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Abstract—Sparse representation which can represent high dimen-
sional data effectively has been successfully used in computer vision
and pattern recognition problems. However, it doesn’t consider the
label information of data samples. To overcome this limitation,
we develop a novel dimensionality reduction algorithm namely
dscriminatively regularized sparse subspace learning(DR-SSL) in this
paper. The proposed DR-SSL algorithm can not only make use of
the sparse representation to model the data, but also can effective
employ the label information to guide the procedure of dimensionality
reduction. In addition,the presented algorithm can effectively deal
with the out-of-sample problem.The experiments on gene-expression
data sets show that the proposed algorithm is an effective tool for
dimensionality reduction and gene-expression data classification.

Keywords—sparse representation, dimensionality reduction, label
information, sparse subspace learning, gene-expression data classifi-
cation.

I. INTRODUCTION

IN recent years, with the rapid development of microarray
gene-expression technology, it is now possible to simulta-

neously monitor the expression of all genes in the genome
with a single experiment. One important application of gene
expression data is the classification of cancer or other diseases,
which draws a great number of researchers’ attention[1].
Typically, the gene expression data sets are characterized by
thousands of variables on only a few observations. It has
been observed that although there are a lot of genes for each
observation, the number of tissue samples ranges from tens
to hundreds. In other words, there is much redundant infor-
mation resided in the high-dimensional gene-expression data.
To remove redundant information, dimensionality reduction
technique is an effective way.

Till now, many dimensionality reduction algorithms in ma-
chine learning have been used to solve the microarray gene-
expression classification problem. The popular dimensionality
reduction algorithms involved in gene data analysis include
principal component analysis (PCA)[2], independent compo-
nent analysis (ICA) [3] and linear discriminant analysis (LDA)
[4], etc. In [5], the authors used the PCA algorithm to reduce
the input dimensions of gene expression data. PCA provides
an efficient way to compress the gene expression data without
losing much information. However, PCA can only find the
second-order statistical information of the data. The authors
used the ICA algorithm to model the gene expression data in
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[6]. Different form PCA, ICA can take into account higher-
order dependencies in the data. In [7], [8], the authors used
the LDA algorithm to reduce the input dimensions of gene
expression data. LDA seeks the optimal transformation that
maximizing the between-class scatter while at the same time
minimizing the within-class scatter. LDA has been widely used
in many practical applications such as face recognition due to
the fact that it can extract the most discriminatory features.

However, recently studies show that just as face images, the
gene expression data are also concentrated in a nonlinear sub-
space. In such situation, the linear subspace based dimension-
ality reduction methods will fail to work well. In recent years,
manifold learning-based dimensionality reduction approaches
such as Isomap[9], locally linear embedding(LLE)[10] and
local preserving projections(LPP)[11] have attracted a lot of
attention. It is believed that these methods are effective in
discovering the intrinsic geometrical structure of the nonlinear
data. The manifold learning-based dimensionality reduction
approaches have also been used to solve the microarray gene-
expression classification problem[12], [13]. Although manifold
learning-based dimensionality reduction approaches are very
effective, they are not easily applied in certain applications
due to their complexity and storage requirements. More re-
cently, sparse representation which is derived by solving an
optimization problem has been successfully used in computer
vision and pattern recognition problems[14], [15], [16].

In this paper, we investigate the problem of microarray
classification and propose a dscriminatively regularized sparse
subspace learning algorithm, which will be abbreviated as DR-
SSL. DR-SSL aims to find a novel framework for dimen-
sionality reduction which can not only adopt sparse repre-
sentation to model the data, but also can employ the label
information to improve the classification quality. Specifically,
we first construction the objective function of sparse subspace
learning based on sparse coding using the training samples.
Secondly , we construct a new discriminatively regularized
term via the label information which is vital for the fol-
lowing dimensionality reduction and classification. Then the
obtained discriminatively regularization is incorporated into
the objective function of sparse subspace learning to form
a novel framework for dimensionality reduction. Lastly, an
iterative algorithm is developed to find the solution of the
framework. We demonstrate the usefulness of our approach on
gene expression data sets and the experiment results show that
the proposed algorithm achieves better performance compared
to the conventional dimensionality reduction methods such as
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PCA and LPP.
The rest of the paper is organized as follows. In section

II, we give a brief review of the sparse representation al-
gorithm.Section III presents the proposed DR-SSL algorithm.
Section IV presents the experimental results on gene expres-
sion data sets. Finally, we conclude this paper in Section V.

II. SPARSE REPRESENTATION

The problem of finding the sparse representation of a signal
in a given overcomplete dictionary can be formulated as
follows. Given a training set X = [x1, x2, . . . , xn(xi ∈ Rn)],
each column of X is a sample vector.For each sample point
xi in the data set , we expect to reconstruct it using a few
data points in X .The objective can be achieved by solving
the follows minimization problem:

min|si|1, s.t. xi = Xsi (1)

where Si ∈ Rn is the coefficient vector and |si|1 is the l1 norm
of vector . However, one issue with the minimization problem
(1) is that when the size of matrix X satisfied m >> n, it
does not have exact solutions. A generalized version of Eq.
(1) which allows for certain degree of noise can be expressed
as follows:

J(S) = argmin
n∑

i=1

‖xi −
∑

i=1

XSi‖2 + λ1‖Si‖1 (2)

In fact, Eq. (2) is an l1− regularized least square problem
where the positive parameter λ1 is a scalar regularization that
balances the contribution of the reconstruction error against
the sparseness of the coefficients. The sparsity regularization
term can not only ensure the under-determined system has a
unique solution but also allow the learned representation to
capture salient patterns of local descriptors.

III. DISCRIMINATIVELY REGULARIZED SPARSE SUBSPACE
LEARNING(DR-SSL)

In this section, we present a dscriminatively regularized
sparse subspace learning algorithm(DR-SSL) for dimension-
ality reduction. The proposed DR-SSL algorithm can not only
make use of the sparse representation to model the data, but
also it can effective employ the label information to to improve
the performance in the learned subspace.

A. Sparse Subspace Learning

Sparse subspace learning algorithm attempts to find a pro-
jection matrix which maps high dimensional data to lower
dimensional data space for classification problems. Let P ∈
Rm×d denote transformation matrix. Project P onto xi yields
the low dimensional vector yi

yi = PTxi (3)

The sparse subspace learning can be formulated as an opti-
mization problem

J(S, P ) = argmin
n∑

i=1

‖PTxi − PT
∑

i=1

XSi‖2 + λ1‖Si‖1
(4)

The sparse subspace learning algorithm can effectively deal
with the out-of-sample problem [10],i.e., it can map a new
testing point directly. One issue with the sparse subspace
learning algorithm is that it doesn’t consider the label in-
formation of the samples which is critical for the success
of the dimensionality reduction and classification problems.To
address the issue , we will propose a novel discriminatively
regularized sparse subspace learning (DR-SSL) algorithm via
the label information in the following subsection.

B. Discriminatively Regularized Term

Regularization theory has been used in a wide variety of
applications to derive a large family of novel algorithms. There
exists a lot of regularization methods. In [17], the authors con-
structed the discriminatively regularized term utilizing the un-
derlying label knowledge which is vital for classification.Given
l data points x1, x2, . . . , xl ∈ Rd that are distribduted on a
underlying submanifold.Let l(xi) be the class label of xi and
its k nearest neighbors be N(xi) = x1i , x

2
i , · · · , xki .By the

label information, the set N(xi) can be further split into two
subsets, Nb(xi) and Nw(xi) . Nw(xi) contains the neighbors
having the same label with xi , while Nb(xi) contains the
neighbors that sharing different labels. Specifically,

Nw(xi) = {xji |l(xji ) = l(xi), 1 ≤ j ≤ k} (5)

Nb(xi) = {xji |l(xji ) �= l(xi), 1 ≤ j ≤ k} (6)

Define the weight matrices Wb and Ww respectively as
follows:

Wb,ij =

{
1 xi ∈ Nb(xj) or xj ∈ Nb(xi)

0 else

Ww,ij =

{
1 xi ∈ Nw(xj) or xj ∈ Nw(xi)

0 else

The discriminatively regularized term aims to maximize∑
(yi − yj)

2Wb,ij while at the same time minimize
∑

(yi −
yj)

2Ww,ij ,where yi = PTxi .Based on above analysis, we
get the discriminatively regularized term

Φ(P ) = α(yi − yj)
2Ww,ij − (1− α)

∑
(yi − yj)

2Wb,ij

yi = PTxi (7)

where α is a positive parameter and 0 < α < 1.
Note that the discriminatively regularized term exploits not

only the discriminant structure information but also the local
manifold structure of given labeled samples.By the discrimi-
natively regularized term, DR-SSL will apart the data samples
from different classes at each local area well.

C. DR-SSL

Based on the discriminatively regularized term, the objective
function of DR-SSL can be defined as follows:

J(S, P ) = argmin
n∑

i=1

‖PTxi − PT
∑

i=1

XSi‖2+

λ1‖Si‖1 + λ2Φ(P ) (8)
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where λ2 is the regularization parameter that controls the
complex of the discriminatively regularized term.

Because
∑

(yi − yj)
2Wb,ij =

∑
(PTxi − PTxj)

2Wb,ij =
PTP (Db − Wb)P

TP ,where Db is a diagonal matrix with
entries Db,ii =

∑
j Wb,ij .On the other hand ,

∑
(yi −

yj)
2Ww,ij =

∑
(PTxi − PTxj)

2Ww,ij = PTX(Dw −
Ww)X

TP . Also,Dw is a diagonal matrix with entries Dw,ii =∑
j Ww,ij . Then the discriminatively regularized term can be

written as follows:

Φ(P ) = αPTX(Db−Wb)X
TP−(1−α)PTX(Dw−Ww)X

TP
(9)

Define Lb = Db −Wb Lw = Dw −Ww ,we have:

Φ(P ) = αPTXLbX
TP − (1− α)PTXLwX

TP (10)

Therefore,Eq.(8) is equivalent to:

J(S, P ) = argmin
n∑

i=1

‖PTxi − PT
∑

i=1

XSi‖2+

λ1‖Si‖1 + λ2(αP
TXLbX

TP − (1− α)PTXLwX
TP )

(11)

There are two parameters,i.e., S and P in Eq. (11) ,and there
is not a closed-form solution for the optimization problem .In
this paper, we propose an iterative algorithm to solve it.

Firstly,fix P , J(S, P ) is reduced to

J(S) = argmin
n∑

i=1

‖PTxi−PT
∑

i=1

XSi‖2+λ1‖Si‖1 (12)

Eq.(12) is a l1− regularized least square problem.We can use
some standard convex optimization techniques to solve it.

On the other hand, when S is given, J(S, P ) becomes

J(P ) = argmin
n∑

i=1

‖PTxi − PT
∑

i=1

XSi‖2+

λ2(αP
TXLbX

TP − (1− α)PTXLwX
TP ) (13)

Let L = [l1, l2, . . . , ln], li = li − XiSi . Following some
simple algebraic steps, it is not easily to see that

n∑

i=1

‖PTxi − PT
∑

i=1

XSi‖2 = ‖PTL‖2 = PTLLTP (14)

So J(P ) can be further written as follows:

J(P ) = argminPTLLTP+

λ2(αP
TXLbX

TP − (1− α)PTXLwX
TP ) (15)

By means of Lagrangian multiplier method, the projection
matrix P can be constructed by the eigenvectors of LLT +
X(αLb − (1 − α)Lw)X

T associated with the first d largest
eigenvalues p1, p2, . . . , pd, i.e., P can be constructed as A =
(p1, p2, . . . , pd).

D. The Algorithm

The detail algorithm for DR-SSL is listed as follows:
Step1.Initialize P ,P = P0 and t = 0
Step2.While not convergent
Step3.Update the coefficient matrix S using Eq.(12)
Step4.Compute the eigenvectors (p1, p2, . . . , pd) of Eq.(15)
associated with the first d largest eigenvalues ,then
A = (p1, p2, . . . , pd)
Step5.t = t+ 1
Step6.End While
Step7.Feature extraction:yi = PTxi

One issue that deserves attention is the convergency. We use
the reduction of S and P to check the convergence of DR-
SSL. More specifically, let S(t− 1) and S(t) be the S at the
(t− 1)− th and t− th iteration,respectively. let P (t− 1) and
P (t) be the P at the (t−1)−th and t−th iteration,respectively.
The convergence of this algorithm can be judged by whether
it can satisfy the following inequity.

‖S(t− 1)− S(t)‖2 + ‖P (t− 1)− P (t)‖2 < ξ (16)

where ξ is a small positive number.

IV. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments on three
public microarray data sets to evaluate the performance of
the proposed DR-SSL algorithm. For comparison, we also
present the results of two competing dimensionality reduc-
tion algorithms,i.e.,principal component analysis (PCA) and
locality preserving projections (LPP).

A. Microarray Data Sets

In this paper, we use three public available microarray
datasets to test the proposed method. The details of the data
sets used in our experiments are summarized as follows:
The Central Nervous System(CNS) dataset [18]: Only
dataset C is used in this paper which contains 60 patient
samples. Among them, 21 are survivors and 39 are failures.
There are 7129 genes in the dataset.
The Colon dataset [19]: contains 62 samples collected from
colon-cancer patients. Among them, 40 tumor biopsies are
from tumors and 22 normal. There are 7129 genes in the
dataset.
The Leukemia dataset [20]: contains two types of acute
leukemia: 47 acute lymphoblastic leukemia and 25 acute
myeloid leukemia. There are 2000 genes in the dataset.

In this paper, we perform a preliminary selection of genes
on the basis of the ratio of their between-groups to within-
groups sum of squares. For a gene j, this ratio is

BSS(j)

WSS(j)
=

∑
i

∑
c I(yi = c)(xcj − x.j)

2

∑
i

∑
c I(yi = c)(xij − xcj)2

(17)

where x.j denotes the average expression level of gene j
across all samples and xcj denotes the average expression
level of gene j across samples belonging to class c . In our
experiments, the 100 genes with the largest BSS/WSS ratios
are selected for all the datasets.
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Then for each gene j , we subtract it the mean measurement
of the gene uj and divide it by the standard deviation σj .

xij =
xij − uj
σj

(18)

After this transformation, the mean of each gene j will be
zero, and the standard deviation will be one.

B. Performance Evaluations and Comparisons

In this paper, the values of the regularization parameters
λ1 and λ2 are both set to 1 for the DR-SSL algorithm. For
the discriminatively regularized term, the number of nearest
neighbors is empirically set to 8, the value of the regularization
parameter α is set to 0.1. For all the dimensionality reduction
algorithms, we reduce the dimension to 30. After the dimen-
sionality reduction process, we can apply a suitable classifier
to classify the data. Different classifiers have been applied
for gene expression data classification, including K-neighbor
[21], Bayesian [22], and Support Vector Machines [23], etc.
In this paper, we apply K-neighbor classifier with K=1 for its
simplicity. To obtain reliable experimental results, we employ
5-fold cross validation , a statistical method of evaluating and
comparing learning algorithms,to obtain measures of accuracy.
Briefly, the data is first partitioned into five data sets of
approximately equal size respectively. The training data set,
which contains four parts of the subsets, is used to learn
a classification model while the remaining subsets is used
to validate the model. The procedure should be repeated
five times and the performance is evaluated by the averaged
recognition results over the five subsets.

In general, the recognition rates varies with the dimension of
the feature subspace. Figure 1-3 shows the plots of recognition
rates versus dimensionality reduction for the PCA, LPP, and
DR-SSL.
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Fig. 1. Recognition results of dirrerent algorithms on the CNS dataset

The best result obtained in the optimal subspace and the
corresponding dimensionality for each method are shown in
Table I.

As can be seen, LPP has better performance than PCA
on the CNS dataset and the Colon dataset. However, it gets
the poorest results on the Leukemia dataset. Comparatively,
the proposed DR-SSL method outperforms the other two
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Fig. 2. Recognition results of dirrerent algorithms on the Colon dataset
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Fig. 3. Recognition results of dirrerent algorithms on the leukemia dataset

dimensionality reduction algorithms on all the gene-expression
data sets. This is mainly because it is an effective sparse
representation based learning algorithm. In addition, it can
make full use of both the label information and the local
manifold structure of given labeled samples to guide the
dimensionality reduction process.

V. CONCLUSION

In this paper, an efficient dimensionality reduction al-
gorithm called dscriminatively regularized sparse subspace
learning(DR-SSL) is presented. The proposed method can
make efficient use of the sparse representation to model the
data. Moreover, it can make full use of both the label informa-
tion and the local manifold manifold structure information of
given labeled samples which are very helpful for dimensional-
ity reduction and classification problems.The experiments on
three gene-expression data sets show the effectiveness of the
proposed algorithm.

TABLE I
THE TOP RECOGNITION RATES OF DIFFERENT ALGORITHMS

Dataset PCA LLP DR-SSL
CNS 76.67(30) 80(15) 86.67(4)

Colon 85(3) 86.67(15) 90(4)
Leukemia 97.14(2) 94.29(8) 98.61(17)
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