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Abstract—In this paper, He’s homotopy perturbation method 
(HPM) is applied to spatial one and three spatial dimensional 
inhomogeneous wave equation Cauchy problems for obtaining exact 
solutions. HPM is used for analytic handling of these equations. The 
results reveal that the HPM is a very effective, convenient and quite 
accurate to such types of partial differential equations (PDEs). 

Keywords—Homotopy perturbation method; Exact solution; 
Cauchy problem; inhomogeneous wave equation.

I. INTRODUCTION

HE homotopy perturbation method (HPM) was firstly 
proposed by He [1-4]. The HPM deforms a difficult 
problem into simple problems which can be easily solved. 

In [3], a comparison of HPM and homotopy analysis method 
was made, revealing that the former is more powerful than the 
latter. The method gives rapidly convergent series of the exact 
solution if such a solution exists. Recently, many authors 
applied the HPM to various problems and demonstrated the 
efficiency of the HPM to handle nonlinear structure and solve 
various physics and engineering problems [5-8].       
    The study of various types of waves – elastic, acoustic, and 
electromagnetic – and other oscillational phenomena leads to 
the wave equation. It arises in the study of many important 
physical problems involving wave propagation, such as the 
transverse vibrations of an elastic string and the longitudinal 
or torsional oscillations of a rod [9].   

 The main purpose of this paper is to apply the HPM to 
Cauchy problem of some inhomogeneous wave equations for 
establishing closed form exact solutions and proving that the 
HPM is a very efficient, suitable, quite accurate and simple to 
such types of hyperbolic differential equations Cauchy 
problem.  

II.BASIC IDEA OF HE’S HOMOTOPY PERTURBATION METHOD

   To illustrate the basic ideas of this method, we consider the 

following nonlinear differential equation [1]: 

0,      ,A u f r r                                           (1) 
with the boundary conditions  

, 0,      ,B u u n r                                           (2) 
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where A is a general differential operator, B a boundary 
operator, f r a known analytical function and  is the 
boundary of the domain .
    Generally speaking, the operator A can be divided into two 
parts which are L and N , where L is linear, but N is
nonlinear. Eq. (1) can therefore be rewritten as follows: 

0.L u N u f r                                              (3) 
    By the homotopy technique, we construct a homotopy  

, : [0,1]V r p  which satisfies: 

0, 1

               0,     [0,1],   ,

H V p p L V L u

p A V f r p r
    (4) 

where [0,1]p  is an embedding parameter, 0u  is an initial 
approximation of Eq. (1), which satisfies the boundary 
conditions. 
Obviously, from Eq. (4) we will have: 

0,0 0,H V L V L u                                       (5) 

,1 0,H V A V f r                                         (6) 
the changing process of p from zero to unity is just that of 

,V r p  from 0u r to u r . In topology, this is called 

deformation, and 0L V L u  and A V f r  are 
called homotopic. 
    According to the HPM, we can first use the embedding 

parameter p as a “small parameter”, and assume that the 

solution of Eq. (4) can be written as a power series in p ,

2
0 1 2 ....V V p V p V                                            (7) 

Setting 1p  results in the approximate solution of Eq. (1): 

0 1 21
lim  ....

p
u V V V V                                       (8) 

The series in Eq. (8) is convergent for most cases, and also the 
rate of convergent depends on the nonlinear operator A V
[1].  
    The combination of the perturbation method and the 
homotopy method is called the homotopy perturbation method 
(HPM), which has eliminated the limitations of the traditional 
perturbation methods. On the other hand, this technique can 
have full advantage of the traditional perturbation techniques. 
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Remark: We noticed that use of the following modified 

equation of the homotopy  ,V r p ,

0, 1

    0,    [0,1],   ,

H V p p L V L u

p A V f r p r
         (9)  

increases the convergence of the one-term approximation 
( 1 0 1u V V ) to the exact solution rather than use of the 
homotopy equation described in (4). 

III. APPLICATIONS

    The Cauchy problem of the inhomogeneous wave equation 
reads [9], 

2
2 2

2

,
, , ,

u r t
a u r t f r t

t
                            (10) 

1 2

,0
,0 ,        ,

u r
u r g r g r

t
                   (11) 

where a is a real constant, 
2 2 2

2
2 2 2x y z

 is the 

Laplace’s operator. 
According to Eq. (9), a homotopy 

, , : [0,1]V r t p  can be constructed as follows: 

2 2
0,1

   , 0,     [0,1],      , ,
tt tt ttp V u p V a V

f r t p r t
               (12) 

where 0 0 ,0 ,0u V r u r  and 
2

0
0, 2tt

uu
t

.

Suppose the solution of Eq. (12) in the form of: 
2

0 1 2, , , , ....V r t V r t p V r t p V r t     (13)
    Substituting Eq. (13) into Eq. (12), and equating the terms 
with the identical powers of  p, yields, 

0
0,

1 2 2
1, 0,

2 2 2
2, 1,

:     , 0,

:     0,

:     0,

tt

tt tt

tt tt

p V f r t

p V a V

p V a V

    2 2
, 1,:     0,    3, 4, 5, ...,  n

n tt n ttp V a V n     (14)                                                                   

with the following initial conditions: 

1

2
,

r ,           0,
,0   

0,                   1, 2, ...,

r ,          0,
,0

0,                   1, 2, ....

i

i t

g i
V r

i

g i
V r

i

                      (15) 

A) One spatial dimensional wave equation           

Example 1. Firstly, we consider the following wave equation, 

2 ,        

,0 ,       ,0 sin ,
tt xx

t

u a u x h t

u x x u x m n x
          (16) 

where ,  ,  ,  ,  m and n are real constants and h t  is 
any integrable function of t .                                                                        
    Solving the system (14), with the initial conditions (15) 

for 1,f x h t g x  and 

2 sin ,g m n x  yields: 

0

0 0

2 2 3
1

4 4 5
2

6 6 7
3

, sin

d d d d d ,

1, sin ,
6
1, sin ,

120
1, sin ,

5040

t t

V x t x m n x t

x h t t t h t t t t h t t

V x t a n m n x t

V x t a n m n x t

V x t a n m n x t

2 2 2 11, 1 sin ,
2 1 !

    4,  5,  6....

k k k k
kV x t a n m n x t

k
k

     (17) 

Substituting Eq. (17) into Eq. (8) yields,  

2 2 3 4 4 5

6 6 7 2 2 2 1

4

1 1, sin {
6 120

1 1          1 }
5040 2 1 !

k k k k

k

u x t x m n x t a n t a n t

a n t a n t
k

        

0 0
{ d d d d d }.

t t
x h t t t h t t t t h t t   (18) 

Consequently, the exact solution of Eq. (16) 

0 0

, sin sin

{ d d d d d },
t t

mu x t x nx ant
an

x h t t t h t t t t h t t
  (19)       

is readily obtained upon using the Taylor series expansion of 
sin a n t .

Example 2. Secondly, consider the following wave equation, 

,        ,0 sin ,

 ,0 cos ,

q t
tt xx

t

u u p e u x m x

u x n x
            (20) 

where ,  ,  ,  ,  m n p and q are real constants. 
    The solution of the system (14), with the initial conditions 

(15) for 11,   ,   sinq ta f pe g mx  and 

2 cos ,g n x gives: 
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0 2

2 3 2 2
1

4 5 4 4
2

6 7 6 6
3

, 1 cos sin ,

1 1, cos sin ,
6 2
1 1, cos sin ,

120 24
1 1, cos sin ,

5040 720

q tpV x t e q t n x t m x
q

V x t n n x t m m x t

V x t n n x t m m x t

V x t n n x t m m x t

2 2 1

2 2

1
, cos

2 1 !

1
sin ,      4,  5,  6....

2 !

k
k k

k

k
k k

V x t n n x t
k

m m x t k
k

             (21) 

Substituting Eq. (21) into Eq. (8) yields,  

2 3 4 5
2

6 7 2 2 1

4

1 1, 1 cos {
6 120

1 1     1 }
5040 2 1 !

q t

k k k

k

pu x t e q t nx t n t n t
q

n t n t
k

      

2 2 4 4 6 6

2 2

4

1 1 1sin {1
2 24 720

11 }.
2 !

k k k

k

m x m t m t m t

m t
k

     (22) 

Consequently, the exact solution of Eq. (20) 

2, 1 cos sin

             sin cos ,

q tpu x t e q t n x n t
q n

m x m t
          (23)       

follows immediately upon using the Taylor series expansions 
of sin n t  and cos m t .

B) Three spatial dimensional wave equation           

Example 3. Consider the following wave equation, 

   

3
2 2

2, , , ,  
1

, , ,0 ,  , , ,0 ,

tt

y z
t

b y z tu a u x y z t
t

u x y z x e u x y z y e
    (24) 

where ,  ,  ,  and b are real constants.                                                                                                            
    Solving the system (14), with the initial conditions (15) 

for
   

3

12 ,
1

yb y z tf g x e
t

 and 2 ,zg y e yields: 

3 2 1
0

2 2 2 2 2 3
1

4 4 4 4 4 5
2

6 6 6
3

1 1, ln 1 tan
6 2

             ,
1 1, ,
2 6
1 1, ,
24 120
1,

720

z y

y z

y z

y

V r t b y z t t t t t

y e t x e

V r t a x e t a y e t

V r t a x e t a y e t

V r t a x e t 6 6 71 ,
5040

za y e t

2 2 2

2 2 2 1

1,
2 !

1  ,     4,  5,  6....
2 1 !

k k y k
k

k k z k

V r t a x e t
k

a y e t k
k

 (25) 

Substituting Eq. (25) into Eq. (8) yields,  

3 2 1

2 2 2 4 4 4 2 2 2

3

1 1, ln 1 tan
6 2

1 1 11
2 24 2 !

y k k k

k

u r t b y z t t t t t

x e a t a t a t
k

     

2 2 3 4 4 5 2 2 2 1

3

1 1 1 .
6 120 2 1 !

z k k k

k
y e t a t a t a t

k
  (26) 

Consequently, the exact solution of Eq. (24) 

3 2 11 1, ln 1 tan
6 2

u r t b y z t t t t t

           cosh sinh ,y zx e a t y e a t
a

         (27)       

is readily obtained upon using the Taylor series expansion of 
cosh a t and sinh a t  . 

Example 4. Consider the following wave equation, 
2 2

2 2

, , , sin ,

,0 ,     ,0 sin ,
tt

m z
t

u a u x y z t xyz t

u r x y z u r y m x e
 (28) 

where ,  ,  ,  and m are real constants. 
    The solution of the system (14), with the initial conditions 

(15) for     

2 2
1sin ,   f xyz t g x y z  and 

2 sin ,m zg y m x e gives: 
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2 2
0 2

2 2 2 2
1

4 4
2

3

, sin

              sin ,

, ,

1, ,
3

, 0,

m z

V r t x y z xyz t

xyz t y m x e t

V r t a y x z t

V r t a y t

V r t

    , 0    , 4,  5,  6....kV r t k                                      (29) 
Substituting Eq. (29) into Eq. (8) yields,  

      

2 2
2, sinu r t x y z xyz t xyz t

        

2 2 2 2 4 41sin ,
3

m zy mx e t a y x z t a y t       (30) 

which is the exact solution of Eq. (28). 

Example 5. Consider the following wave equation, 
2 , , , ,

,0 2 ,     ,0 sin 2 cos 2 ,

t
tt

t

u u x y z t xyz e

u r x y u r x y z
  (31) 

where ,  ,  ,  and b are real constants.                                                                                                            
    Solving the system (14), with the initial conditions (15) for 

11,   ,   2ta f xyz e g x y  and 

2 sin 2 cos 2 ,g x y z yields: 

    0

2

3
1

5
2

7
3

9
4

, 2 sin 2 cos 2

             1 ,

2, sin 2 cos 2 ,
3

2, sin 2 cos 2 ,
15

4, sin 2 cos 2 ,
315
2, sin 2 cos 2 ,

2835

t

V r t x y xyz t x t y z

xyz e

V r t x t y z

V r t x t y z

V r t x t y z

V r t x t y z

.                                                                                        (32) 
Substituting Eq. (32) into Eq. (8) yields,  

   

    

2

3 5 7 9

, 2 1

1 4 4 8 4sin 2 cos 2 2 ... ,
2 3 15 315 2835

tu r t xy xyz e t

x y z t t t t t
    (33) 

Consequently, the exact solution of Eq. (31) 

   2, 2 1

1            sin 2 cos 2 sin 2 ,
2

tu r t x y xyz e t

x y z t
                  (34)       

is readily obtained upon using the Taylor series expansion 
of sin 2t .

IV. CONCLUSIONS

    A clear conclusion can be draw from our results that the 
homotopy perturbation method provides fast convergence 
series to exact solutions. It is also worth noting that the HPM 
is an effective, simple and quite accurate tool for handling and 
solving inhomogeneous wave equations and other hyperbolic-
type PDEs. The various applications of He’s homotopy 
perturbation method prove that it's an efficient method to 
handle various types of differential equations. It's predicted 
that the HPM will be found widely applications in science and 
engineering.

REFERENCES  

[1] J.H. He, Homotopy perturbation technique, Comput. Methods Appl. 
Mech. Eng., vol. 178,  pp. 257–262,  1999. 

[2] J.H. He, Homotopy perturbation method: a new nonlinear analytical 
technique, Appl. Math. Comput., vol. 135, pp. 73–79, 2003. 

[3] J.H. He, Comparison of homotopy perturbation method and homotopy 
analysis method, Appl. Math. Comput., vol. 156, pp. 527–539, 2004. 

[4] J.H. He, Application of homotopy perturbation method to nonlinear 
wave equations, Chaos, Solitons Fractals, vol. 26, pp. 695–700, 2005. 

[5] Q.K. Ghori, M. Ahmed and A.M. Siddiqui, Application of homotopy 
perturbation method to squeezing flow of a Newtonian fluid, Int. J. 
Nonlinear Sci. Numer. Simul., vol. 8(2), pp. 179–184, 2007. 

[6] T. Ozis and A. Yildirim, A comparative study of He's homotopy 
perturbation method for determining frequency-amplitude relation of a 
nonlinear oscillator with discontinuities, Int. J. Nonlinear Sci. Numer. 
Simul., vol. 8(2), pp. 243–248, 2007. 

[7] S.J. Li and Y.X. Liu, An improved approach to nonlinear dynamical 
system identification using PID neural networks, Int. J. Nonlinear Sci. 
Numer. Simul., vol. 7(2), pp. 177–182, 2006. 

[8] M.M. Mousa and S.F. Ragab, Application of the homotopy perturbation 
method to linear and nonlinear schrödinger equations, Z.Naturforsch.
vol. 63a, pp. 140–144, 2008. 

[9] Dean G. Duffy, Advanced engineering mathematics, CRC press, New 
York, 1997.  

World Academy of Science, Engineering and Technology 55 2009

508


