International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:1, 2007

String Matching using Inverted Lists

Chouvalit Khancome, and Veera Boonjing

Abstract—This paper proposes a new solution to string matching
problem. This solution constructs an inverted list representing a
string pattern to be searched for. It then uses a new algorithm to
process an input string in a single pass. The preprocessing phase
takes 1) time complexity O(m) 2) space complexity O(1) where m is
the length of pattern. The searching phase time complexity takes 1)
O(m+ ¢) in average case 2) O(n/m) in the best case and 3) O(n) in
the worst case, where @ is the number of comparing leading to
mismatch and n is the length of input text.

Keywords—String matching, inverted list, inverted index,
pattern, algorithm.

I. INTRODUCTION

HE problem of string matching is to locate all occurrences

of a given pattern string p within a given text string T. [7]
and [8] provide a good review on solutions to the problem.
Existing fast solutions, such as [1]-[4], [9], [10], [15], [16],
[18], [19], [22] put a pattern p in an automaton for efficiently
processing an input text. Among them, the best one takes
O(m) time complexity and O(1) space complexity [4] of
preprocessing phase; the searching phase time complexity
takes O(n) in average case and O(n/(m+1)) in the best case
[10]. Another solution to string matching is to use a hashing
function as proposed by [23]. This solution takes O(m) time
complexity and O(1) space complexity. However, it takes
O(mxn) time complexity in searching phase. To improve the
time complexity of the hashing idea, this article proposes to
use an inverted list, a new data structure derived from an
inverted index [5], [20], [21] used in information retrieval
field, as a data structure for storing a pattern string.

In the following sections, we describe the details of the new
solution. Section II gives some basic definitions and details on
preprocessing phase. Section III describes the searching phase
algorithm and shows its time complexity. The conclusion is in
section IV.

II. BASIC DEFINITIONS AND PREPROCESSING PHASE

Let p be a string c;cy,...,c,, Within Z where Z is

all characters over the pattern p.

Authors are with Department of Mathematics and Computer Science,
Faculty of Science, King Monkut’s Institute of Technology at
Ladkrabang, Thailand (e-mail: chouvalit@hotmail.com, kbveera@kmitl.ac.th).

A. Basic Definitions
Definition 1 The keyword @
W, W, W oW

a0 C3,0

of pattern p contains

; where W or W is ¢x and
N0 N1

k=1,2,...,m; | indicates a status of last character in p and 0
otherwise. Therefore,

@ =W, Wy W, W

C30 eml

Example 1 Given pattern p =aabcz, we have W, =a

W, =a, W, =b, W; =cand W, =z Therefore,
2,0 C30 4,0 €51
@ = a03,;0b30Cq0Zs 1.

Definition 2 Given @ = W, W, W ...W_ ofp.

0

The inverted list L of @, denoted by L_, is a set defined as

@ °

L,={w, <1:0>,w, <2:0>,w,:<3:0>
oW omeil >

Example 2 From example 1, the inverted list L of @ is
L, = {a:<1:0>,2:<2:0>, b:<3:0>,¢:<4:0>,:<5:1>}.

Definition 3 An |io/|/qu of W, is a set containing

elements <i:0> or <i:1> whereiis the position of 1.

Definition 4 An inverted-list table 7 is a set of ordered
pair (W, , |%/|/qu).

Example 3 From example 1 and 2, the table 7 of pattern
p=aabcz is shown below.

TABLEI
THE INVERTED LIST TABLE 7 OF P=AABCZ
w, L, /1
a <1:0>,<2:0>
b <3:0>
c <4:0>
z <5:1>

117

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:1, 2007

Theorem 1 The accessing |i0 or |, in the table 7
takes O(1) times.

Proof Let f(x) be a hashing function, W/10 be a key for
access | 4, and W, be the key for access | s, - Suppose the
table 7 implemented by the hash table [11], [17], [18], [19],
accessing to | 4, With f(W,) or accessing | 5, With (W,)
take O(1) times. #

B. Preprocessing Phase

The first step of this algorithm is to create the inverted list
table for z . The next step reads each character from pattern

and updates the inverted list. The detailed algorithm is shown
in Fig. 1.

the SHIFT beyond the normal shift position. We illustrate in
Fig. 2.

Inverted-List Table(p=c,c,,C3,...Cm)
Step A Create table for all alphabet in z

Step B j=1
Step C while (j<=m)

Step D Create inverted list and add to table at alphabet char(Cj)
StepE j€j+l

Fig. 1 Preprocessing algorithm

This phase take O(m) times, we prove in theorem 2. The
space complexity uses O(1), because we use a fixed-size hash
table defined by definition 4.

Theorem 2 Preprocessing phase of string matching using
an inverted list take O(m).

Proof Suppose p=ci,c2,C3,...,Cm. Step A creates the table
and Step B initializes variables. They take O(1). Step C
repeats m round taking O(m) times. Step D is O(1) by theorem
1. Step E take O(1) as in step B. Therefore, preprocessing
phase take O(m)#

III. SEARCHING PHASE

The searching phase employs the navigator variable N as
current comparison position; SHIFT as the shift window; pos
as the required position for current matching; “life” as the
control loop variable used in each of search window; and
SET1, SET2, and SETE as the temporary variables used in
matching.

The first character of each search window is compared with
the last character in the text followed by taking the inverted
list to SETE for reference. If SETE is not empty and matches
with the last character, we scan to compare the text from the
first to the last character, or if SETE does not contain the last
character, we consider the farthest character matching the
SETE and scan for matching again. Every comparison takes
the inverted list to the temporary variable SET1 or SET2,
meanwhile taking the inverted list to these variables. We must
also operate SET1 and SET2. The purpose of the operation is
to search for the sequence of pattern and check the matching.

After finishing each search window, we move the window
to SHIFT and begin to search again. This algorithm can move

Inverted-List-Matching (p=c1,C..Cm, T=tit;...10)
Preprocessing
Create Inverted-List-Table(p)
Searching
Step A N=m SHIFT=2m, pos=1, SET1=¢) , SET2= ¢ , SETE= @) , life = 1
Step B While (SHIFT <= n) and (N<=n) Do
Step C Store all member of row(text[N]) to SETE
StepD IfSETE=¢

Step D1 N=SHIFT, SHIFT=SHIFT+m
Else
Step D2 Analyze SETE for searching the farthest and set it to N,
pos=1, life =1

Step E While SET1 = ¢ and life=1

Step F If pos=1

Step F1 Store inverted list in of row(text[N]) where inverted list
position = pos to SET1, pos=pos+1

Else

Step F2 Store inverted list row(text[N]) where inverted list
position = pos to SET2 if pos!=position of SETE

Step F3 SET1 € SET1 Operate SET2 OR
SET1< SET1 Mask SETE if N=position of SETE and
mark success if terminate status = 1 and remove that
inverted list had already matched and N N+1

Step G IfSET1 1= ¢

Step G1 Set pos=maximum inverted list position+1 in SET1 if

N>=position of SETE and SHIFT €« SHIFT+1 or
others case pos€pos+l

Else

Step G2 life =0

Step H N=SHIFT, SHIFT=SHIFT+m, pos=1, SET1= @,

SET2=¢), SETE=¢) , life =1

Fig. 2 Searching algorithm

Lemma 1 Let SET be the sub table with keys Wﬂu and
w, for accessing | 2 and | P respectively. The access of
| ;, and | ;, in SET using f(W,) or f(W,) function takes

O(1) times.
Proof Let SET is the hash table as the theorem 1 that has a
key W, , and W, 1 for accessing. Therefore, it employs

f(W,) and f(W,) for accessing |/10 and |/qu , respectively.
Therefore, it take O(1) according to theorem 1 #
Lemma 2 To get an entry matching a character at text[N]

from 7 into SET variables takes O(1) times.
Proof Let text[N] be a character from the text T which

can be represented in terms of key W, , or w, - Hence,
pos, pos,
the access | and | in a table 7 takes O(1)
Apos.ﬂ ipos 1
following theorem 1 and takes |, ~and |, into SET
pos.0 pos, 1

variables are O(1) following lemma 1 #

Definition 5 An operation is a searching for a continuity

of and/or |, in SETI to |, —and/or |,

Il‘lsl,o

118

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:1, 2007

in SET2 considering position of &2 prior to/next to 1. The

result is |lbg2.0 and /or |)~b52v1

Example 4 We show the operation example of SET1 and
SET2; where SET1={<2:0>} and SET2={<1:0>, <3:0>}. The
continuity of position 2 to position 3 is <3:0> next to <2:0>
and <1:0> prior to <2, 0> The result is SETl =
{<1:0>,<3:0>}.

Lemma 3 The operation of SET1, SET2 and SETE takes
O(1) times.
Proof Let SETI1, SET2 and SETE be the SET in lemma

1 such that, SET1 contains I/Mo and/or |l” , SET2

contains |, and/or |, and SETE contains |, and
£2,0 £2,1 £3,0

for 1, . Accessing |, .1, and

c11 20 Ae2n a3

Jor | 4,,, for comparing the operation in the definition 5 take

O(1) following lemma 1 #

Example 5 Given the pattern p=aabcz, the text
T=aabczefgaabczefgabcdg, and the inverted list table 7 of
p=aabcz as shown in Table I. The search for p within T
according to the algorithm in figure 2 is illustrated as follows.

1. Initialize variables by step A.
N=5, SET1={}, SET2={}, pos=1, SETE={}
efga a bcze fgabcdg
1234567 8 910 1112131415161718 192021

SHIFT=10

2. Perform comparison by step C. N=5, SET1={},

SET2={}, pos=1, SETE={<5:1>}.
efgaabczefgabcdg
1234567 8 910 1112131415161718 192021

SHIFT=10

3. Skip to the farthest from SETE position and uses step D2
and F1. N=1, SETI1={<1:0>,<2:0>}, SET2={}, pos=l,

SETE={<5:1>}
efgaabcze fg abcdg

1234567 8 910 1112131415161718 192021

SHIFT=10
4. Skip to the next position by step F2. N=2,
SET1={<1:0>,<2:0>}, SET2={<1:0>,<2:0>}, pos=2,

SETE={<5:1>}

efgaabcze fg abcdg

1234567 8 9101112131415161718 192021

SHIFT=10

SET1<SETI1 operate SET2, SET1={<1:0>,<2:0>} by step
F3.

N=3,
pos=3,

5. Skip to the next position by step F2.
SET1={<1:0>,<2:0>}, SET2={<3:0>},
SETE={<5:1>}

efgaabczefgabcdg
1234567 8 910 1112131415161718 192021
SHIFT=10

SET1<SETI operate SET2, SET1={<3:0>} by step F3.

6. Skip to the next position by step F2. N=4,
SET1={<1:0>,<2:0>}, SET2={<4:0>}, pos=4,

SETE={<5:1>}

abcze fgaabcze fgabecdg
1234567 8 910 1112131415161718 192021
SHIFT=10

SET1<SET1 operate SET2, SET1={<4:0>} by step F3.

7. Skip to the next position and not access but mask by step
F3. N=5, SET1={<1:0>,<2:0>}, SET2={<4:0>},

pos=5,SETE={<5:1>}
efga a bcze fgabcdg

1234567 8 910 1112131415161718 192021
SHIFT=10

SET1<SET1 mask SETE, SET1={<5:1>} matched 1 and
remove <5:1> from SET1 and SETE. So SET1={} stop this
search window and go to next window search by step G2 and

T

8. Initialize variables and go to step B.

N=10, SET1={}, SET2={}, pos=1, SETE={}

aabczle fgadbcze fgabecdog

1234567 9 10 11121314151617 18 192021
c

SHIFT=15

9. Perform comparison by step C. N=10, SET1={},
SET2={}, pos=1, SETE={<1:0>,<2:0>}
aabczle fga bcze fg abcdyg
1234567 8 9101112131415161718 192021
SHIFT=15
Not match but analyze SETE looking for the farthest and set
N=farthest from SETE, therefore set N=9 and go to step D2.

W

10. Start search at N and compare with the first character in
pattern by step F1. N=9, SET1={<1:0>,<2:0>}, SET2={},

pos=1, SETE={<1:0>,<2:0>}
aabczle fgadbcze fgabecdog

f ga
1234567 8 9101112131415161718 192021
SHIFT=15

11. This step does not access but masks by step F3. N=10,
SET1={<1:0>,<2:0>}, SET2={}, pos=2,
SETE={<1:0>,<2:0>}
aabcz bcze fgabcdg

1234567 8 9101112131415161718 192021

SHIFT=15

SET1<SET1 mask SETE, so SET1={<1:0>,<2:0>} .

12. Skip to next position by step F2. N=I1,
SET1={<1:0>,<2:0>}, SET2={<3:0>}, pos=3,

SETE={<1:0>,<2:0>
aabczle fgadbcze fgabecdog

g a
1234567 8 9101112131415161718 192021

119

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:1, 2007

SHIFT=15

SET1<SETI1 operate SET2, so SET1={<3:0>} by step F3
and if N>position of SETE SHIFT<SHIFT+1, SHIFT=16 by
step G1.

13. Skip to next position by step F2. N=12, SET1={<3:0>},

SET2={<4:0>}, pos=4, SETE={<1:0>,<2:0>}
aabczbcze fgabecdg
1234567 8 910 1112131415161718 192021

SHIFT=17
SET1<SETI operate SET2, so SET1={<4:0>} by step F3
and if N>position of SETE SHIFT<SHIFT+1, SHIFT=17 by
step G1.

14. Skip to next position by step F2. N=13, SET1={<4:0>},
SET2={<5:1>}, pos=5, SETE={<1:0>,<2:0>}
aabczbcze fgabecdg
1234567 8 9101112131415161718 192021

SHIFT=18
SET1<SET]1 operate SET2, so SET1={<5:1>} matched 2 by
step F3 and if N>position of SETE SHIFT<SHIFT+I,
SHIFT=18. Remove inverted list from SET1 so SET1={} and
stop search window and go to step G2 and H.

15. Initialize variables and go step B. N=18, SET1={},
SET2={}, pos=1, SETE={}
aabcze fga abczcdg

1234567 8 910 1112131415161718 192021

SHIFT=23

16. Perform comparison by step C. N=I18, SET1={},
SET2={}, pos=1, SETE={<3:0>}
aabcze fga abczcdg
1234567 8 910 1112131415161718 192021
SHIFT=23
Not matched and analyze SETE N=farthest position from
SETE, so N=16 by step D2.

17. Start search at N and compare with the first character in
pattern by step F1. N=16, SET1={}, SET2={}, pos=l,
SETE={<3:0>}
aabcze fga abczcdg
1234567 8 910 1112131415161718 192021

SHIFT=23
Not matched and SET1={} stop search window and go to step
G2 and H.

18. Initialize variables and go step B. N=23, SET1={},
SET2={}, pos=1, SETE={}
aabcze fgaabcze fgabececdg
1234567 8 910 1112131415161718 192021
SHIFT=28
N and SHIFT > n finished searching.

Theorem 3 The searching phase of string matching using
inverted list takes O(m+ ¢)times in average case. The best
case takes O(n/m) times and takes O(n) times in worst case.

Proof Let |n| be the length of T such T=tityt3...t,, m be
the length of pattern p, and & be the number of comparisons
leading to mismatch and also included the time of mismatch.

Step A uses O(1) because it initializes variables, Step B to
Step H repeat m+ ¢ rounds which uses O(m+ ¢) time, Step
C,D,D2,F1,F2,G and G1 use O(1) because it access the hash
table following lemma 1, Step D1,G2,H use O(1) to initialize
variables, Step F3 uses O(1) following lemma 3, Step E
repeats & rounds and takes O(«@) meanwhile each of
operation takes O(1) following lemma 1.

Therefore the time complexity of this phase is O(m+ &)#

The best case of this algorithm happens in the case of
mismatching between the last character of search window and
the pattern. Hence, the algorithm only handles Step B and
Step D1. So the number of comparisons take n/m rounds lead
to O(n/m) times#

The worst case of this algorithm happens in the case which
the text contains the same characters and matches all of search
windows. In this case, the algorithm does not go through step
G2 and H. So it could not shift beyond the normal SHIFT.
Therefore, it takes Step B in n rounds and leads to O(n) time#

IV. CONCLUSION

This paper presents a new string matching algorithm
adopting an inverted index as an inverted list data structure for
storing a target pattern. Storing a pattern into this data
structure takes O(m) time complexity and O(1) space
complexity where m is the length of pattern. The paper
developed a new string matching algorithm with time
complexity 1) O(m+ ¢) in average case 2) O(n/m) in the best
case and 3) O(n) in the worst case, where « is the number of
comparisons leading to mismatch and n is the length of input
text.

REFERENCES

[11 B., R. S.,, Moore, J.S.,, “A fast string searching algorithm”,
Communications of the ACM. 20, 1997, pp. 762-772.

[2] M. Chrochemore, Handcart C., “Automata for Matching Patterns”, in
Handbook of Formal Languages, Volume 2, Linear Modeling:
Background and Application, G. Rozenberg and A. Salomaa ed.,
Springer-Verlag, Berlin. 1997, Ch. 9, pp. 399-462.

[3] M. Chrochemore “Off-line serial exact string searching, in Pattern
Matching Algorithms”, A. Apostolico and Z. Galil ed., Oxford
University Press Chapter 1, pp 1-53.

[4] M. Crochemore; L. Gasieniec; W. Rytter, “Constant-space string-
matching in sublinear average time”, Compression and Complexity of
Sequences 1997. Proceedings, 1997, pp. 230 — 239.

[5] C. Monz and M. de Rijke. (2002, August) Inverted Index
Construction. Available: http:/staff.science.uva.nl/~christof/courses/ir
/transparencies/clean-w-05.pdf.

[6] M. Escardo, (2006, October 15), Complexity considerations for hash
tables Available: http://www.cs.bham.ac.uk/~mhe/foundations2/

node92.html
[71 C. Charras and T. Lecrog. (2006, October 10). Handbook of Exact
String Matching. Available: WWW-igm.univ-

mlv.fr/~lecrog/string/string.pdf.

[8] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings. The
press Syndicate of The University of Cambridge. 2002.

[9]1 Galil, Z., Giancarlo, R., “On the exact complexity of string matching
upper bounds”, SIAM Journal on Computing, 21(3), 1992, pp. 407-437.

[10] H.Kesong, W. Yongcheng, C. Guilin, “Research on A Faster Algorithm
for Pattern Matching”, Proceedings of the fifth International workshop
on Information retrieval with Asian languages, 2000, pp. 119-124.

120

(1]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:1, 2007

Wikipedia, (2006, November 15), Hash table. Available:
http://en.wikipedia.org/wiki/Hash_table.

K. Loudon, (2006, November 24), Hash Tables. Auvailable:
www.oreilly.com/catalog/masteralgoc/chapter/ch08.pdf.

V. H. DINH, (2006, November 24), Hash Table. Available:
http://libetpan.sourceforge.net/doc/API/API/x161.html.

J. Law, “Book reviews: Review of "Flexible pattern matching in strings:
practical on-line algorithms for text and biological sequences by
Gonzolo Navarro and Mathieu Raffinot." Cambridge University Press
2002”. ACM SIGSOFT Software Engineering Notes, Volume 28 Issue
2:,2003, pp. 1-36.

G. Navarro, M. Raffinot, “Fast and flexible string matching by
combining bit-parallelism and suffix automata”, December 2000
Journal of Experimental Algorithmics (JEA), Volume 5.

D.E. Knuth, JR. Morris, , J.H., Pratt, V.R., “Fast pattern matching in
strings”. SIAM Journal on Computing 6(1), 1997, pp. 323-350.

M. S. Ager, O. Danvy, H. K. Rohde, “Fast partial evaluation of pattern
matching in strings”. ACM Transactions on Programming Languages
and Systems (TOPLAS), Volume 28 Issue 4, 2006, pp. 3-9.

M. S. Ager, O. Danvy, H. K. Rohde, “On obtaining Knuth, Morris,
and Pratt’s string matcher by partial evaluation”. Proceedings of the
ASIAN symposium on Partial evaluation and semantics-based program
manipulation, 2002, pp. 32-46.

JR. Morris, J.H., Pratt, V.R., A linear pattern-matching algorithm,
Technical Report 40, University of California, Berkeley. 1970.

O. R. Zaiane. (2001, September 15), CMPUT 391: Inverted Index
for Information Retrieval, University of Alberta.

Auvailable:http://www.cs.ualberta.ca /~zaiane/courses/cmput39-03/.

R. B. Yates and B. R. Neto. “Mordern Information Retrieval”, The ACM
press.A Division of the Association for Computing Machinery,Inc.
1999, pp. 191-227.

1. Simon, “String matching and automata”, in Results and Trends in
Theoetical Computer Science, Graz, Austria, J. Karhumaki, H. Maurer
and G. Rozenerg ed., Lecture Notes in Computer Science 814, Springer
- Verlag, Berlin, 1994, pp. 386-395.

R.M. Karp, M.O. Rabin., Efficient randomized pattern matching
algorithms, IBM Journal on Research Development 31(2), 1987, pp.
249-260.

121

