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 
Abstract—The job shop scheduling problem (JSSP) is well known 

as one of the most difficult combinatorial optimization problems. This 
paper presents a hybrid genetic algorithm for the JSSP with the 
objective of minimizing makespan. The efficiency of the genetic 
algorithm is enhanced by integrating it with a local search method. 
The chromosome representation of the problem is based on operations. 
Schedules are constructed using a procedure that generates full active 
schedules. In each generation, a local search heuristic based on 
Nowicki and Smutnicki’s neighborhood is applied to improve the 
solutions. The approach is tested on a set of standard instances taken 
from the literature and compared with other approaches. The 
computation results validate the effectiveness of the proposed 
algorithm. 
 

Keywords—Genetic algorithm, Job shop scheduling problem, 
Local search, Meta-heuristic algorithm 

I. INTRODUCTION 

HE job shop scheduling problem (JSSP) is one of the most 
difficult problems in combinatorial optimization that has 

garnered considerable attention due to both its practical 
importance and its solution complexity. Efficient methods for 
solving the JSSP have significant effects on profitability and 
product quality. During the last three decades, many solution 
methods have been proposed to solve the JSSP. Those 
approaches can be divided into two categories: exact methods 
and approximation algorithms. Exact methods, such as branch 
and bound, linear programming and decomposition methods, 
guarantee global convergence and have been successful in 
solving small instances. In manufacturing systems, most 
scheduling problems are very complex in nature and very 
complicated to be solved by exact methods to obtain a global 
optimal schedule. For the big instances there is a need for 
approximation algorithms, which include priority dispatch, 
shifting bottleneck approach, local search, and heuristic 
methods. Recently, using a high-level strategy to guide other 
heuristics, known as meta-heuristics, led to better and more 
appreciated results in a relatively short period. Therefore, a 
number of meta-heuristics were proposed in literature for the 
past two decades to deal with the JSSP such as genetic 
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algorithm (GA) [1]-[4], simulated annealing (SA) [5], taboo 
search (TS) [6], greedy randomized adaptive search procedure 
(GRASP) [7] etc. A comprehensive survey of job shop 
scheduling techniques has been done by Jain and Meeran [8]. 

Among the meta-heuristic algorithms, GA has been used 
with increasing frequency to address scheduling problems. The 
GA is based on the survival of the fittest and involves some 
selection, crossover and mutation operations. GA exhibits 
parallelism, contains certain redundancy and historical 
information of past solutions, and is suitable for 
implementation on massively parallel architecture. As GA 
became popular in the mid 1980s, many researchers started to 
apply this meta-heuristic method to the JSSP. Yamada and 
Nakano [1] designed a GA for solving the classical JSSP. 
Kobayashi, Ono and Yamamura [4] designed another GA for 
the classic problem, and reached solution with high quality. 
Cheng, Gen and Tsujimura [9]-[10] provided a tutorial survey 
of works on solving the classical JSSP using GA. Wang and 
Zheng [11] developed a hybrid optimization strategy for JSSP. 
Ombuki and Ventresca [12] proposed a local search genetic 
algorithm to solve JSSP. Goncalves, Mendes and Resende [13] 
developed another hybrid genetic algorithm for JSSP. 

In this paper, an effective hybrid intelligent algorithm for 
JSSP based on genetic algorithm and local search is presented. 
The remainder of the paper is organized as follows. An 
introduction for the job shop scheduling problem is given in 
Section II. Detailed description of the proposed job shop 
scheduling algorithm is presented in Section III. Section IV 
discusses the experimental results. Finally, we summarize the 
paper and present our future work in Section V.  

II. JOB SHOP SCHEDULING PROBLEM 

The problem studied in the paper is a deterministic and static 
n-job, m-machine JSSP. In this problem, n jobs are to be 
processed by m machines. Each job consists of a predetermined 
sequence of task operations, each of which needs to be 
processed without preemption for a given period of time on a 
given machine. Tasks of the same job cannot be processed 
concurrently and each job must visit each machine exactly once. 
Each operation cannot be commenced until the processing is 
completed, if the precedent operation is still being processed. A 
schedule is an assignment of operations to time slots on the 
machines. The makespan is the maximum completion time of 
the jobs. The objective of the JSSP is to find a schedule that 
minimizes the makespan. 

Explaining the problem more specifically, let J={1, 2,..., n} 
denote the set of jobs, M={1,2,…,m}  represent the set of 
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machines, and O={0, 1, 2, …, n×m, n×m+1}  be the set of 
operations to be scheduled, where 0 and n×m+1 represent the 
dummy initial and final operations, respectively. The 
operations are interrelated by the precedence constraints, which 
force each operation j to be scheduled after all predecessor 
operations Pj are completed. Moreover, operation j can only be 
scheduled if the required machine is idle. Furthermore, let Tj 
and Fj denote the fixed processing time and the finish time of 
operation j, respectively. Let A(t) be the set of operations being 
processed at time t, and let ejm=1 if operation j is required to 
process on machine m (ejm=0 otherwise). 

The conceptual model of the JSSP can be stated as [13] 

1min mnF                                                           (1) 

..ts   
jjk TFF  ,      1,,2,1  mnj  ; 

jPk         (2) 





)(

1
tAj

jme ,     Mm ;     0t                              (3) 

0jF , 1,,2,1  mnj  .                                  (4) 

The objective function (1) minimizes the finish time of the 
last operation, namely, the makespan. Constraint (2) imposes 
the precedence relations between operations. Constraint (3) 
represents that one machine can only process one operation at a 
time, and constraint (4) forces the finish times to be 
nonnegative. 

III. HYBRID GENETIC ALGORITHM FOR JSSP 

The GA simulates the biological processes that allow the 
consecutive generations in a population to adapt to their 
environment. The adaptation process is mainly applied through 
genetic inheritance from parents to children and through 
survival of the fittest. The GA object determines which 
individuals should survive, which should reproduce, and which 
should die. To successfully apply a GA to solve a problem one 
needs to determine the following [14]:  

1) The representation of possible solutions, or the chromo- 
somal encoding; 

2) The fitness function which accurately represents the value 
of the solution; 

3) Genetic operators (selection, crossover and mutation) 
have to employ and the parameter values (population size, 
probability of applying operators, etc.) that are suitable. 

A. Chromosome Representation 

A proper chromosome representation has a great impact on 
the success of the used GA. Cheng, Gen and Tsujimura [9] gave 
a detailed tutorial survey on papers using different GA 
chromosome representations to solve classical JSSP. In this 
paper, an operation based representation is adopted, which uses 
an unpartitioned permutation with m-repetitions of job numbers 
for problems with n jobs and m machines. Within the 
representation, each job number occurs m times in the 
chromosome. By scanning the chromosome from left to right, 
the k-th occurrence of a job number refers to the k-th operation 
in the technological sequence of this job. 

For example, suppose that a chromosome is given as [2 1 3 1 
2 2 3 1 3] in a three jobs and three machines problem. Because 
each job consists of three operations, the job number occurs 
exactly three times in the chromosome. The fifth gene of the 
permutation implies the second operation of job 2 because 
number 2 has been repeated twice. Similarly, the sixth gene 
represents the third operation of job 2, and so on. The 
prominent advantage of operation based representation is that 
the permutation is always feasible. Moreover, it eliminates the 
deadlock schedules that are incompatible with the 
technological constraints and can never be finished. However, 
it will produce redundancy in the search space and will cause 
the search-space size to expand to (n×m)!/(m!)n. 

B. Chromosome Decoding 

The solution of the JSSP can be represented as the operation 
permutation of jobs on each machine. The total number of all 
possible schedules (both feasible and infeasible) is (n!)m for 
problems with n jobs and m machines. Obviously, it is 
impossible to exhaust all the alternatives for finding the optimal 
solution even if the values of n and m are small. For example, 
for the Fisher-Thompson benchmark problem of ten jobs to ten 
machines, it has a search space with a size at about 3.96 × 1065. 
Thus, it is necessary to restrict the search space and to guide the 
search process. The objective of the chromosome decoding 
procedure is to transform the chromosomes to schedules and 
obtain their makespans. 

In general, schedules can be classified into three types: 
semiactive schedule, active schedule and non-delay schedule 
[15]. Semiactive schedules contain no excess idle time, but they 
can be improved by shifting some operations to the front 
without delaying others. Active schedules contain no idle time, 
and no operation can be finished earlier without delaying other 
operations. The set of non-delay schedules is a subset of active 
schedules. In a non-delay schedule, no machine is kept idle at a 
time when it could begin processing other operations. In order 
to further reduce the solution space, Zhang, Rao and Li [16] 
proposed a new type of schedule: full active schedule (FAS), 
which can be defined as a schedule with no more permissible 
left shifts and right shifts. Fig. 1 shows the relationships 
between the classes of schedules. The optimal schedule is 
guaranteed to be a full active schedule. Therefore, we only need 
to find the optimum solution in the set of full active schedules. 
 

 
Fig. 1 Classes of schedules 

C. Crossover Operation 

Crossover operator plays an important role in genetic 
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algorithm approach. It intends to inherit the properties of two 
parent solutions to two offspring solutions. To apply crossover 
operation successfully to the JSSP, we must satisfy the 
following criteria: completeness, feasibility, non-redundancy 
and characteristics preservation [4]. In this paper, we use the 
set-partition crossover (SPX) [17] as crossover, which can 
preserve characteristics properly between parents and their 
children. Given chromosomes, parent1 and parent2, crossover 
applied SPX generates the children, child1 and child2, by the 
following procedure. Firstly, randomly divide the set of job 
numbers as {1, 2, ..., n} into two nonempty exclusive subsets 
as J1 and J2. Secondly, combine together those numbers of 
parent1 in J1 and those numbers of parent2 in J2. The 
combination order is in an interweaving way, i.e. one by one 
from up-to-down and left-to-right. This part of procedure 
creates one new string. Exchange the two parents parent1 and 
parent2, and do the combination once again to yield another 
new string. Fig. 2 shows an example of the three jobs and three 
machines problem; chromosome of parent1 and parent2 is 
{1 2 3 3 2 1 3 2 1}  and {1 2 2 2 3 1 3 3 1}  respectively. The 
crossover generates two children chromosomes, child1 
{1 2 2 3 1 3 2 3 1} and child2 {1 2 2 3 2 3 1 3 1}. 

 
Fig. 2 Example of SPX crossover 

D. Mutation Operation 

Mutation is another important genetic operator that 
randomly changes a chromosome. This is done to maintain the 
diversity of the chromosomes and to introduce some extra 
variability into the population. In this paper, two types of 
mutation operators named forward insertion mutation (FIM) 
and backward insertion mutation (BIM) are used. Fig. 3 shows 
examples of the three jobs and three machines problem. In this 
work, the two mutation operators alternate randomly with equal 
probability. Two mutations are described as follows: 

1) Forward insertion mutation selects two elements 
randomly and inserts the back one before the front one.  

2) Backward insertion mutation selects two elements 
randomly and inserts the front one after the back one. 

 

 

 
Fig. 3 Examples of the two mutation operators 

E. Local Search Procedure 

The use of local search techniques has been proven to be 
useful in solving combinatorial problems. Local search 
methods are applied to a neighborhood of a current solution. In 
the case of JSSP, a neighborhood is achieved by moving and 
inserting an operation in a machine sequence. In this paper, we 
focus particularly on the approach of Nowicki and Smutnicki 
[6], which is noted for proposing and implementing the most 
restrictive neighborhood in the literature. According to 
Nowicki and Smutnicki’s work, a critical path in the solution is 
identified first. Then the operations on the critical path are 
called critical operations and the maximal sequence of adjacent 
critical operations that are processed on the same machine can 
be defined as blocks. The neighborhood is defined as 
interchanges of the last two or the first two critical operations of 
the blocks if the blocks are neither the first block nor the last 
block. In the first block only the last two operations and 
symmetrically in the last black of the critical path only the first 
two operations are swapped. If a block contains only one 
operation no swap is made. The Nowicki and Smutnicki’s 
neighborhood is illustrated in Fig. 4. 

 
Fig. 4 The Nowicki and Smutnicki’s neighborhood 

 
The proposed local search starts with a feasible schedule S as 

an input. The input schedule is set to Sbest which stands for the 
best found solution. Then, a single arbitrary critical path is 
generated and a neighborhood of schedule Sbest is constructed. 
Randomly select a schedule Snew from the neighborhood. If Snew 
is better (i.e. has a lower makespan) than Sbest, the Sbest is 
replaced by Snew. The procedure is repeated until a maximum 
number of iterations (LOC_ITER) without improving the best 
found solution is reached. The pseudo-code of the local search 
heuristic is shown in Algorithm LS. 

 

Algorithm LS(local search) 
1. Calculate the makespan Cmax(Sbest) of the  
1. current schedul S. Set iteration counter 
1. count to 1 
2. While(count < LOC_ITER)do 
3.    Randomly selected a schedule Snew 
3.    from the neighborhood of Sbest 
4.    If Cmax(Snew) < Cmax(Sbest)Then 
5.        Update Sbest by setting Sbest = Snew 
6.        Set count to 1 
7.    Else 
8.        count++ 
9.    End If 
10. End While 1 2 2 ② 3 1 3 3 ① 1 2 2 3 1 3 3 ① ②

parent2 child2 
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1 2 3 ③ 2 1 3 2 ① 1 2 3 ① ③ 2 1 3 2
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F. Designing a hybrid genetic algorithm for JSSP 

In contrast to a simple genetic algorithm, a new generation 
alternation model is introduced for the proposed hybrid GA in 
this paper. Every pair of randomly selected distinct mates must 
pass either crossover or mutation, which are deployed in 
parallel. The crossover is performed with a probability Pc. 
When the mating process is carried out, crossover operator is 
applied to the two parents N times and 2N offspring are 
generated; the best individual in those offspring is selected to 
the next generation. Otherwise, implements the mutation 
operator to the two parents N times respectively and 2N 
offspring are generated too; the best individual is selected to the 
next generation. The crossover rate Pc is decreased linearly 
from 0.9 to 0.5 according to (5), where g represents the iterative 
number; MAX_GEN is the maximum number of iterations. 

Such a mechanism can improve the exploration ability of GA. 
For example, at the beginning of the evolution period, the 
crossover rate is big; whereas at the end of the convergence 
period, the crossover rate decreases and the mutation rate 
becomes big; this characteristic of the new crossover rate can 
avoid premature convergence better. 

4.0_/9.0  GENMAXgPc
                              (5) 

The brief outline of the proposed algorithm can be described 
as follows. 

Step 1) Set values of pop_size, N, MAX_GEN, LOC_ITER. 
Step 2) Generate a population P0 with pop_size individuals 

randomly and evaluate the individuals with the decoding 
procedure; set generation counter g = 1 and the current 
population Pold = P0. 

Step 3) Repeat Step 4) – 11) until g > MAX_GEN. 

TABLE I 
COMPUTATIONAL RESULTS OF FT AND LA TEST INSTANCES 

Instance Size BKS our HGA 
HGA 
param 

LSGA GRASP GP+PR TSAB 
Beam 
Search 

RCS SBII 

ft06 6×6 55 55 55 55 55 55 55 - 55 55 
ft10 10×10 930 930 930 976 938 930 930 1016 930 930 
ft20 20×5 1165 1165 1165 1209 1169 1165 1165 - 1165 1178 
la01 10×5 666 666 666 - 666 666 666 666 666 666 
la02 10×5 655 655 655 - 655 655 655 704 655 669 
la03 10×5 597 597 597 - 604 597 597 650 597 605 
la04 10×5 590 590 590 - 590 590 590 620 590 593 
la05 10×5 593 593 593 - 593 593 593 593 593 593 
la06 15×5 926 926 926 - 926 926 926 926 926 926 
la07 15×5 890 890 890 - 890 890 890 890 890 890 
la08 15×5 863 863 863 - 863 863 863 863 863 863 
la09 15×5 951 951 951 - 951 951 951 951 951 951 
la10 15×5 958 958 958 - 958 958 958 958 958 959 
la11 20×5 1222 1222 1222 - 1222 1222 1222 1222 1222 1222 
la12 20×5 1039 1039 1039 - 1039 1039 1039 1039 1039 1039 
la13 20×5 1150 1150 1150 - 1150 1150 1150 1150 1150 1150 
la14 20×5 1292 1292 1292 - 1292 1292 1292 1292 1292 1292 
la15 20×5 1207 1207 1207 - 1207 1207 1207 1207 1207 1207 
la16 10×10 945 945 945 959 946 945 945 988 945 978 
la17 10×10 784 784 784 792 784 784 784 827 784 787 
la18 10×10 848 848 848 857 848 848 848 881 848 859 
la19 10×10 842 842 842 860 842 842 842 882 848 860 
la20 10×10 902 907 907 907 907 902 902 948 907 914 
la21 15×10 1046 1047 1046 1114 1091 1057 1047 1154 1069 1084 
la22 15×10 927 930 935 989 960 927 927 985 937 944 
la23 15×10 1032 1032 1032 1035 1032 1032 1032 1051 1032 1032 
la24 15×10 935 941 953 1032 978 954 939 992 942 976 
la25 15×10 977 979 986 1047 1028 984 977 1073 981 1017 
la26 20×10 1218 1218 1218 1307 1271 1218 1218 1269 1218 1224 
la27 20×10 1235 1240 1256 1350 1320 1269 1236 1316 1285 1291 
la28 20×10 1216 1216 1232 1312 1293 1225 1216 1373 1216 1250 
la29 20×10 1152 1167 1196 1311 1293 1203 1160 1252 1208 1239 
la30 20×10 1355 1355 1355 1451 1368 1355 1355 1435 1355 1355 
la31 30×10 1784 1784 1784 1784 1784 1784 1784 1784 1784 1784 
la32 30×10 1850 1850 1850 1850 1850 1850 1850 1850 1850 1850 
la33 30×10 1719 1719 1719 1745 1719 1719 1719 1719 1719 1719 
la34 30×10 1721 1721 1721 1784 1753 1721 1721 1780 1721 1721 
la35 30×10 1888 1888 1888 1958 1888 1888 1888 1888 1888 1888 
la36 15×15 1268 1278 1279 1358 1334 1287 1268 1401 1292 1305 
la37 15×15 1397 1397 1408 1517 1457 1410 1407 1503 1411 1423 
la38 15×15 1196 1202 1219 1362 1267 1218 1196 1297 1278 1255 
la39 15×15 1233 1238 1246 1391 1290 1248 1233 1369 1233 1273 
la40 15×15 1222 1228 1241 1323 1259 1244 1229 1347 1247 1269 

Average gap(%) 0.14 0.40 5.39 1.78 0.44 0.06 4.35 0.61 1.39 

No. of instance 43 43 28 43 43 43 41 43 43 

No. of BKS obtained 32 31 3 23 32 37 18 31 20 
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Step 4) Copy the elite individual from Pold to the new 
population Pnew. Set the new population size n = 1. 

Step 5) Repeat Step 6) – 9) until n > pop_size. 
Step 6) Select a pair of individuals p1, p2 from the Pold 
Step 7) Generate a random float rand_num ∈ (0,1) , if  

rand_num < Pc go to Step 8), else go to Step 9). 
Step 8) Implement crossover on p1 and p2 for N times and 

generate 2N offspring, select the best individual in the 2N 
offspring to the next generation. Set n = n + 1. 

Step 9) Implement mutation on p1 and p2 N times 
respectively and generate 2N offspring, select the best 
individual to the next generation. Set n = n + 1. 

Step 10) Implement local search on every individual in Pnew. 
Step 11) Set Pold = Pnew 

IV. COMPUTATIONAL RESULTS 

To illustrate the effectiveness and performance, we use 43 
instances that are taken from the ORLibrary [18] as test 
benchmarks to test our new proposed hybrid GA. In the 43 
instances, FT06, FT10 and FT20 were designed by Fisher and 
Thompson in 1963 and instances LA01–LA40 that were 
designed by Lawerence in 1984. The algorithm was 
implemented in Visual C++ and the tests were run on a 
computer with Pentium IV2.4G and 1GB RAM. In our 
experiments, population size pop_size = 100, N = 5, LOC_ITER 
is the smallest integer number not less than n/2, and Pc is 
decreased linearly from 0.9 to 0.5. The algorithm was 
terminated when after MAX_GEN = n×m  generations of the 
algorithm, and each instance is randomly run 20 times. 
Numerical results are compared with those reported in some 
existing literature works using some heuristic and 
meta-heuristic algorithms, including HGA-param [13], LSGA 
[12], GRASP [7], GP+PR [19], TSAB [6], Beam Search [20], 
RCS [21], and SBII [22]. 

Table I summarizes the results of the experiments. The 
contents of the table include the name of each test problem 
(Instance), the scale of the problem (Size), the value of the best 
known solution for each problem (BKS), the value of the best 
solution found by using the proposed algorithm (our HGA) and 
the best results reported in other research works. 

 
It can be seen from Table I that the proposed algorithm is 

able to find the best known solution for 32 instances, i.e. in 
about 75% of the instances, and the deviation of the minimum 
found makespan from the best known solution is only on 
average 0.14%. The proposed algorithm yields a significant 
improvement in solution quality with respect to almost all other 
algorithms, expected for the approach proposed by Nowicki 
and Smutnicki that has a better performance in the 15 × 15 
problems mainly. The superior results indicate the successful 
incorporation of the improved GA and LS, which facilitates the 
escape from local minimum points and increases the possibility 
of finding a better solution. Therefore, it can be concluded that 
the proposed hybrid GA solves the JSSP fairly efficiently. 

As mentioned above, the algorithm is performed 20 times for 
each instance. Table II lists the best solution (Best), the relative 
deviation of the best solution (BRD), the mean solutions 
(Mean), the relative deviation of the mean solution (MRD), and 
the average computing time (t-avg) of some typical instances 
with different size. The MRD is commonly zero for small-size 
problem and is not more than 1.5% for most other problems. 

To illustrate the simulated results more intuitively, the 
problem la37 that is one of the hardest problems is specially 
described as an example. Fig. 5 plots the representative 
convergence curve finding best solution. Fig. 6 shows a Gantt 
chart of a best solution. 
 

 
Fig. 5 Representative convergence curve for la37 

 
TABLE II 

SUMMARY OF RESULTS FOR TYPICAL INSTANCES 

Insta
nce

Size BKS Best
BRD
(%) 

Mean 
MRD
(%) 

t-avg 
(s) 

ft06 6×6 55 55 0.00 55 0.00 0.62 
ft10 10×10 930 930 0.00 936.85 0.74 8.21 
ft20 20×5 1165 1165 0.00 1171.9 0.59 16.37 
la01 10×5 666 666 0.00 666 0.00 1.90 
la06 15×5 926 926 0.00 926 0.00 5.42 
la11 20×5 1222 1222 0.00 1222 0.00 14.63 
la16 10×10 945 945 0.00 947.15 0.23 7.65 
la21 15×10 1046 1047 0.10 1057.15 1.07 24.49 
la26 20×10 1218 1218 0.00 1218 0.00 62.48 
la31 30×10 1784 1784 0.00 1784 0.00 202.81
la36 15×15 1268 1278 0.79 1286.55 1.46 56.20 
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Fig. 6 Gantt chart of an optimal schedule for la37 

 

V. CONCLUSION AND PERSPECTIVES 

This paper presents a hybrid algorithm combining genetic 
algorithm with local search for the JSSP. In the algorithm a new 
generation alternation model of genetic algorithm for JSSP is 
designed and a Nowicki and Smutnicki’s neighborhood based 
local search algorithm is incorporated. This allows the GA to 
explore more solution space whereas LS does the exploitation 
part. The approach is tested on a set of 43 standard instances 
taken from the literature and compared with other approaches. 
The computational results show that the algorithm produced 
optimal or near-optimal solutions on all instances tested. 
Overall, the algorithm produced solutions with an average 
relative deviation of 0.14% to the best known solution. In our 
future work we aim to extend the proposed algorithm in order 
that it can be applied to more practical and integrated 
manufacturing problems such as dynamic arrivals, machine 
breakdown, or other factors that affect job status over time. 
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