
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:8, 2013

1107

Abstract—This paper introduces a framework based on the

collaboration of multi agent and hyper-heuristics to find a solution of

the real single machine production problem. There are many

techniques used to solve this problem. Each of it has its own

advantages and disadvantages. By the collaboration of multi agent

system and hyper-heuristics, we can get more optimal solution. The

hyper-heuristics approach operates on a search space of heuristics

rather than directly on a search space of solutions. The proposed

framework consists of some agents, i.e. problem agent, trainer agent,

algorithm agent (GPHH, GAHH, and SAHH), optimizer agent, and

solver agent. Some low level heuristics used in this paper are MRT,

SPT, LPT, EDD, LDD, and MON.

Keywords—Hyper-heuristics, multi-agent systems, scheduling

problem.

I. INTRODUCTION

CHEDULING problems, such as production scheduling

problems, in real life belong to the complex problems

(NP-complete) due to the dynamic and the difficulty for

searching the solution. Deterministic searching methods do

not work effectively when the problem size is getting bigger.

Until now, much research has been conducted to solve the

scheduling problem. Several approaches and methods that

have been used are heuristics, Simulated Annealing, Hill

Climbing, Tabu Search, Evolutionary Algorithms (Genetic

Algorithm), Swarm Optimization Algorithm, Artificial

Immune System, Variable Neighborhood Search, Hyper-

heuristics, Case-Based Reasoning , Fuzzy Reasoning, Agent-

Based Methods, Adaptive Learning, and Multi Objective

Decision Making.

Most techniques are domain-specific, which means that

their applications are fit rather too specific than to general

problems. Solving techniques have been selected and adapted

manually by humans to solve certain problems. A model is

only an approximation of the real problem at a certain time.

The performance of the algorithm can be drastically reduced if

there is a change in the problem being modeled.

Unfortunately, real problems change dynamically and rapidly

by nature. This lead to the need for a technique that is easily

adapted to a variety of changes.

Hyper-heuristic algorithm provides searching framework

that more general and non domain-specific. Hyper-heuristic

methodology is more flexible in the search process and can be

easily applied to a larger scope of issues [1]. The term hyper-

Nugraheni, C. E. and Abednego, L. are with Parahyangan Catholic

University, Bandung, Indonesia (e-mail: cheni@unpar.ac.id,
luciana@unpar.ac.id).

heuristics refers to the heuristics to choose heuristics [2]. This

construction of this method is motivated by the need for

flexible search techniques, can be easily adapted to respond to

changes and free of domain-specific problems. This technique

does not directly conduct a search on the solution space, but

prior to the heuristic space.

The concept of multi agent systems is an emerging

approach in the development of software systems nowadays.

A multi agent system is understood as a system consisting of

agents (in this case software) that can work independently and

communicate and work together to achieve certain goals.

Development of systems with this approach has advantages in

terms of scalability, extensibility, and distributability.

In this work, a multi-agent framework hyper-heuristics to

solve the problem of single production machine scheduling

will be developed. With this technique, the concept of multi-

agent is adopted to act as a high-level heuristic which is

responsible for managing the collaboration of low-level

heuristcs.

The remainder of this paper is organized as follows. Section

II gives the formal definition of the multi-objective single

machine scheduling problem and technique that is often used

in solving real scheduling problem. Section III reviews some

related works for solving production scheduling problem.

Section IV explains the architecture of the proposed

framework, in particular the algorithm agents: GAHH agent,

SAHH agent, and GPHH agent. Section V gives some

concluding remarks and recommendations for future work.

II. PROBLEM DEFINITION

A. Single Machine Scheduling Problem

Single machine scheduling problem is the process of

assigning a group of tasks to a single machine or resource [3].

The tasks are arranged so that one or many performance

measures may be optimized.

Let CTi, DDi, RDi be the completion time, due date, and

the release date of task i respectively, the objective of this

problem is to find a schedule that simultaneously satisfies:

1. Minimization of mean tardiness:

�� � ∑ max 	
�� ��� , 0�����
�

2. Minimization of mean flow time:

�� � ∑ �
�� ��������
�

Collaboration of Multi-Agent and Hyper-Heuristics

Systems for Production Scheduling Problem
C. E. Nugraheni and L. Abednego

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:8, 2013

1108

where n is the total number of tasks to be scheduled.

The objective function is constructed by combining the two

different objectives into a weighted sum where all the

objectives have the same priority. It can be defined as:

� � 0.5 � �� � 0.5 � ��

B. Heuristic

Heuristic methods are often used to deal with most real-

world combinatorial problems which are difficult to solve.

These methods have no guarantee of optimality but can

produce a solution in a reasonable time even when

deterministic method cannot produce one [4].

C. Dispatching Rules

Dispatching rules are among the most frequently applied

heuristics in production scheduling, due to their ease of

implementation and low time complexity. Whenever a

machine is available, a dispatching rule inspects the waiting

jobs and selects the job with the highest priority to be

processed next [5]. For example, the Shortest Processing Time

rule chooses the next job with the shortest time in the queue

that will be removed for processing.

D. Hyper-heuristics

Often, heuristics are the result of years of work by a number

of experts. An interesting question is how we can automate the

design of heuristics. Hyper-heuristics are search

methodologies for choosing or generating (combining,

adapting) heuristics (or components of heuristics), in order to

solve a range of optimization problems [4].

The main feature of hyper-heuristics is that they search a

space of heuristics rather than a space of solutions directly.

The motivation behind hyper-heuristics is to raise the level of

generality at which search methodologies operate. Fig. 1

shows the general framework for hyper-heuristics approach.

III. RELATED WORKS

Over the years, there have been several approaches used to

deal with various objectives in production scheduling

problem. They are:

1. Exact algorithm

Bolat et al. [6] solved machine scheduling problem using

Branch and Bound (B&B) technique. Instance data up to

15number of jobs can be solved in a reasonable time. The

reported results show that near optimal solution can be found,

albeit at the expense of huge computational cost, particularly

when the problem size is large.

2. Deterministic heuristics

In practice, dispatching rules have been applied to avoid the

computational cost produced by the exact algorithms [7], [8].

Although the quality of solutions produced by dispatching

rules is no better than the exact method, they are the more

frequently applied technique due to their ease of

implementation and their low time complexities.

Fig. 1 General framework for hyper-heuristics approach

3. Metaheuristics

The combinatorial nature of most scheduling problems

allows the use of search based and enumerative techniques

such as genetic algorithms [9]. These methods usually offer

good quality solutions, but at the cost of a large amount of

computational time needed to produce a solution. Search

based techniques are not applicable in dynamic or uncertain

conditions where there is need for frequent schedule

modifications or changing system requirements.

4. Hyper-heuristics

V´aquez-Rodriguez et al. [10] consider combinations of

different dispatching rules to solve a multi-machine cardboard

box shop scheduling problems. A standard genetic algorithm

was employed as the high level search of sequences of 13

dispatching rules: minimum release time (MRT), shortest

processing time (SPT), longest processing time (LPT), less

work remaining (LWR), more work remaining (MWR),

earliest due date (EDD), latest due date (LDD), weighed

shortest processing time (WSPT), weighted longest processing

time (WLPT), lowest weighted work remaining (LWWR),

highest weighted work remaining (HWWR), lowest weighted

due date and highest weighted due date. The hyper-heuristic

was shown to be capable of learning effective hybridizations

upon dispatching rules during scheduling, and thus was

superior to employing single rules for the whole scheduling

process.

Abednego [11] investigates the potential use of genetic

programming hyper-heuristics for solution of the real single

machine production problem. Experimental results show that

this technique performs at least as good as the ones produced

by man-made dispatching rules. This can be achieved by

combine each strength from some different heuristics using

members of a set of known and reasonably understood

heuristic’s components (terminal set and function set).

IV. SYSTEM ARCHITECTURE

The proposed system architecture to solve single machine

scheduling problem adopt the concept of multi-agent system

and hyper-heuristics approach.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:8, 2013

1109

A. Agent

There are some agent types in the system: a Problem Agent,

a Trainer Agent, Training Dataset Agent, a Heuristics Pool

Agent, three Algorithm Agents (GPHH, GAHH, and SAHH),

an Advisor Agent, and a Solver Agent. Fig. 2 shows the

proposed system configuration. Arrows represent

communications between agents.

Fig. 2 System’s architecture

Problem Agent. This agent is the entry point of the system.

The agent initializes all other agents by sending the problem

description to the trainer agent.

Trainer Agent. Based on the problem description get from

the problem agent, this agent trains the system with a group of

training dataset.

Training Dataset Agent. The agent manages the training

data set and provides training data set to all algorithm agents

through the Trainer Agent.

Heuristics Pool Agent. The agent manages the collection

of heuristics (low level heuristics and heuristics produced by

GPHH).

Algorithm Agent. The agent is responsible for:

- Running the hyper-heuristics algorithm with received

parameter and heuristics

- Sending the best solution found to the optimizer agent

after the hyper-heuristics algorithm is finished

There are three Algorithm Agent proposed in this research:

GAHH, SAHH, and GPHH. The detail algorithm for each

agent can be found in section IV.B-IV.D.

Advisor Agent. The agent is responsible for choosing the

best heuristics get from Algorithm Agent (GAHH, SAHH,

GPHH).

Solver Agent. The agent solves the problem from the

Problem Agent with the best heuristic got from the Advisor

Agent. The algorithm for the Solver Agent is given in

Algorithm 1.

ALGORITHM 1

 SOLVER AGENT’S ALGORITHM

B. Algorithm Agent: Genetic Algorithm Hyper-heuristics

Like other hyper-heuristics approach, Genetic Algorithm

Hyper-heuristics works in search space of heuristics rather

than a space of solutions directly. Fig. 3 shows a general

framework for the Genetic Algorithm Hyper-heuristics used in

this research.

First the algorithm creates a random initial population. On

each iteration, the algorithm creates population of nindividual.

Each individual consists of a range of heuristics selected from

the set of low-level heuristics available. The populations are

then modified with genetic operation that is chosen

probabilistically. When the stopping conditions are met, the

system terminates and outputs the best solution found so far.

The GAHH algorithm is given in Algorithm 2.

ALGORITHM 2

GAHH ALGORITHM

Create the initial random population

P of size n

Do

Evaluate fitness of each

individual in the population

Select genetic operation

(reproduction/crossover/mutation)

probabilistically

Loop until stopping criteria are met

while there are unscheduled

jobs do

calculate priorities of all

available jobs

schedule job with the

greatest priority first

end while

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:8, 2013

1110

Fig. 3 General framework for GAHH

C. Algorithm Agent: Simulated Annealing Hyper-Heuristics

Simulated Annealing Hyper-heuristics combined Simulated

Annealing and Hyper-heuristics approach. Fig. 4 shows a

general framework for the Simulated Annealing Hyper-

heuristics used in this research. It is the same with the

framework proposed by Ruibin Bai et al. [12]

On each iteration, the algorithm selects a heuristic from the

set of low-level heuristics available. A heuristic is chosen

based on the probability that is associated with a weight. The

weight reflects the importance of the corresponding heuristic

at the current stage. The weight is dynamically changed based

on the performance of its corresponding heuristic. The

mechanism to change the weight of heuristic is a penalty-

reward strategy. The weight of a heuristic is increased if it

produces a better solution and decreased otherwise. A minor

positive score is given for those heuristics that cannot improve

the evaluation function but still useful in creating intermediate

situation to the optimal solution. And a penalty for those

heuristics which could neither improves the current solution or

generates a new solution. The temperature of the simulated

annealing is then modified. When the stopping conditions are

met, the system terminates and outputs the best solution found

so far. The SAHH algorithm is given in Algorithm 3.

Fig. 4General framework for SAHH

D. Algorithm Agent: Genetic Programming Hyper-

Heuristics

Genetic Programming Hyper-heuristics belongs to the

family of evolutionary computation methods. Given a set of

functions and terminals and an initial population of randomly

generated syntax trees (representing programs), these

programs are then evolved through genetic recombination

(crossover, mutation) and natural selection. A new generation

is created by probabilistically selecting individuals from the

old generation based on their fitness value. These individuals

are either survived intact or genetically modified through a

number of operators [2].

Genetic Programming Hyper-heuristics is a form of

automatic programming with variable length. The solution is

represented by a computer program that takes a number of

inputs, i.e. terminal set that are relevant to the problem

considered, manipulates them through a number of functions

and produces the required outputs. Solution is usually

represented in a form of parse tree. Fig.5 illustrates the

solution of genetic programming in a form of parse tree. From

this parse tree, GPHH-generated dispatching rule is RD + (DD

SP).

In GPHH, an individual is composed of terminals and

functions. The terminal set and function set that are used in

this research are described in Tables I and II. Table III shows

some best GPHH-generated heuristics.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:8, 2013

1111

ALGORITHM 3

 SAHH ALGORITHM

TABLE I

TERMINAL SET

Terminal Meaning

RD Release date of a job

DD Due date of a job

PT Processing time of a job

W Weight of a job

N Total number of job

SP Sum of PT of all job

TABLE II

FUNCTION SET

Function Meaning

ADD, SUB, MUL Addition, substraction, multiplication

DIV
Protected division (DIV(a,b)=1, if

|b|<0.000001)

TABLE III

GPHH-GENERATED HEURISTICS

Machine GPHH Heuristics

GDC DD
W � ��PT � W� �W � SP�� �2 � W � SP�

PC RD � %&W � 2 � DD
N � SP(�N � PT � DD�)

Slice % W PT
W�3 � DD � PT�) RD

UK60 W RD N
DD �SP� � DD�

UK75 % DD
SP� � PT W N) � RD

GPHH-generated dispatching rule: RD + (DD-SP)

Fig. 5 An example of a GP parse tree and its interpretation

V. CONCLUSIONS AND FUTURE WORK

We have proposed a framework for solving single machine

scheduling problem. The framework combined the concepts of

multi-agent systems and hyperheuristics. Three hyper-

heuristic techniques used in this work are genetic algorithm,

simulated annealing and genetic programming. The

architecture of the proposed framework has an advantage that

the heuristics generated by GPHH agent can be used by other

algorithm agents, GAHH agent and SAHH agent.

It is planned to implement and to apply this framework on a

real case study which is the scheduling of single machine

problems at a metal industry.

REFERENCES

[1] Burke E. K., Hyde M., Kendall G., Ochoa G., Ozcan E., and Qu R.

"Hyperheuristics: A Survey of the State of the Art". 2010.

[2] Burke E. K., Hart E., Kendall G., Newall J., Ross P., and S.
Schulenburg. "Hyperheuristics: An emerging direction in modern search

technology." In F. Glover and G. Kochenberger (eds.), Handbook of

Metaheuristics. Kluwer, pp. 457-474. 2003.
[3] Silva J.D.L., Burke E.K., Petrovic S. "An Introduction to Multiobjective

Metaheuristics for Scheduling and Timetabling." 2005.

[4] Burke E.K., Hyde M., Kendall G., Ochoa G., Ozcan E., and Woodward
J. "Exploring hyper-heuristic methodologies with genetic

programming." In Mumford C, Jain L (eds) Computational Intelligence:

Collaboration, Fusion and Emergence, Intelligent Systems Reference
Library, Springer, pp 177-201. 2009.

[5] Burke E. K., Hyde M., Kendall G., Ochoa G., Ozcan E., and Qu R.

"Hyperheuristics: A Survey of the State of the Art." 2010.
[6] Bolat, A., Al-Harkan, I., and Al-Harbi, B., (2005), "Flow-shop

Scheduling for Three Serial Stations with the Last Two Duplicate ",

Computers and Operations Research. 2005.
[7] [2] Blackstone J. H., Phillips D. T., and Hogg G. L. “A state-of-the-art

survey of dispatching rules for manufacturing job shop operations.” In
International Journal of Production Research, 20(1), 27-45. 1982.

Set initial temperature ts,

stopping temperature tf, and total

iterations k

Generate an initial solution S0,

t=ts

Define a set of heuristic Hi(i=0, ...,

n), assign appropriate weight wi to

each heuristic Hi

Do

Select a heuristic (Hi) based

on probability +� � ,-
∑ ,-.-/0

Generate a candidate solution

using heuristic Hi

Let δi stand for the difference

in the evaluation function

between s and s’

ifδi> 0
s = s’

wi =wi + k

else if δi= 0 and a new

solution is created

s = s’

wi = wi + ε

else if δi= 0 and no new

solution is created
wi = wi - ε

else if δi< 0 and exp(δi/t) <

random(0,1)

wi =wi – k

ifwi>wmax

wi =wmax

ifwi<wmin

wi =wmin

Loop until stopping criteria are

met

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:8, 2013

1112

[8] Oliver, H., Chandrasekharan, R. "E?cient dispatching rules for

scheduling in a job shop." International Journal of Production
Economics, 48(1), 87-105. 1997.

[9] Man K.F., Tang K.S. and Kwong S. "Genetic Algorithms: Concepts and

Design." Springer. 1999.
[10] Vazquez-Rodriguez J.A., Petrovic S., Salhi A. "A combined

metaheuristic with hyper-heuristics approach to the scheduling of the

hybrid ?ow shop with sequence dependent setup times and uniform
machines." In Proceedings of the 3rd Multidisciplinary International

Scheduling Conference: Theory and Applications. 2007.

[11] Abednego L. "Genetic Programming Hyper-Heuristics For Solving
Dynamic Production Scheduling Problem". 2011.Proc. ICEEI 2011.

[12] Ruibin Bai, Edmund K. Burke, Graham Kendall, and Barry McCollum.

"A Simulated Annealing Hyper-heuristic for University Course
Timetabling." PATAP 2006. pp. 345-350. 2006.

