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Abstract—The Aggregate Production Plan (APP) is a schedule of 

the organization’s overall operations over a planning horizon to 
satisfy demand while minimizing costs. It is the baseline for any 
further planning and formulating the master production scheduling, 
resources, capacity and raw material planning. This paper presents a 
methodology to model the Aggregate Production Planning problem, 
which is combinatorial in nature, when optimized with Genetic 
Algorithms. This is done considering a multitude of constraints of 
contradictory nature and the optimization criterion – overall cost, 
made up of costs with production, work force, inventory, and 
subcontracting. A case study of substantial size, used to develop the 
model, is presented, along with the genetic operators. 
 

Keywords—Aggregate Production Planning, Costs, and 
Optimization. 

I. INTRODUCTION 
GGREGATE Production Plans (APP) concern about the 
allocation of resources of the company to meet the 

demand forecast. Optimizing the APP problem implies 
minimizing the cost over a finite planning horizon. This can 
be done by adjusting production load as well as inventory and 
employment levels over a certain period of time to achieve the 
lowest cost while satisfying demand and considering the 
specific constraints for each particular case (company 
dependent). A good APP has the capacity to positively 
influence the bottom line and also permit a long-term view of 
the organization performance. This avoids having to make 
short-term decisions and fire-fight problems, adversely 
affecting the organization’s long term perspective [1]. 

Managers have access to the break-down monthly or 
weekly demand forecast for the next planning horizon, 
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normally 1 year. In practice, managers capitalize on the 
forecasted demand to achieve long-run profitability. They face 
major constraints in the number of workers, facilities and 
plant capacity to fulfill the demand. Therefore, not only all the 
demand must be met in each planning period (month/week), 
but costs have to be minimized. Managers may decide if 
meeting market demand results in lower long-term profit, to 
backorder and/or ask the subcontractors to do a part of the 
products. The APP problem deals with how to employ the 
available workforce, resources and facilities, including 
external contractors, to best satisfy the demand which is 
defined through APP [1].  

Although a number of production planning approaches have 
been developed in order to improve planning automation and 
increase efficiency of production planning [2], but a lot of 
problems in the area of production planning are subject to 
highly complex constraints which make them very difficult to 
solve using traditional optimization methods and approaches. 
Despite the importance of APP which forms the basis for the 
formulation for all other schedules and materials management, 
the results of the APP optimization are far from perfect, 
leaving way to major improvements. 

This paper uses Genetic Algorithm (GA), and presents an 
optimization approach to APP modeling, which permits the 
search for an optimum, while considering, simultaneously, a 
large number of constraints of contradictory nature. A realistic 
case study illustrates the model and the development of the 
GA to an APP problem with the conditions found in an 
industrial context is presented. 

II. LITERATURE REVIEW 
The APP problem considering minimum changes in 

workforce level as well as inventory and backorders 
minimization simultaneously was solved for an 8-period 
planning horizon [3]. In 1998, the APP problem was solved 
using Mixed Integer Programming and considering different 
optimization criteria, including revenue maximization as well 
as inventory, backorder and set-up cost minimization [4]. 
Baykasoglu added further constraints to the previous models 
such as subcontractor selection and set-up decisions [5]. 

Later on, a number of artificial intelligence approaches, 
alone or combined with mathematical programming models 
have been used to solve the production planning problems 
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considering more constraints. GA, fuzzy logic and stochastic 
programming have been among the most popular ones. 
Among all, Wang and Fang proposed a fuzzy programming 
model to imitate the human decision procedure for production 
planning ended with a family of inexact solutions within an 
acceptable level [6]. A fuzzy multi-objective linear 
programming model for solving the multi-product APP 
decision problem in a fuzzy environment considering 
inventory level, labor levels, capacity, warehouse space and 
the time value of money is presented in [7]. A model to 
optimize the multi-site APP problem by considering a wider 
range of constrains describing a two-stage stochastic 
programming model [8]. 

However, little attention has been given to develop a 
strategy taking into account the many constraints and their 
combination, as they appear in practice. The combination of 
factors simultaneously affecting the quality of the APP is a 
characteristic of real-life problems and their consideration can 
make the difference between a purely academic treatment of 
the subject and a result that can be applied or transferred 
immediately in practice. 

In this paper, a complex and realistic mathematical model is 
built and a GA is developed for its optimization. It goes 
beyond developing heuristics to solve simple strategies to 
optimize the APP. Instead, the approach is general, all 
optimization constraints are implemented into the Fitness 
Function and a penalty is incurred for any suboptimal 
solution. The model contain a large number of practical 
constraints including production cost, labor cost, hiring and 
laying off costs, holding costs (carrying inventory during plan 
period) and subcontracting costs. 

III. RESEARCH METHODOLOGY 
In developing the methodology for modeling and 

optimizing the APP a number of strategies can be and were 
considered: 

Strategy 1: fill the requirements using overtime – workers 
(all or them or only veteran personnel – workers with at least 
one week stage in the company) are used to work for an 
integer number of hours. In this case the inventory and 
contracting out the units to be delivered are 
underutilized/disregarded; 

Strategy 2: fill the un-met requirements using external 
contractors – is a lean, outsourcing strategy in regards to 
keeping inventory, reducing, at the same time the workforce 
available to a minimum; 

Strategy 3: fill requirements using up to the equivalent of a 
given number of weeks output in inventory, by minimizing at 
the same time the variation of workforce. This strategy can 
also minimize the use of contractors, taking advantage 
properties of keeping inventory to increase or keep a service 
level [9]. 

Other strategies or any linear combinations of strategies can 
be developed and the results of their application assessed. 
These strategies can be implemented as heuristics in 

algorithms to optimize the planning process. However, any of 
these strategies is likely to produce desired results – i.e. 
minimum costs - only for a narrow combination of conditions 
and input values, which might appear briefly, as windows - 
during the planning horizon. The use of any set strategy 
would, in this case, be suboptimal in the rest of the planning 
horizon. 

Also, it became obvious that, by using a set strategy, there 
would be a set relation between a number of variables (see 
next section) e.g. production plan in a period, number of 
veteran and new workers, the production, hours worked, 
inventory each day and cumulative inventory and the 
respective costs. 

After examining the results of implementing the strategies 
presented above, it emerged that a better approach would be to 
avoid constraining the planning to just one of these strategies. 
The independent variables in this case are chosen as the 
number of workers each planning period and the number of 
hours worked, with all production and inventory levels 
derived from this. The only constraint imposed is the 
maximum level of inventory, which is a sensible condition in 
practice. 

It was decided to use the evolutionary character of GA to 
determine an optimum result by exploring the whole search 
space. This is the equivalent of finding the best strategy or 
combinations of strategies at any point in time, and varying it, 
as necessary, to produce an optimum result. When choosing 
GA for the optimization process, an important element was 
their capacity to implement any cost function [10]. 

IV. MODELING OF THE APP PROBLEM 
As a realistic model is sought for the APP problem, a 

complex combination of conditions is applied. The list of 
variables is by no means exhaustive, but it incorporates many 
decisions variables, economies of scale, hard constraints and 
costs, etc. 

A. Variables: 

Planning data: 
T - Planning horizon;  
DY - Total forecasted demand in year (units/year); 
t - Each period of time in the planning horizon – granularity 
of the model; 
Nw - Normal working time per week for the company (h); 
DPt - Forecasted demand for each period in the planning 
horizon (units/t); 
DPtmin - The minimum forecasted demand for each period in 
DY (units/t); 
DPtmax - The maximum forecasted demand for each period in 
DY (units/t); 
Pt - Production of current week (units/week); 

Labor costs: 
CRL - Regular wage – including overheads ($/h) 
COL - Overtime wage – including overheads ($/h) 
TL – Normal working time per worker per shift  
PL -  Productivity of a veteran worker (units/h)  
PNL - productivity of a new worker in first week (units/h)  
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Lt - number of full-time permanent labors in period t – 
variable; 
Personnel policy: 

CH - The cost of hiring one labor ($ / Labor) 
CL - The cost of laying off one labor ($ / Labor) 

Plant running costs: 
N – Actual hours company works per week - variable; 
CP - Plant running cost per hour – normal hours ($/h) 
CPO - Plant running cost per hour – overtime ($/h) 

Inventory policy: 
It – inventory level; 
CI - inventory cost to hold a single unit of product at the 
end of each period ($ / unit - period); 
CS - shortage cost per unit associated with subcontracting 
($/unit); 

 
B. Constraints 
The assumptions listed below are implemented as a list of 

feasibility constraints. Violating any of these constraints 
would produce an infeasible solution: 

1. The company works at least Nw
 hours each week; 

2. The number of hours worked in a week is integer; 
3. A worker will only produce an integer number of units 

per week. If the worker cannot produce a whole unit, 
he/she will be reassigned during that time for 
maintenance work (paid – equivalent cost for the time 
worked - but no direct output is obtained);   

4. The company has to deliver all products corresponding to 
the demand each week (service level 100%); 

5. The company uses the products made/kept/contracted out 
to satisfy demand in the following order: 

A. units made that week by the workforce; 
B. the shortage will be covered, if possible, from 
inventory; 
C. if the company is still short of units, they will be 
outsourced to contractors; 

6. All excess products will be stored in inventory;  
7. In the first week of the planning horizon, the company 

has a number of workers and a number of items in storage 
in inventory equal with the average number of workers 
per week to fulfill average demand and the equivalent of 
an average week of production, respectively; 

8. The capacity of the warehouse storing the inventory is 
maximum three times the average weekly output; 

The assumptions above, very realistic in any manufacturing 
context, have also the potential to significantly simplify the 
modeling of the problem and the implementation of the 
algorithm. 

It is important to point out that assumption 5 in combination 
with assumption 8, in fact, guide the decisions regarding the 
make-or-buy of products or, on the other hand, rely on your 
work force or adopt a very flexible hire-or-fire policy for 
employed personnel. As it is set, it tends to favor the existing 
workforce, with contracting out used only as a last resort. 
However, this set of assumptions can be modified to be 
aligned with the management's general strategies and the 
company's external context. 

V. CHROMOSOME ENCODING 
The chromosome encoding is presented with relation to the 

case study below. The chromosomes encode the solutions of 
the problem, in this case assembling the independent variables 
of the problem – namely the number of workers employed and 
the number of hours worked each period. The planning 
horizon was chosen 1 year with a granularity of the model of 1 
week. This implies the chromosome is an array of 52 x 2 
variables (104 independent variables). 

The chromosome is illustrated in Fig. 1 part A, in a vertical 
format for space-saving purposes. For reference, the number 
of the week is displayed at the left of the chromosome. The 
number of hours worked is minimum 80, as explained in the 
previous section and set in the case study. 

VI. THE GENETIC ALGORITHM 
The structure of the GA is classic [10], with genetic 

operators adapted to the particularities of the problem. Instead 
of working with strings, they are tailored to work with arrays. 
They are illustrated in the following sections. 

1.  Handling Constraints 

The probability to obtain an infeasible chromosome by 
random genetic operators (GO) is reduced as long as the 
operators are implemented correctly, taking into account the 
set of constraints detailed in Section 4. The major source of 
infeasibility is constraint 8. A chromosome has to be tested for 
feasibility after generation or application of a GO (crossover 
or mutation). The repair strategy proposed and tested 
successfully checks the level of inventory and, if constraint is 
not satisfied, to reduce the number of workers at the point of 
infeasibility (for the week when the inventory level exceeds 
three times the average weekly output) until the gene becomes 
feasible. Even if rare, it is possible to have more than one 
infeasible gene in a chromosome. In this case, the repair is to 
be done successively, from the first to the last week. 

2.  Crossover 

The crossover is, in principle, a simple cut and swap 
operation. Figure 1 part B presents an example of crossover. 
In this example, parents P1 and P2, randomly selected from 
the initial operation, undergo the crossover. The cut point is 
randomly selected after week 13, and the two bottom-parts of 
the parents' genetic information are exchanged. After the 
operation, a feasibility check/repair is necessary. 

3.  Mutation 

The mutation operator is, again, classic in its principle. An 
example of mutation operator is presented in Figure 2 part B 
(M1 and M2). In this example, a randomly selected 
chromosome of the population undergoes mutation. The 
genetic information from weeks 15 and 39, randomly selected, 
is swapped. After mutation, the chromosome has to undergo a 
feasibility check/repair operation. 
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week Lt  N      P1      P2      C1       C2
1 228 80  268 80  214 85  268 80  214 85
2 292 81  217 83  269 81  217 83  269 81
3 158 87  352 87  308 86  352 87  308 86
4 117 86  267 89  317 86  267 89  317 86
5 170 88  377 88  268 84  377 88  268 84
6 336 81  392 81  350 80  392 81  350 80
7 333 87  224 82  308 86  224 82  308 86
8 246 82  205 86  207 89  205 86  207 89
9 215 80  328 82  239 85  328 82  239 85
10 5 82  235 80  297 86  235 80  297 86
11 42 81  360 86  204 82  360 86  204 82
12 163 87  248 82  376 85  248 82  376 85
13 238 87  372 84  320 83  372 84  320 83
14 247 89  349 83  330 80  330 80  349 83
15 73 86  374 83  248 89  248 89  374 83
16 112 80  260 86  204 87  204 87  260 86
17 53 88  344 87  399 87  399 87  344 87
18 337 83  273 81  243 89  243 89  273 81
19 215 84  221 81  204 88  204 88  221 81
20 224 83  355 80  359 83  359 83  355 80
21 76 81  271 83  342 88  342 88  271 83
22 255 80  336 82  313 80  313 80  336 82
23 277 86  398 87  321 88  321 88  398 87
24 116 85  259 87  298 82  298 82  259 87
25 4 87  260 86  278 83  278 83  260 86
26 173 84  254 88  283 84  283 84  254 88
27 129 88  241 82  321 88  321 88  241 82
28 159 80  387 86  381 86  381 86  387 86
29 291 85  332 84  260 85  260 85  332 84
30 288 80  247 89  246 87  246 87  247 89
31 134 85  228 81  266 89  266 89  228 81
32 132 85  340 83  310 80  310 80  340 83
33 27 82  264 81  256 88  256 88  264 81
34 292 88  363 83  274 89  274 89  363 83
35 39 85  285 84  226 86  226 86  285 84
36 309 80  202 85  260 83  260 83  202 85
37 119 82  257 83  344 81  344 81  257 83
38 254 86  321 88  266 88  266 88  321 88
39 379 87  320 83  239 83  239 83  320 83
40 223 83  244 84  329 85  329 85  244 84
41 236 83  355 85  270 83  270 83  355 85
42 379 80  340 83  218 86  218 86  340 83
43 313 84  375 89  346 87  346 87  375 89
44 21 81  212 84  299 89  299 89  212 84
45 161 86  398 85  230 85  230 85  398 85
46 371 83  227 83  243 81  243 81  227 83
47 258 88  203 84  263 87  263 87  203 84
48 217 82  242 83  341 83  341 83  242 83
49 307 86  237 84  328 81  328 81  237 84
50 295 83  218 88  245 82  245 82  218 88
51 236 84  302 88  320 84  320 84  302 88
52 158 86  338 85  368 87  368 87  338 85

 A        B      
Fig. 1 The chromosome and the crossover operators 

 

 
4.  Evaluation 

The Fitness Function (FF) of each chromosome is 
dependent upon the costs associated with the application of 
the strategy associated with the corresponding particular 
solution. GA has a remarkable ability to incorporate and use 
almost any conceivable type of cost structure [10], [11]. The 
total cost (TC) for a solution/chromosome is the sum of all 
costs attached to operating the company for the next 
forecasting horizon:   

Fig. 2 The chromosome and the mutation operator 
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PC - Production cost – takes into account the normal and 
overtime rate;  

PC = CP          if N ≤ NW; 
PC = CPO  if N ≥ NW 

 
WC - Costs associated with workforce  

WC = WC1t + WC2t  

week Lt N M1   M2
1 228 80 229 80  229 80
2 292 81 329 80  329 80
3 158 87 393 86  393 86
4 117 86 296 89  296 89
5 170 88 361 86  361 86
6 336 81 257 86  257 86
7 333 87 216 80  216 80
8 246 82 333 87  333 87
9 215 80 399 80  399 80

10 5 82 219 87  219 87
11 42 81 250 82  250 82
12 163 87 343 89  343 89
13 238 87 374 86  374 86
14 247 89 311 88  311 88
15 73 86 398 85  211 86
16 112 80 291 84  291 84
17 53 88 305 87  305 87
18 337 83 216 88  216 88
19 215 84 393 89  393 89
20 224 83 296 84  296 84
21 76 81 297 82  297 82
22 255 80 325 86  325 86
23 277 86 320 85  320 85
24 116 85 369 81  369 81
25 4 87 221 84  221 84
26 173 84 290 83  290 83
27 129 88 248 84  248 84
28 159 80 273 83  273 83
29 291 85 388 86  388 86
30 288 80 345 89  345 89
31 134 85 240 84  240 84
32 132 85 312 84  312 84
33 27 82 233 85  233 85
34 292 88 390 80  390 80
35 39 85 211 86  398 85
36 309 80 362 82  362 82
37 119 82 260 87  260 87
38 254 86 317 89  317 89
39 379 87 222 86  398 85
40 223 83 258 82  258 82
41 236 83 378 80  378 80
42 379 80 242 81  242 81
43 313 84 400 87  400 87
44 21 81 356 87  356 87
45 161 86 380 83  380 83
46 371 83 210 88  210 88
47 258 88 258 86  258 86
48 217 82 399 87  399 87
49 307 86 356 82  356 82
50 295 83 375 88  375 88
51 236 84 247 88  247 88
52 158 86 225 80  225 80

           A                                        B 
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WC - made of wages (WC1) + hiring and firing costs 
(WC2); 

 
WC1 = N * Lt * CRL if N ≤ NW;   - normal working time 
WC1 = Lt * N * CRL + Lt * (Nw * N * COL if N ≥ NW;   - if 
overtime is needed 

 
WC2 = CH * (Lt – Lt-1) if Lt ≥ Lt-1    - if workers hired  
WC2 = CL * (Lt-1 – Lt) if Lt < Lt-1    - if workers fired 

 
IC – Inventory keeping costs –only if inventory is positive; 
IC = (It-1 + Pt + DPt) * CI if IC ≥ 0 
IC = (Previous week inventory + Production of current week – 
Forecasted demand) * inventory keeping costs;  
 

Where 
It-1 – previous week's inventory – given for first week, 
calculated subsequently; 
P = N * Lt * PL if Lt ≤ Lt-1 – production by veteran 
workers 
P = (N * Lt-1 * PL) +N * (Lt – Lt-1) * PNL if Lt > Lt-1 – 
production by veteran workers and newly hired workers. 
DPt - forecasted demand for each period in the planning 
horizon (units/t) - given; 

 
SC – Costs associated with subcontracting a part of 
production; 

If IC, calculated as above is negative, it has to be covered 
by subcontracting: 
If IC < 0,  SC = IC * CS 

 

5.  Selection 

The stochastic sampling mechanism is used to select the 
next generation of chromosomes, associated with the 
Holland’s proportionate selection or roulette wheel selection 
(Holland, 1975). Because the weighed roulette works for 
maximization of the fitness values and the GA in this case is 
designed to minimize the cost, a simple double transformation 
is applied: the inverse solutions' cost is multiplied with 1010. 
After the GA has been applied, the true costs are restored, 
using the inverse operation – i.e. multiplying the inverse of the 
FF with 1010 [12]. 

VII. A CASE STUDY 
A case study has been developed in conjunction with the 

model presented in last sections. The forecast for the next year 
is broken down in Table I. The case study is based on the 
following data and has co-evolved with the model of the APP 
problem: 

 
 
 
 
 
 
 

TABLE I 
WEEKLY DEMAND FOR THE PLANNING HORIZON 

Week Demand W D W D W D 
1 12000 14 9500 27 10500 40 10000 
2 10500 15 11000 28 11000 41 10000 
3 8000 16 10000 29 11000 42 9500 
4 11500 17 10500 30 11500 43 8000 
5 8000 18 11000 31 10500 44 10500 
6 10000 19 10000 32 8500 45 10500 
7 9000 20 9500 33 10500 46 8500 
8 10500 21 10000 34 9500 47 11000 
9 11500 22 11000 35 8500 48 9000 
10 12000 23 12000 36 10000 49 8500 
11 8000 24 8000 37 8000 50 8500 
12 11000 25 9000 38 11500 51 11000 
13 8500 26 12000 39 10000 52 10000 

 
T = 1 year; 
DY = 520000 units; 
t = 1 week; 
Nw = 80h/week (two 8 hour shifts per day, 5 days/week); 
DPt = forecasted demand for each period in the planning 
horizon (units/t) – in Table 1; 
DPtmin = 8000 units; 
DPtmax = 12000 units; 
Pr = 130 units/h; 
CRL = $ 20/h;  
COL = = $ 30/h; 
TL = 40 h/week; 
PL = 1 unit/h; 
PNL = 0.7 unit/h; 
CH = $ 800;  
CL = $ 1500; 
CP = $ 2600/h;  
CPO = $3900/h; 
CI = $ 10 per week per unit; 
CS = $ 80/unit up to 100 units/week; 
CS = $ 60/unit over 100 units/week; 

The values presented above were used to develop and test 
the genetic operators. The cost function is implemented as a 
subroutine composed of the relevant cost modules. The cost 
structure is flexible and can be easily modified to suit any 
similar problem if necessary, since constraints can be varied in 
magnitude and other constrains can be added as required. 

VIII. CONCLUSION 
A complex and realistic model for the optimization of the 

APP has been developed. It incorporates the most important 
constraints and costs currently encountered in a manufacturing 
company. 

The GA for the optimization of the APP is in an advanced 
implementation state. All operators have been developed and 
tested and will be integrated in the full algorithm shortly. 
Preliminary results are promising. 

Further work will address the following:  
- Finalization of the full GA and its testing; 
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- Implementation of a yet more complex cost structure, ideally 
by developing a framework to incorporate all realistic costs 
that can appear in practice;  
- Optimality of results and how they are influenced by the 
relative level of different classes of costs on the strategy to 
employ, patterns of strategies as the level of costs vary; 
- The possibility to address stochastic events and their 
influence on the optimality of the APP. 

ACKNOWLEDGMENT 
As the first author of this paper, I am indebted to Dr. Romeo 

Marian and Prof. Lee Luong for their positive influence in 
conducting this research. I am also very much grateful to my 
dear brother, Mr. Behdad Fahimnia, and whole family 
members for their all-time supports and I dedicate this 
research to them all. I hope this study can add to the body of 
knowledge in Manufacturing. 

REFERENCES   
[1] Meredith, J. R. & Shafer, S. M. "Operations Management for Mbas", 

John Wiley & Sons Inc., New York, 2001. 
[2] Tempelmeier, H. & Kuhn, H. "Flexible Manufacturing Systems: 

Decision Support for Design and Operation", Wiley, New York, 1993. 
[3] Masud, A. S. M. & Hwang, C. L., "An Aggregate Production Planning 

Model and Application of Three Multiple Objective Decision Methods", 
International Journal Of Production Research, 18, 741 - 752, 1980. 

[4] Y. F. Hung, & Y. C. Hu, "Solving Mixed Integer Programming 
Production Planning Problems With Setups By Shadow Price 
Information", Computer Operations Research, 25, 1027-1042, 1998. 

[5] A. Baykasoglu, "Aggregate Production Planning Using the Multiple-
Objective Tabu Search", Int J Prod Res, 39, 3685-3702, 2001. 

[6] Wang, D. & Fang, S. C. "A Genetics-based Approach for Aggregated 
Production Planning in a Fuzzy Environment". Ieee Transactions On 
Systems, Man, And Cybernetics, Part A: Systems & Humans, 27(5), 
1997. 

[7] Wang, R. C. & Liang, T. F. "Application of Fuzzy Multi-Objective 
Linear Programming to Aggregate Production Planning", Pergamon 
Press Inc, 2004. 

[8] Leung, S. C. H., Wu, Y. & Lai, K. K. “A Stochastic Programming 
Approach for Multi-Site Aggregate Production Planning”. Journal of the 
Operational Research Society, 57, 123 – 132, 2005. 

[9] Simchi-Levi, D., Kaminsky, P. & Simchi-Levi, E. "Designing and 
Managing the Supply Chain: Concepts, Strategies and Case Studies", 
Mcgraw-Hill Publishers, New York, 2003. 

[10] M. Gen, & R. Cheng, "Genetic Algorithms and Engineering 
Optimization", Wiley, New York, 2000. 

[11] Marian, R. M. "Optimization of Assembly Sequences Using Genetic 
Algorithms", Advanced Manufacturing and Mechanical Engineering, 
Adelaide, Australia, University Of South Australia, 2003. 

[12] Marian, R. M., Luong, L. H. S. & Akararungruangkul, R. "Optimization 
of Distribution Networks Using Genetic Algorithms", Part 2, The 
Genetic Algorithm and Genetic Operators, International Journal of 
Manufacturing and Technology Management, Accepted, In Press, 2006. 

 
 
 

Mr. Behnam Fahimnia was born in Tehran, the capital city of Iran, in 
1978. He graduated with bachelor degree in Mechanical Engineering, Solids 
Designing from Tehran Azad University in 2001 ranked 2nd and granted the 
university fellowship in 1999. At present, he is in the completion of a master 
program in Advanced Manufacturing Technology at the University of South 
Australia. Mr. Fahimnia ranked the top student with High Distinction in all 
subjects and is now in the process of joining the PhD program late 2006. 

He has published several papers in national and international conferences 
and the most recent ones are listed bellow: 

 

• B. Fahimnia, R. Marian, B. Motevallian, M. Mohammad Esmaeil, & K. 
Abhary, “A heuristic method to optimize manufacturing lead time”, to be 
published in the 17th International DAAAM Symposium, Austria, Vienna, 
2006. 

• B. Fahimnia, L. H. S. Luong, M. Mohammad Esmaeil, B. Motevallian, & 
R. Marian, “The negative impacts of globalization on local 
manufacturing”, to be published in the 17th International DAAAM 
Symposium, Austria, Vienna, 2006. 

 
He is also a research assistant at the University of South Australia, School 

of Advanced Manufacturing and Mechanical Engineering, under supervision 
of Dr. Romeo Marian. His research interests are Production Planning, Project 
Planning and Control, Manufacturing Automation, Genetic Algorithms. 

Mr. Fahimnia is a member of Institute of Engineers Australia (IEAus), 
Australia, and Institute of Mechanical Engineers (IMechE), UK. He is now 
registered as a professional engineer in Australia and is a registered employee 
at the University of South Australia, with the School of Advanced Mechanical 
and Manufacturing Engineering. 
 


