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Abstract—This paper introduces a framework based on the 

collaboration of multi agent and hyper-heuristics to find a solution of 

the real single machine production problem. There are many 

techniques used to solve this problem. Each of it has its own 

advantages and disadvantages. By the collaboration of multi agent 

system and hyper-heuristics, we can get more optimal solution. The 

hyper-heuristics approach operates on a search space of heuristics 

rather than directly on a search space of solutions. The proposed 

framework consists of some agents, i.e. problem agent, trainer agent, 

algorithm agent (GPHH, GAHH, and SAHH), optimizer agent, and 

solver agent. Some low level heuristics used in this paper are MRT, 

SPT, LPT, EDD, LDD, and MON. 

 

Keywords—Hyper-heuristics, multi-agent systems, scheduling 

problem. 

I. INTRODUCTION 

CHEDULING problems, such as production scheduling 

problems, in real life belong to the complex problems 

(NP-complete) due to the dynamic and the difficulty for 

searching the solution. Deterministic searching methods do 

not work effectively when the problem size is getting bigger. 

Until now, much research has been conducted to solve the 

scheduling problem. Several approaches and methods that 

have been used are heuristics, Simulated Annealing, Hill 

Climbing, Tabu Search, Evolutionary Algorithms (Genetic 

Algorithm), Swarm Optimization Algorithm, Artificial 

Immune System, Variable Neighborhood Search, Hyper-

heuristics, Case-Based Reasoning , Fuzzy Reasoning, Agent-

Based Methods, Adaptive Learning, and Multi Objective 

Decision Making.  

Most techniques are domain-specific, which means that 

their applications are fit rather too specific than to general 

problems. Solving techniques have been selected and adapted 

manually by humans to solve certain problems. A model is 

only an approximation of the real problem at a certain time. 

The performance of the algorithm can be drastically reduced if 

there is a change in the problem being modeled. 

Unfortunately, real problems change dynamically and rapidly 

by nature. This lead to the need for a technique that is easily 

adapted to a variety of changes. 

Hyper-heuristic algorithm provides searching framework 

that more general and non domain-specific. Hyper-heuristic 

methodology is more flexible in the search process and can be 

easily applied to a larger scope of issues [1]. The term hyper-
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heuristics refers to the heuristics to choose heuristics [2]. This 

construction of this method is motivated by the need for 

flexible search techniques, can be easily adapted to respond to 

changes and free of domain-specific problems. This technique 

does not directly conduct a search on the solution space, but 

prior to the heuristic space. 

The concept of multi agent systems is an emerging 

approach in the development of software systems nowadays. 

A multi agent system is understood as a system consisting of 

agents (in this case software) that can work independently and 

communicate and work together to achieve certain goals. 

Development of systems with this approach has advantages in 

terms of scalability, extensibility, and distributability. 

In this work, a multi-agent framework hyper-heuristics to 

solve the problem of single production machine scheduling 

will be developed. With this technique, the concept of multi-

agent is adopted to act as a high-level heuristic which is 

responsible for managing the collaboration of low-level 

heuristcs. 

The remainder of this paper is organized as follows. Section 

II gives the formal definition of the multi-objective single 

machine scheduling problem and technique that is often used 

in solving real scheduling problem. Section III reviews some 

related works for solving production scheduling problem. 

Section IV explains the architecture of the proposed 

framework, in particular the algorithm agents: GAHH agent, 

SAHH agent, and GPHH agent. Section V gives some 

concluding remarks and recommendations for future work. 

II. PROBLEM DEFINITION 

A. Single Machine Scheduling Problem 

Single machine scheduling problem is the process of 

assigning a group of tasks to a single machine or resource [3]. 

The tasks are arranged so that one or many performance 

measures may be optimized.  

Let CTi, DDi, RDi be the completion time, due date, and 

the release date of task i respectively, the objective of this 

problem is to find a schedule that simultaneously satisfies: 

1. Minimization of mean tardiness: 
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2. Minimization of mean flow time: 

 

�� � ∑ �
��  ��������
�  

Collaboration of Multi-Agent and Hyper-Heuristics 

Systems for Production Scheduling Problem 
C. E. Nugraheni and L. Abednego  

S



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:8, 2013

1108

 

 

where n is the total number of tasks to be scheduled. 

The objective function is constructed by combining the two 

different objectives into a weighted sum where all the 

objectives have the same priority. It can be defined as: 

 

� � 0.5 � �� � 0.5 � �� 

B. Heuristic 

Heuristic methods are often used to deal with most real-

world combinatorial problems which are difficult to solve. 

These methods have no guarantee of optimality but can 

produce a solution in a reasonable time even when 

deterministic method cannot produce one [4]. 

C. Dispatching Rules 

Dispatching rules are among the most frequently applied 

heuristics in production scheduling, due to their ease of 

implementation and low time complexity. Whenever a 

machine is available, a dispatching rule inspects the waiting 

jobs and selects the job with the highest priority to be 

processed next [5]. For example, the Shortest Processing Time 

rule chooses the next job with the shortest time in the queue 

that will be removed for processing. 

D. Hyper-heuristics 

Often, heuristics are the result of years of work by a number 

of experts. An interesting question is how we can automate the 

design of heuristics. Hyper-heuristics are search 

methodologies for choosing or generating (combining, 

adapting) heuristics (or components of heuristics), in order to 

solve a range of optimization problems [4]. 

The main feature of hyper-heuristics is that they search a 

space of heuristics rather than a space of solutions directly. 

The motivation behind hyper-heuristics is to raise the level of 

generality at which search methodologies operate. Fig. 1 

shows the general framework for hyper-heuristics approach. 

III. RELATED WORKS 

Over the years, there have been several approaches used to 

deal with various objectives in production scheduling 

problem. They are: 

1. Exact algorithm 

Bolat et al. [6] solved machine scheduling problem using 

Branch and Bound (B&B) technique. Instance data up to 

15number of jobs can be solved in a reasonable time. The 

reported results show that near optimal solution can be found, 

albeit at the expense of huge computational cost, particularly 

when the problem size is large. 

2. Deterministic heuristics 

In practice, dispatching rules have been applied to avoid the 

computational cost produced by the exact algorithms [7], [8]. 

Although the quality of solutions produced by dispatching 

rules is no better than the exact method, they are the more 

frequently applied technique due to their ease of 

implementation and their low time complexities. 

 

 

Fig. 1 General framework for hyper-heuristics approach 

 

3. Metaheuristics 

The combinatorial nature of most scheduling problems 

allows the use of search based and enumerative techniques 

such as genetic algorithms [9]. These methods usually offer 

good quality solutions, but at the cost of a large amount of 

computational time needed to produce a solution. Search 

based techniques are not applicable in dynamic or uncertain 

conditions where there is need for frequent schedule 

modifications or changing system requirements. 

4. Hyper-heuristics 

V´aquez-Rodriguez et al. [10] consider combinations of 

different dispatching rules to solve a multi-machine cardboard 

box shop scheduling problems. A standard genetic algorithm 

was employed as the high level search of sequences of 13 

dispatching rules: minimum release time (MRT), shortest 

processing time (SPT), longest processing time (LPT), less 

work remaining (LWR), more work remaining (MWR), 

earliest due date (EDD), latest due date (LDD), weighed 

shortest processing time (WSPT), weighted longest processing 

time (WLPT), lowest weighted work remaining (LWWR), 

highest weighted work remaining (HWWR), lowest weighted 

due date and highest weighted due date. The hyper-heuristic 

was shown to be capable of learning effective hybridizations 

upon dispatching rules during scheduling, and thus was 

superior to employing single rules for the whole scheduling 

process. 

Abednego [11] investigates the potential use of genetic 

programming hyper-heuristics for solution of the real single 

machine production problem. Experimental results show that 

this technique performs at least as good as the ones produced 

by man-made dispatching rules. This can be achieved by 

combine each strength from some different heuristics using 

members of a set of known and reasonably understood 

heuristic’s components (terminal set and function set). 

IV. SYSTEM ARCHITECTURE 

The proposed system architecture to solve single machine 

scheduling problem adopt the concept of multi-agent system 

and hyper-heuristics approach. 
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A.  Agent 

There are some agent types in the system: a Problem Agent, 

a Trainer Agent, Training Dataset Agent, a Heuristics Pool 

Agent, three Algorithm Agents (GPHH, GAHH, and SAHH), 

an Advisor Agent, and a Solver Agent. Fig. 2 shows the 

proposed system configuration. Arrows represent 

communications between agents. 

 

 

Fig. 2 System’s architecture 

 

Problem Agent. This agent is the entry point of the system. 

The agent initializes all other agents by sending the problem 

description to the trainer agent.  

Trainer Agent. Based on the problem description get from 

the problem agent, this agent trains the system with a group of 

training dataset. 

Training Dataset Agent. The agent manages the training 

data set and provides training data set to all algorithm agents 

through the Trainer Agent.  

Heuristics Pool Agent. The agent manages the collection 

of heuristics (low level heuristics and heuristics produced by 

GPHH). 

Algorithm Agent. The agent is responsible for: 

- Running the hyper-heuristics algorithm with received 

parameter and heuristics 

- Sending the best solution found to the optimizer agent 

after the hyper-heuristics algorithm is finished 

There are three Algorithm Agent proposed in this research: 

GAHH, SAHH, and GPHH. The detail algorithm for each 

agent can be found in section IV.B-IV.D.  

Advisor Agent. The agent is responsible for choosing the 

best heuristics get from Algorithm Agent (GAHH, SAHH, 

GPHH). 

Solver Agent. The agent solves the problem from the 

Problem Agent with the best heuristic got from the Advisor 

Agent. The algorithm for the Solver Agent is given in 

Algorithm 1. 
 
 
 

 
 

ALGORITHM 1 

 SOLVER AGENT’S ALGORITHM 

 

B. Algorithm Agent: Genetic Algorithm Hyper-heuristics  

Like other hyper-heuristics approach, Genetic Algorithm 

Hyper-heuristics works in search space of heuristics rather 

than a space of solutions directly. Fig. 3 shows a general 

framework for the Genetic Algorithm Hyper-heuristics used in 

this research. 

First the algorithm creates a random initial population. On 

each iteration, the algorithm creates population of nindividual. 

Each individual consists of a range of heuristics selected from 

the set of low-level heuristics available. The populations are 

then modified with genetic operation that is chosen 

probabilistically. When the stopping conditions are met, the 

system terminates and outputs the best solution found so far. 

The GAHH algorithm is given in Algorithm 2. 
 

ALGORITHM 2 

GAHH ALGORITHM 

 

Create the initial random population 

P of size n  

Do 

Evaluate fitness of each 

individual in the population 

 

Select genetic operation 

(reproduction/crossover/mutation) 

probabilistically 

 

Loop until stopping criteria are met 

 

while there are unscheduled 

jobs do 

calculate priorities of all 

available jobs 

schedule job with the 

greatest priority first 

end while 
 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:8, 2013

1110

 

 

 

Fig. 3 General framework for GAHH 

C. Algorithm Agent: Simulated Annealing Hyper-Heuristics  

Simulated Annealing Hyper-heuristics combined Simulated 

Annealing and Hyper-heuristics approach. Fig. 4 shows a 

general framework for the Simulated Annealing Hyper-

heuristics used in this research. It is the same with the 

framework proposed by Ruibin Bai et al. [12] 

On each iteration, the algorithm selects a heuristic from the 

set of low-level heuristics available. A heuristic is chosen 

based on the probability that is associated with a weight. The 

weight reflects the importance of the corresponding heuristic 

at the current stage. The weight is dynamically changed based 

on the performance of its corresponding heuristic. The 

mechanism to change the weight of heuristic is a penalty-

reward strategy. The weight of a heuristic is increased if it 

produces a better solution and decreased otherwise. A minor 

positive score is given for those heuristics that cannot improve 

the evaluation function but still useful in creating intermediate 

situation to the optimal solution. And a penalty for those 

heuristics which could neither improves the current solution or 

generates a new solution. The temperature of the simulated 

annealing is then modified. When the stopping conditions are 

met, the system terminates and outputs the best solution found 

so far. The SAHH algorithm is given in Algorithm 3. 

 

Fig. 4General framework for SAHH 

D. Algorithm Agent: Genetic Programming Hyper-

Heuristics  

Genetic Programming Hyper-heuristics belongs to the 

family of evolutionary computation methods. Given a set of 

functions and terminals and an initial population of randomly 

generated syntax trees (representing programs), these 

programs are then evolved through genetic recombination 

(crossover, mutation) and natural selection. A new generation 

is created by probabilistically selecting individuals from the 

old generation based on their fitness value. These individuals 

are either survived intact or genetically modified through a 

number of operators [2].  

Genetic Programming Hyper-heuristics is a form of 

automatic programming with variable length. The solution is 

represented by a computer program that takes a number of 

inputs, i.e. terminal set that are relevant to the problem 

considered, manipulates them through a number of functions 

and produces the required outputs. Solution is usually 

represented in a form of parse tree. Fig.5 illustrates the 

solution of genetic programming in a form of parse tree. From 

this parse tree, GPHH-generated dispatching rule is RD + (DD 

SP). 

In GPHH, an individual is composed of terminals and 

functions. The terminal set and function set that are used in 

this research are described in Tables I and II. Table III shows 

some best GPHH-generated heuristics. 
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ALGORITHM 3 

 SAHH ALGORITHM 

 
 

TABLE I 

TERMINAL SET 

Terminal Meaning 

RD Release date of a job 

DD Due date of a job 

PT Processing time of a job 

W Weight of a job 

N Total number of job 

SP Sum of PT of all job 

 

 
 

TABLE II 

FUNCTION SET 

Function Meaning 

ADD, SUB, MUL Addition, substraction, multiplication 

DIV 
Protected division (DIV(a,b)=1, if 

|b|<0.000001) 

 
TABLE III 

GPHH-GENERATED HEURISTICS  

Machine GPHH Heuristics 

GDC DD
W � ��PT � W�  �W � SP��  �2 � W � SP� 

PC RD � %&W � 2 � DD
N � SP(  �N � PT � DD�) 

Slice % W  PT
W�3 � DD � PT�)  RD 

UK60 W  RD  N
DD  �SP� � DD� 

UK75 % DD
SP� � PT  W  N) � RD 

 

 
GPHH-generated dispatching rule: RD + (DD-SP) 

Fig. 5 An example of a GP parse tree and its interpretation 

V. CONCLUSIONS AND FUTURE WORK 

We have proposed a framework for solving single machine 

scheduling problem. The framework combined the concepts of 

multi-agent systems and hyperheuristics. Three hyper-

heuristic techniques used in this work are genetic algorithm, 

simulated annealing and genetic programming. The 

architecture of the proposed framework has an advantage that 

the heuristics generated by GPHH agent can be used by other 

algorithm agents, GAHH agent and SAHH agent.  

It is planned to implement and to apply this framework on a 

real case study which is the scheduling of single machine 

problems at a metal industry. 
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Set initial temperature ts, 

stopping temperature tf, and total 

iterations k 

Generate an initial solution S0, 

t=ts 

Define a set of heuristic Hi(i=0, ..., 

n), assign appropriate weight wi to 

each heuristic Hi 

 

Do 

Select a heuristic (Hi) based 

on probability +� � ,-
∑ ,-.-/0

 

Generate a candidate solution 

using heuristic Hi 

Let δi stand for the difference 

in the evaluation function 

between s and s’ 

 

ifδi> 0 
s = s’ 

wi =wi + k 

 

else if δi= 0 and a new 
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s = s’ 

wi = wi + ε 
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Loop until stopping criteria are 
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