineering, P.O.Box-800, King Saud
University, Riyadh 11421, Kingdom of Saudi Arabia (phone: +966-1-
4676774; fax: +966-1-4676757; E-mail: smanzoor@ ksu.edu.sa).

Saleh Alshebeili is with the Communication Group, Department of
Electrical Engineering, College of Engineering, King Saud University,
Kingdom of Saudi Arabia (E-mail: dsaleh@ksu.edu.sa).

Shuja Abbasi, Bandar Almashary and Ateeq Ahmad Khan, are with the
Electronics Group, Department of Electrical Engineering, College of
Engineering, King Saud University, Kingdom of Saudi Arabia (E-mail:
{abbasi,bmashary,akhan}@ksu.edu.sa).

preserve phase information. However, the computational
complexity involved in the estimation of HOS far exceeds that
of conventional second-order statistics because HOS are
multidimensional functions [6].

Traditionally, Digital Signal Processing (DSP) algorithms
are coded in C language or MATLAB, and implemented on a
general purpose (programmable) DSP chips for low-rate
applications. For moderate rates, special purpose DSP chips
are used. However, for higher rates the software
implementation is transformed either manually or compiled
automatically into a high-level hardware description language
such as VHDL or Verilog and implemented in an Application
Specific Integrated Circuit (ASIC) or Field Programmable
Gate Array (FPGA). General purpose DSP chips often lack
the performance necessary for moderate sampling rates, and
ASIC approaches are limited in flexibility and may not be cost
effective for many applications. Recently, FPGAs have
become an attractive alternative for realization of computation
intensive algorithms.

Recent advancement in FPGA technology has resulted in
enormous possibilities for the implementation of sophisticated
algorithms of high complexity, in a variety of important
applications, by using low cost, high performance and high
speed reconfigurable hardware. FPGAs have become one of
the prevailing technologies for fast prototyping and
implementation of digital systems. Being dynamically
reconfigurable, FPGAs provide additional interesting features
to implement complex algorithms in hardware with
performance that exceeds both general-purpose and DSP
implementations.

In hardware design community, it is well known fact that
by assigning computation intensive tasks to hardware (FPGA)
and exploiting the parallelism in algorithms yields a
significant speedup in computation time. This paper presents
an FPGA based architecture for high speed computation of
third-order cross moments. This paper exploits the inherent
parallelism of FPGA technology as well as the algorithm
which is based on the idea of formulating the computation of
cross moments as a series of matrix multiplication operations
[7].

The remainder of the paper is organized as follows. Section
II describes the related work done in this area. The
architecture of Spartan-3 FPGA is described briefly in Section
III. Algorithm for the computation of third-order cross
moments is discussed in Section V. In Section VI, we discuss
the architecture for the computation of third-order cross

FPGA Based Parallel Architecture for the
Computation of Third-Order Cross Moments
Syed Manzoor Qasim, Shuja Abbasi, Saleh Alshebeili, Bandar Almashary and Ateeq Ahmad Khan

H

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

255

moments. FPGA implementation results are summarized in
Section VI. Finally, conclusions are drawn in section VII.

II. RELATED WORK

During the last few years substantial amount of work has
been generated towards the design and development of
application specific systems to accelerate the computation of
higher-order statistics using Very Large Scale Integration
(VLSI) architectures and other emerging technologies [5]–
[10]. However, to the best of our knowledge, none of the
previous work has used FPGA for the computation of third-
order cross moments.

Ahmed et al. [5] presented a computationally efficient
VLSI architecture for the computation of third-order
cumulants. Their architecture is based on the systolic array
and implemented with 1.0 μm CMOS technology. Their
design operates at a speed of 5.2 MHz. Another efficient
approach for computing third-order cumulants based on
matrix multiplications was presented by Turaigi et al. [6].
They used fast systolic array system to compute third-order
cumulants.

Alshebeili [7] presented a novel approach based on matrix
multiplication for the computation of higher order cross
moments. The computation of cross moments was formulated
as a series of matrix multiplication operations to take
advantage of well established systolic array techniques for the
computation of matrix multiplication.

Turaigi et al. [8] presented a concurrent systolic array
system for the computation of higher-order moments. The
system was used for the computation of second, third and
fourth-order moments simultaneously. It was implemented in
CMOS VLSI technology with an operating speed of 3.9 MHz.
Aloqeely et al. [9] used a new approach based on matrix
multiplication for the estimation of third-order cumulants
using linear systolic array.

Stellakis et al. [10] used adaptive sliding window time-and-
order recursive algorithm for the computation of higher-order
moments up to the fourth order. The algorithm was once again
mapped to a systolic array.

III. TARGET FPGA ARCHITECTURE

The Spartan-3 FPGA consists of an array of Configurable
Logic Blocks (CLBs), which are the basic elements that can
be programmed to perform various logic functions. Each CLB
is coupled with a programmable interconnect switch matrix
that connects the CLB to adjacent and nearby CLBs [11]–[12].

Each CLB contains four logic slices, where each logic slice
usually consists of two four-input Look Up Tables (LUTs),
two configurable flip-flops, some muxes, and other control
logic. In addition to the CLBs and the switch matrices, the
Spartan-3 FPGA have a number of higher–level logic blocks
such as block RAMs (BRAMs), 18-bit multipliers, digital
clock managers (DCMs) and even CPUs [12].

IV. DESIGN FLOW

An FPGA design flow is the process of turning an FPGA
design into a correctly timed bitstream file used to program

the FPGA. In order to realize any algorithm on an FPGA it
must be programmed (configured) first. To achieve this, a
design methodology is adopted. Usually, design entry is done
using hardware description language (HDL) such as VHDL
and Verilog. In this paper, the design entry is done using
VHDL. The objective is to make the system description
independent of the physical hardware such that it can be used
on other FPGAs and even on Application Specific Integrated
Circuits (ASICs). Once a design has been completed it is
simulated to verify the correct operation. A netlist is generated
from the design and is mapped onto the FPGA using
synthesis, place and route and optimizing tools. Mapping
produces a bit-stream file that is used to program the FPGA
[12]. The steps followed are summarized in Fig. 1.

V. PROBLEM FORMULATION

In this section, we discuss the basic definition and
formulation of third-order cross moments. The third-order
cross moment function m3 of a stationary random process x(n)
with samples x0(n), x1(n) and x2(n) is defined as [1]:

 m3 (1 , 2) = E{ x0(n) x1(n + 1) x2(n + 2)} (1)

where, E{·} denotes statistical expectation [1]. If x(n) is a
zero-mean stationary process, then the third-order cross
moments are identical to the third-order cross cumulants and
are computed from the given formula [2].

 m3 (1 , 2) =
2

1

)(n)x(n x(n)x1
22110

l

lnN
 (2)

where, N is the length of each data record, l1 = max {0, – 1, –
2}, and l2 = min {N – 1, N – 1 – 1, N – 2 – 1}.

Fig. 1 Design Flow

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

256

In this paper, third-order cross moments are computed
based on the idea of converting (2) into matrix multiplication
[7]. Let Mi be a square matrix whose elements are samples of
third-order cross moments defined in (2). Mi is given by (3)
where i = q, q + 1,…, q, and q is the maximum lag of third-
order cross moment function.

 Mi =

),,(),1,(),,(

),,1(),1,1(),,1(
),,(),1,(),,(

333

333

333

iqqNmiqqNmiqqNm

iqqNmiqqNmiqqNm
iqqNmiqqNmiqqNm

 (3)

By substituting (2) into (3), it can be seen that Mi can be
written as

 Mi = XYiZ (4)

where, X is a (2q + 1) x N rectangular matrix which is given
by (5).

X =

0)2()12()1()(

0)2()1(
)1()1()0(
)2()0(0

)()1()0(0
)1()0(000

1111

11

111

11

111

11

qxqxqxqx

xx
Nxxx
Nxx

qNxxx
qNxx

 (5)

Z =

00)1()()1(

)2()1(
)2()1()0(

)12()0(0

)()1()0(00

222

22

222

22

222

NxqNxqNx

xx
qxxx

qxx

qxxx

 (6)

Z is an N x (2q + 1) rectangular matrix which is given by
(6) and Yi is a diagonal square matrix whose elements are
x0(n)·x3(n + i), where n = 0, 1, …, N 1. X and Z are Hankel
matrices. Thus the computation of third-order cross moment
function is reduced to the computation of (2q + 1) different
matrices whose elements are obtained by multiplying three
matrices as given in (4).

VI. ARCHITECTURAL DESIGN

Third-order cross moments are evaluated by computing the
entries for matrix Mi for different values of i. The entries for
matrix Mi can be calculated by performing the matrix
multiplication XYiZ. The system block diagram for the
computation of third-order cross moments is shown in Fig. 2.

It consists of two arrays MM1 and MM2. The first array
MM1 performs the multiplication of Hankel matrix X by
diagonal matrix Yi and feeds the results to array MM2. The
second array MM2, on the other hand multiplies XYi by Z.

We use the 2D systolic array based architecture as shown in
Figs. 3 and 4 for the matrix multiplication. Systolic arrays
speedup computationally intensive algorithms with inherent
parallelization, by exploiting data parallelism. The major
features of systolic array are: (1) simple and regular design;
(2) concurrent design; and (3) nearest neighbor
communication. FPGAs can be used efficiently to implement

fine grain systolic arrays since they inherently possess the
same regular structure.

Fixed point numbers are used for the elements of the
matrices. Matrix Yi is a diagonal square matrix with entries
x0(0)·x3(i), x0(1)·x3(1 + i), x0(2)·x3(2 + i), …x0(n)·x3(N-1 + i),
where x0(0)·x3(i) is the non zero element in the first row,
x0(1)·x3(1 + i) is the non zero element in the second row, and
so on.

Multiplying the Hankel matrix X by the diagonal square
matrix Yi is equivalent to multiplying the first diagonal
element by the entries of first row of X, the second diagonal
element by the entries of the second row of X and so on.

Figs. 3 and 4 shows the systolic architecture for array MM1
and MM2 for N1 = 3 and N2 = 3 respectively. MM1 and MM2
consist of nine identical Processing Elements PE1 and PE2
respectively. Each processing element PE1 consists of
multiplier whereas PE2 contains Multiply-Accumulate (MAC)
unit and each MAC unit consists of a multiplier, adder, and a
register for storage. 2’s complement method is used for
negative numbers.

The function of each PE1 in MM1 array is to multiply the
diagonal element of Yi [Y11, Y22, Y33] by one element of
matrix X during each clock period. First column PE1s are
responsible for producing first column of the product XYi
referred to as W in the Fig. 3, second column generates the
second column and so on. The entries are stored in an output
buffer to be used later by next array MM2.

Similarly, array MM2 as shown in Fig. 4 performs the final
multiplication of (XYi) with Z i.e., WZ using the same
technique as discussed for array MM1. The elements of matrix
Mi represent the samples of third-order cross moments. For N
= 3, Mi is represented in matrix form as (7).

 Mi =

333231

232221

131211

mmm
mmm
mmm

(7)

P = N2 + N2 = 2 N2 (8)

The total number of PEs, P required for the computation of
third-order cross moments depends on N. The algorithm
formulated as product of three matrices becomes
computationally intensive [7] and the complexity further
increases with the parameter q and number of samples N. The
simulation results of the proposed system after FPGA
implementation are shown in Fig. 5.

Fig. 2. Block Diagram

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

257

Fig. 3 Systolic Architecture of Matrix Multiplier MM1 Fig. 4 Systolic Architecture of Matrix Multiplier MM2

Fig. 5 Simulation Results

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

258

VII. FPGA IMPLEMENTATION RESULTS

The algorithm is coded in VHDL and realized in FPGA
using Xilinx ISE 9.1i to synthesize and place-and-route the
design. Xilinx ISE simulator is used to verify the design in
simulation before it is implemented on Xilinx Spartan-3
FPGA. Because of their exceptionally low cost and inherent
reconfigurability, Spartan-3 FPGAs are ideally suited for
signal processing applications such as computation of third-
order cross moments. The design achieves a top frequency of
86.618 MHz.

The proposed architecture shows significant improvement
in speed as compared to existing VLSI architectures [5], [8].
The implementation results generated by Xilinx ISE 9.1i is
listed in Table I.

VIII. CONCLUSIONS

In this paper, an FPGA based architecture for the
computation of third-order cross moments based on novel
matrix multiplication algorithm is presented. The algorithm is
implemented on Xilinx Spartan-3 FPGA, a low cost FPGA
that are now used in applications that were once relegated
strictly to ASIC domain. The maximum operating speed of the
design as reported by the synthesis tools is 86.618 MHz. The
use of FPGA technology has proven to be an attractive

alternative for efficient and fast computation of third-order
cross moments under real-time constraints.

REFERENCES

[1] C. L. Nikias and A. P. Petropulu, Higher-Order Spectra Analysis: A
Nonlinear Signal Processing Framework. Englewood Cliffs, New
Jersey: Prentice Hall, 1993.

[2] S. A. Alshebeili, “Estimation of higher-order moments via discrete
orthogonal laguerre functions,” in Proc. of 3rd IEEE Int. Conf. on Signal
Processing, vol. 1, Oct. 1996, pp. 11–14.

[3] P. Paajarvi and J. P. Leblanc, “Online adaptive blind deconvolution
based on third-order moments,” IEEE Signal Processing Letters, vol. 12,
No.12, Dec. 2005, pp. 863 866.

[4] L. Wenkai, “Blind channel estimation using zero-lag slice of third-order
moment,” IEEE Signal Processing Letters, vol.12, No.10, Oct. 2005, pp.
725 727.

[5] R. E. Ahmed, M. A. Al-Turaigi, and S. A. Alshebeili, “VLSI
Architecture for computing third-order cumulants,” International
Journal of Electronics, vol. 77, No. 1, 1994, pp. 95-104.

[6] M. A. Al-Turaigi and S. A. Alshebeili, “A high-speed systolic array for
computing third-order cumulants,” Canadian Journal of Electrical and
Computer Engineering, vol. 22, no. 1, 1997, pp.19-23.

[7] S. A. Alshebeili, “Computation of higher-order cross moments based on
matrix multiplication,” Journal of the Franklin Institute, 338, 2001, pp.
811-816.

[8] M. A. Al-Turaigi, R. E. Ahmed, and S. A. Alshebeili, “A concurrent
system for the computation of higher-order moments,” Journal of
Circuits, Systems and Signal Processing, vol. 18, no. 2, 1999, pp. 111
130.

[9] M. A. Aloqeely, M. A. Al-Turaigi, and S. A. Alshebeili, “A new
approach for the design of linear systolic arrays for computing third-
order cumulants,” Integration: the VLSI Journal, vol. 24, 1997, pp.
1 17.

[10] H. M. Stellakis and E.S. Manolakos, “Adaptive computation of higher
order moments and its systolic realization,” International Journal of
Adaptive Control and Signal Processing, vol. 10, 1996, pp. 283–302.

[11] T. Tuan, S. Kao, A.Rahman, S. Das, and S.Trimberger, “ A 90 nm low-
power FPGA for battery-powered applications,” in Proc. of 14th

ACM/SIGDA Int. Symp. on FPGAs, Feb. 2006, pp. 3-11.
[12] S. M. Qasim and S. A. Abbasi, “A Novel FPGA-based approach for

digital waveform generation using orthogonal functions,” Journal of
Circuits, Systems and Computers, vol.16, no. 6, 2007, pp. 895-909.

Syed Manzoor Qasim received B.Tech and M.Tech Degrees in Electronics
Engineering from Zakir Hussain College of Engineering and Technology,
Aligarh Muslim University, India in 2000 and 2002 respectively. Later in
2002, he joined the Electrical Engineering Department, King Saud University
as a Researcher. His areas of interest include Digital VLSI System Design and
Reconfigurable computing using FPGAs. He is a member of the Institution of
Electronics and Telecommunication Engineers, India.

Shuja Abbasi (M’89–SM) is a Professor in the Electrical Engineering
Department, King Saud University. He obtained the B.Sc and M.Sc Degrees
in Electrical Engineering from Aligarh Muslim University, India in 1970 and
1972 respectively. He received the Ph.D Degree in Microelectronics from
University of Southampton, England in 1980. He is a senior member of IEEE
and Fellow of Institution of Electronics and Telecommunication Engineers,
India.

Saleh Alshebeili (S’89–M’91–SM’96) is a Professor in the Electrical
Engineering Department, King Saud University. He received the B.Sc and
M.Sc Degrees in Electrical Engineering from King Saud University in 1984
and 1986, respectively. He received the Ph.D. Degree in Electrical
Engineering from University of Toronto, Ontario, Canada, in 1992. His
research interests are in the area of Signal Processing with applications to
Communications, Speech, and Image Processing. He is a senior member of
IEEE.

Bandar Almashary is an Associate Professor in the Electrical Engineering
Department, King Saud University. He received the BS and MS Degrees in
Electrical Engineering from King Saud University, Saudi Arabia. He received
the Ph.D Degree in Optoelectronics from University of Pittsburgh, USA in
1996. He is a member of IEEE.

TABLE I
IMPLEMENTATION RESULTS ON XILINX SPARTAN-3 FPGA DEVICE

XC3S2000 FG900- 4

Resources Utilization

Number of Slices 144 out of 20480

Number of 4 Input LUTs 270 out of 40960

Number of Multipliers (18X18s) 36 out of 40

Minimum Period (ns) 11.545

Maximum Frequency (MHz) 86.618

Power Consumption (mW) 100

