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Extended Deductive Databases with Uncertain
Information

Daniel Stamate

Abstract— The paper presents an approach for handling uncertain
information in deductive databases using multivalued logics. Uncer-
tainty means that database facts may be assigned logical values other
than the conventional ones - true and false. The logical values repre-
sent various degrees of truth, which may be combined and propagated
by applying the database rules. A corresponding multivalued database
semantics is defined. We show that it extends successful conventional
semantics as the well-founded semantics, and has a polynomial time
data complexity.

Keywords—Reasoning under uncertainty, multivalued logics, de-
ductive databases, logic programs, multivalued semantics.

I. INTRODUCTION

REAL world information is not always exact, but mostly
imperfect, in the sense that we handle estimated values,

probabilistic measures, degrees of uncertainty, etc, rather than
exact values and information which is certainly true or false.

In the conventional database systems the information han-
dled is assumed to be rather exact, as a tuple (or fact) either is
in the database (so it is true) or is not (so it is false). That is,
in such a context we use quite simplified models of the “real”
world.

In this paper we present an approach for querying and up-
dating extended deductive databases with uncertain/imperfect
information. In our approach, a deductive database is seen as
a pair

� � � � � 
 �
, where

�
is essentially a datalog program

with negation and



is a set of facts. The facts recorded in
the database are of several kinds:

 facts that express exact information, such as “an ostrich
is a bird”

 facts that express uncertain information such as “an
ostrich possibly doesn’t fly”

 facts that refer to extensional predicates
 facts that refer to intensional predicates.

In order to model such databases, we extend Kleene’s
three-valued logic (true, false and unknown) by adding new
values representing various degrees of truth. We structure
these values by defining two orders, the truth order and the
knowledge order. We then extend Przymusinski’s three-valued
stable semantics [21] to a multivalued one, along the lines of
Fitting [6]. We use these extension for describing the semantics
of queries and updates in databases with uncertain information.

Motivation for this work comes from problems arising in
query answering that combines information from multiple
sources. A typical example is a multimedia information sys-
tem, where a query can access data in a number of different
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subsystems (sound-, image-, text-subsystem etc.). Each sub-
system provides the answer to a subquery and the system must
then combine these answers in order to provide the answer to
the overall query.

Let us illustrate our discussion using an example. Consider
an application of a store that sells compact disks and assume
that we want to produce a list of albums by Oscar Peterson,
sorted according to their jazziness. To do this we use two
sources of information:

 A relation � � � � � � � � � � � � �  " � �
residing on a relational

database, and
 The estimates of an expert as to the type (jazzy, funky,

etc) of the music announced on the cover of the al-
bums. Let us think of these estimates as of a rela-
tion $ � � � � � � � � � & ' ( ) �

residing on a sound-subsystem.
Each tuple in relation $ is associated with a number, say
a real between -1 and 1, indicating the expert’s opinion
as to whether the album is of the type: 1 (or -1) indicates
that the expert thinks the music of the album is certainly
(or is not at all, respectively) of the type; 0 expresses that
the expert has no particular opinion (so no information
available); 0.9 (or -0.9) means that the expert is highly
confident that the music is (or is not, respectively) of the
type. The expert could for instance be an approximate
pattern matching algorithm that looks if words from the
language of jazz occur in samples from the CD’s.

The multimedia query Q that we want to answer is then a
conjunct of two atoms as follows:+ � - � 0 � � - � � " 3 5 � � ) � ) � " � 8 � : $ � - � < 5 > > �

The question arising here is how we combine the imperfect
information provided by the sound-subsystem with the exact
one provided by the relational database. A natural solution
would be to assign the value 1 to all tuples in the relation

� and -1 to all tuples in the complementary relation (i.e. not
stored in � ), and to combine a tuple value with an estimate of
the expert by using min operation. Various functions that may
be used to define logical operations for combining uncertain
information are discussed in [5].

In the light of our discussion, there are applications where
we need (a) more than two logical values and (b) more that one
order over these values (i.e. more than one way of structuring
the set of logical values). Indeed, the values can be ordered
w.r.t. their degree of truth (as for instance -1 and 1, being
seen as false and true, are the least and the greatest values,
respectively) or w.r.t. their degree of information or knowledge
(as for instance 0, -1, and 1, being seen as nothing known or
unknown, false and true, are the least, a maximal and another
maximal values, respectively). Therefore we will introduce and
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use a multivalued logic with two orders, a truth order and a
knowledge order.

Let us mention that there exist several formalisms on which
are based various approaches tackling the matter of uncertain,
incomplete and inconsistent information in logic programs and
databases. These formalisms include the probability theory
[20], [14], [13], [8], [23], [25], [15], the theory of fuzzy sets
[24], [4], [2], the multivalued logics [11], [6], [18], [7], [16],
[17], the possibilistic logic [2], the Dempster-Shafer theory of
evidence [19], and hybrid (i.e. numerical and non numerical)
formalisms [12], [1].

In the following Section II, we introduce formally the
multivalued logic that we use, while in Section III we define
programs and their multivalued semantics. In Section IV, we
study extended deductive databases and their updating as well
as data complexity of our multivalued semantics, and finally
we provide some concluding remarks in Section V.

II. THE LOGIC � �
The multivalued logic that we introduce and use in this

paper comprises the usual values of the three-valued logic, i.e.
true, false and unknown, but also additional values expressing
various degrees of truth. As illustrated in the example provided
in the introduction, we use numbers to represent these logical
values, as follows: � for true, � � for false, � for unknown,� � 	 � � � � � � � � � � � � 	 � for different degrees of truthness or
falseness, where � is a positive integer.

The values � and � � express exact information while
values � � � � 	 � � � � � � � � � � � � 	 � express partial or uncertain
information; particularly, the value � expresses the lack of
information. We denote by � � the set of these � � � � logical
values, that is,

� � � � � � 	 	 � � � 	 � � � � � � � � �
As mentioned in the introduction, we consider two orders on
the set � � , the truth order that we denote by � � , and the
knowledge order that we denote by � � . The truth order shows
the degree of truth, and the knowledge order shows the degree
of knowledge (or of information). The logical values of � �
are thus ordered as follows:

� truth order: � � � � � 	 	 � � � � � � 	 	 � � � �
� knowledge order: � � � � 	 	 � � � � � and � � � 	 	 � � �� , for 	 � � � � � � � � .

Note that � & is isomorphic with the well known Kleene’s
three-valued logic. On the other hand � ' is a five-valued logic
having two new values w.r.t. � & , namely � 	 � and � � 	 � , which,
in the context of the logic � ' , will be interpreted as possibly
true and possibly false, respectively.

For illustrative purposes the logic � ' with its two orders is
represented in Figure 1, where the axes t and k show increase
in the truth and in the knowledge order, respectively. We
observe that the truth order is a linear order, i.e. any two values
of � ' are comparable. The knowledge order, however, is not
a linear order. Note that, in the knowledge order, the value� � expresses more information than � � 	 � , and � expresses
more information than � 	 � . Note also that, in the knowledge
order, � � is not comparable neither with � nor with � 	 � , and

� �

� �

1/2

1

0

-1/2

-1

Fig. 1 The logic - /
� � 	 � is not comparable neither with � nor with � 	 � . We shall
use logic � ' as a context for our examples for illustrative
purposes. Unless mentioned otherwise, from now on we refer
to the general logic � � .

In the truth order, we shall use the logical connectives 0 � 2
and 3 that we define as follows (see [5] for various functions
that may be adapted and used to define logical connectives):

� & 0 � ' � 4 5 7 � � & � � ' �
, � & 2 � ' � 4 9 : � � & � � ' �

and 3 � � � � ,
for any � � � & and � ' in � � . The connectives 0 and

2
are in

fact the meet and join operations in the truth order, and it is
not difficult to see that

� � � � 0 � 2 �
is a complete lattice. In

the knowledge order, we shall use only the meet operation <
defined as follows:

� & < � ' �
=> ? � �

if � & � ' � �
� & �

if
� � & � � � � ' �

and � & � ' A �
� ' �

if
� � & � A � � ' �

and � & � ' A �
Here, � is the usual ordering of the reals and

� � �
denotes the

absolute value of � . It is not difficult to see that
� � � � < �

is a
complete semilattice.

III. LOGIC PROGRAMS AND THEIR MULTIVALUED

SEMANTICS

In the logic � � one can consider rules in which the literals
in the body are connected by any of the connectives 0 � 2

or< . However, for the purposes of this paper, we only consider
rules in which the literals in the body are connected by the
truth conjunction 0 .

Thus the programs that we consider in this paper are essen-
tially datalog programs with negation, in which the logical
values of � � can appear as 0-arity predicate symbols in
the bodies of rules. The only difference from usual datalog
programs lies in the semantics used. Indeed, as we have just
explained, we consider additional logical values that express
uncertain information.

In this setting, we define the multivalued semantics of
programs and deductive databases.

A. Programs

The programs that we consider are built from atoms, which
are predicate symbols with a list of arguments, for example� � � & � � � � � E �

, where
�

is the predicate symbol. An argument
can be either a variable or a constant, and we assume that
each predicate symbol is associated with a nonnegative integer
called its arity. A F H J L M O F is either an atom or a negated atom.
A negated atom is a negative literal; one that is not negated
is a positive literal. A rule is a statement of the form � �P & � P ' � � � � � P E , where � is an atom and each

P Q � � � � � � � � � 	 �
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is either a literal or a value from � � , seen in this case as a
0-arity predicate. The atom � is called the head of the rule
and

� � � � � � � � � � � 	 is called the body of the rule.
A program is a finite set of rules, and a positive program

is one in which there is no negated literal. For example,� � � � � � � � � � � � 
 � � � � � �  � �
is a positive program, as

�
contains no negative literal ( �  � �

is not a negative literal since it does not contain the symbol
� ). Following usual practice, we call a predicate symbol
intensional if it appears in the head of a rule, and extensional
otherwise.

The Herbrand universe of a program
�

is the set of all
constants that appear in

�
(and if no constant appears in

�
then the Herbrand universe is assumed to be a fixed singleton).
By instantiation of a variable � we mean the replacement of �
by a constant from the Herbrand universe. If we instantiate all
variables of an atom or of a rule, then we obtain an instantiated
atom or rule. The Herbrand base of a program

�
is the set

of all possible instantiations of the atoms appearing in
�

. The
Herbrand base of a program

�
is denoted by � � 


.

B. Valuations and Models

Given a program
�

, we define a valuation to be any function
that assigns to every atom of the Herbrand base a logical value
from � � . We shall make use of two special valuations that
we denote by � and � � . The valuation � assigns the value 

to every atom in the Herbrand base; it is the “nothing known”
valuation. The valuation � � assigns the value �  to every
atom in the Herbrand base; it is the “all false” valuation.

Given a valuation  , we extend it to elements of � � (seen as
predicates of arity 0), to literals and to conjunctions of literals
and 0-arity predicates from � � as follows: � � 	 � � , where � is any element of � � , � � � 	 � �  � � 	

, where � is any instantiated atom, � � � � � � � � � � � � 	 	 �  if � � 
 and � � � � � � � � � � � � 	 	 �  � � � 	 �  � � � 	 � � � � �  � � 	 	
, if

� � 
 , where the
� �

’s are instantiated literals or elements
from � � .

Now, we can extend the two orders � � and � � (that we
have seen earlier) to the set � of all valuations in a natural
way: for any valuations  and  , define

 � �  if  � � 	 � �  � � 	
for all � in � � 


and
 � �  if  � � 	 � �  � � 	

for all � in � � 

.

It is then not difficult to see that, in the truth order, � becomes
a complete lattice while, in the knowledge order, � becomes
a complete semilattice.

In the truth order, we say that a valuation  satisfies an
instantiated rule � � � � � � � � � � � � � 	 if  � � 	 � �  � � � � � � �� � � � � 	 	

. This definition is natural, as it expresses the fact that
if � is deduced from

� � � � � � � � � � � 	 then � must be assigned
a logical value greater than or equal to the value assigned to� � � � � � � � � � � 	 . Now, if a valuation  satisfies all possible
instantiations of rules of a program

�
, then  is called a model

of
�

. Given a program
�

, we shall denote by
� �

the set of
all possible instantiations of rules of

�
. Note that

� �
is also

a program (possibly much larger, in general, than
�

).

Definition 1: - Model. A model of a program
�

is a
valuation  that satisfies every rule of

� �
. �

Given a program
�

, we define the immediate consequence
operator of

�
to be a mapping � 
 � � � � defined as

follows: for every valuation  in � , � 
 �  	
is a valuation s.t.

for every atom � of the Herbrand base, � 
 �  	 � � 	 �� �  �
if there is no rule in

� �
with head �

�  � �   � ! 	 ! � � !
in

� � " , otherwise.
.

Here �  � � denotes the least upper bound in the truth order and!
is a conjunction of atoms of the form

� � � � � � � � 	 . That
is, � 


takes as argument a valuation  and returns as a result
a valuation � 
 �  	

computed as follows:

for every atom � of the Herbrand base do
begin � 
 �  	 � � 	 � � �  ;

for every rule � � � � � � � � � � 	 in
� �

do� 
 �  	 � � 	 � � & � 
 �  	 � � 	 ( # &  � � � � � � � � � � � � 	 	 (
end.

Note that, if there is no rule in
� �

with head � , then � 
 �  	 � � 	
is assigned the value �  . We do this because (as in the case
of well-founded semantics) we privilege the truth order. This
means that, if an atom � is not the head of any rule (and
thus we have no information on its truth value) then � is
assigned the least value of the truth order, namely �  ). As a
consequence, we assign the least element of the truth order to
every atom � that is not head of a rule.

C. Semantics of Positive Programs

We can show easily that if
�

is a positive program then its
immediate consequence operator � 


is monotone in the truth
order. Now, as the set � of all valuations is a complete lattice
(in the truth order), � 


has a least fixpoint, denoted � + � � � 

.

We can show that this least fixpoint is, in fact, the least model
of

�
. So we call � + � � � 


the multivalued semantics of
�

,
or simply the semantics of

�
. It follows that the semantics of�

can be computed as the limit of the following sequence of
iterations of � 


:

 . � � �
 	 0 � � � 
 �  	 	

for � � 
 �
Here, � � is the valuation that assigns the value �  to every
atom of the Herbrand base.

Note that our programs contain no function symbols, so the
computation of the semantics � + � � � 


terminates in a finite
number of steps. Note also that, due to the way the semantics
is computed, i.e. by iterating the immediate consequence
operator to reach its fixpoint or, equivalently, by repeatedly
applying the rules until nothing new is obtained, the semantics
can be intuitively interpreted as the total knowledge that can
be deduced from the program.

D. Semantics of Programs with Negation

If the program
�

contains negative literals then the im-
mediate consequence operator � 


is no more monotone. As
a consequence we can no more define the semantics of

�
as the least model of

�
, since such a model may not exist.

So we have to look for a new definition of semantics for�
extending the semantics of positive programs. The idea,
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explained intuitively through the following example, is, again,
to try to deduce all the possible knowledge from a program
with negation.

Example 1: Consider the logic � � and the following pro-
gram

�
, where � � � � � and

�
are predicates of arity � :

� � � � � � � � � � � � � � � � � � � � � � � � � � � 	

Note that, as all predicates are of arity � , the program
� �

coincides with
�

, i.e.
� � � �

.

Step 0: We begin by assuming “nothing known” about
the negative literals of the program i.e., we begin with the
valuation � for the negative literals. Now, if we replace all
negative literals of

� �
by their values under � (i.e. by � ), then

we obtain the following positive program denoted by
� � � :

� � � � � � � � � � � � � � � � � � � � � � � 	

As
� � � is a positive program, we can compute its semantics

applying repeatedly the immediate consequence operator 	 
 � �
(starting with the valuation � � as explained earlier). We find
the following model ( represented by a table, where the atoms
of the Herbrand base appear in the first row and their logical
values in the second row):

	 � 
 � 	 
 � � � � � � � � �
� � � � � � � �

As a result, we have increased our knowledge, since we now
know that

�
is associated with � � � (as opposed to � that we had

assumed initially). This increased knowledge is represented by
the valuation � � � 	 � 
 � 	 
 � � .

Step 1: We can now repeat the process, using � � instead of
� . That is, we can now replace all negative literals of

� �
by

their new values under � � , to obtain again a positive program
that we shall denote by

� � � � :

� � � � � � � � � � � � � � � � � � � � � � � � � � 	

As
� � � � is a positive program, we can compute its semantics

using 	 
 � � 	 (as above):

	 � 
 � 	 
 � � 	 � � � � � � �
� � � � � � � � � � �

As a result, we have increased our knowledge even further,
since we now know that

�
is associated with � � � � (as opposed

to � previously). This increased knowledge is represented by
the valuation � � � 	 � 
 � 	 
 � � 	 .

Step 2: If we repeat the process once more then we obtain
the program

� � � � and its least fixpoint:

� � � � � � � � � � � � � � � � � � � � � � � � � � 	

	 � 
 � 	 
 � �  � � � � � � �
� � � � � � � � � � �

We observe that 	 � 
 � 	 
 � �  � � � , so we can no more increase
our knowledge. That is, the valuation � � represents all the
knowledge that we can have from

�
. This knowledge is: � ,

� and � are unknown,
�

is possibly true and
�

is possibly
false. �
The important thing to note, in the above example, is that: each
step � takes as input a valuation � �

of
�

, and returns as a result
a valuation � � � � � 	 � 
 � 	 
 � � � of

�
, via a transformation of�

to
� � � �

followed by a semantics computation for
� � � �

.
The transformation � � � � � � � is denoted by � � 


, i.e.

� � � � � � � 
 � � � 
, and is called the extended Gelfond-Lifschitz

transformation of
�

.
Let us now define formally the concepts illustrated by the

previous example. Given a program
�

and a valuation � , we
denote by

� � � the program obtained from
� �

by replacing
each negative literal � � of

� �
by its value under � , i.e. by

� � � � 
. It is important to note that: (1) the program

� � � is
a positive program and (2) its semantics (i.e. the 	 � 
 � 	 
 � � )
gives the information deduced from

�
by assuming that the

values for the negative premises are given by � .
Definition 2: The mapping � � 
 � � � � defined by� � 
 � �  � 	 � 
 � 	 
 � � , for all � in � , is called the extended

Gelfond-Lifschitz transformation of
�

. �
We can show that the transformation � � 


is monotone in the
knowledge order:

Theorem 3: The operator � � 

is monotone in the knowl-

edge order. �
Now, as the set � of all valuations is a complete semilattice
(in the knowledge order), � � 


has a least fixpoint, denoted
	 � 
 � � � 


. In the previous example, this least fixpoint is the
valuation � � .We can show that the fixpoints of � � 


are
models of

�
, and we call them multivalued models of

�
.

The 	 � 
 � � � 

is the multivalued model of

�
that has the

least degree of information. In fact, 	 � 
 � � � 

represents all

the information that one can deduce from
�

, as we have seen
in the previous example. So we choose 	 � 
 � � � 


to represent
the semantics of

�
and we call it the multivalued semantics

of
�

. It follows that the multivalued semantics of
�

can be
computed as the limit of the following sequence of iterations
of � � 


:� � � �� � � � � � � 
 � � � 
for any � � � .

We note that if
�

is a positive program then we have that:� � � =
� �

, for any valuation � , and thus � � 
 � � 
= 	 � 
 � 	 
 �

,
for any valuation � . It follows that the semantics of programs
with negation extends the semantics of positive programs.

We recall that Gelfond and Lifschitz have introduced 2-
valued stable-model semantics [9], which was then extended
to 3-valued stable semantics by Przymusinski [21]. We note
that, if we use the three-valued logic � � then the multivalued
semantics described here coincides with Przymusinski’s three-
valued stable semantics [21] that, in turn, coincides with the
well-founded semantics [22].

IV. EXTENDED DEDUCTIVE DATABASES WITH UNCERTAIN

INFORMATION

A. Databases and Their Semantics

We have seen so far the definition of a program and its
multivalued semantics, in the logic � � . Now, the rules of a
program represent our general perception or knowledge of a
part of the “real” world. Our general perception represented
by the rules, is then confronted to the observation of “real”
world facts.

Informally, a fact is a statement such as “an ostrich possibly
can’t fly”, describing the results of our observation. More
formally, a fact is an instantiated atom along with the logical
value that observation assigns to it. As a consequence, we
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shall represent facts as pairs of the form � � � � � , where
� is an instantiated atom and � is any value from � � . For
instance, in logic � � , the fact above will be represented as

� � � � � � � � � 
 � � � � � � � � 	 � � . What we shall call a database is
a set of rules (i.e. a program)

�
, along with a set of facts

�
:

Definition 4: An extended deductive database or simply a
database is a pair

� � � � � � �
, where

�
is a program, called

also the intensional database, and
�

is a set of facts, called
also the extensional database. �
Now, when we observe a fact � � � � � and we place it in the
database, we certainly intend to assign the logical value � to

� , no matter what value is assigned to � by the multivalued
semantics of

�
. In other words, the semantics of the database

will be that of
�

modified so that � is assigned the value � .
More formally, in order to define the semantics of a database� � � � � � �

, we first transform
� �

, using
�

, as follows:
� Step 1: Delete from

� �
every rule whose head appears

in a fact of
�

� Step 2: To the program thus obtained add a rule � � �
for every fact � � � � � in

�
.

Let us denote by
� 	 �

the program obtained by applying the
above steps 1 and 2 to

� �
. Note that Step 1 removes every

rule of
� �

that can possibly influence the value assigned to
� in the semantics of

�
; and Step 2 guarantees that � will

actually be assigned the value � , provided of course that there
is no other fact � � � � � � in

�
with � �� � � . Hence the following

definitions:
Definition 5: -Database Consistency. A database

� �
� � � � �

is called consistent if
�

does not contain two facts
of the form � � � � � and � � � � � � with � �� � � . �

Definition 6: -Database Semantics. The semantics of a con-
sistent database

� � � � � � �
is defined to be the multivalued

semantics of
� 	 �

. �
The following proposition says that the semantics just defined
does meet our intentions:

Proposition 7: Let
� � � � � � �

be a database and let � be
the semantics of

�
. Then, for every fact � � � � � in

�
, we

have � � � � � � . �
We note that the graph of a valuation � is a set of pairs of the
form � � � � � � ) � , i.e. a set of facts. In particular, the graph
of the semantics of a database is a set of facts. We shall refer
to these facts as the database facts.

B. Data Complexity

Data complexity, as defined by Vardi in [26] for a con-
ventional deductive database, is the time complexity of the
evaluation of a ground atomic query (that is, a query without
variables), expressed w.r.t. the size of the extensional database
(i.e. the set of facts). Note that the intensional database
(i.e. the set of rules) is assumed to be fix, and only the
extensional database may vary during updating. Obviously,
data complexity depends on the semantics defined for the
deductive database. We can easily adapt this definition to our
approach.

Let
� � � � � � �

be an extended deductive database. An
atomic query is defined as � � � � � �

where � is the name of the
query, � is an atom and � a logical value. The meaning of

the query is “which tuples contained in the relation associated
to the atom � are assigned a logical value greater or equal
to � w.r.t. the truth (knowledge) order, in the semantics of the
database?”. In particular, note that � � � � � �

corresponds to a
query in the conventional deductive database approach.

Data complexity in our framework is defined to be the time
complexity of the evaluation of a ground atomic query � � � � � �
(that is, an atomic query in which the atom � has no variables)
in the multivalued semantics of the database

�
w.r.t.

� � �
,

where
� � �

stands for the size of the extensional database
�

.
That is, evaluating this query means checking if the logical
value assigned to � in the semantics of the database is at
least � with respect to the truth (knowledge) order.

We can prove that the Herbrand base size is polynomialy
bounded w.r.t.

� � �
; moreover we can show that one application

of the operators � � � 
 and � � � � 
 costs polynomial time
w.r.t.

� � � �
and further, that � � �  � � � � 
 can be evaluated in

polynomial time w.r.t.
� � �

. Thus the following result:
Theorem 8: The semantics of a database

� � � � � � �
can

be computed in polynomial time w.r.t. the size of the set of
facts

�
.

As a ground atomic query � � � � � �
can easily be evaluated

against the semantics of
�

(this can be done also in polynomial
time w.r.t.

� � �
), we have:

Theorem 9: The data complexity of the multivalued seman-
tics is polynomial.

C. Database Updating

Informally, by updating a database
� � � � � � �

we mean
adding a fact � � � � � in the set

�
. Of course, the intention is

that the atom � must be assigned the value � in the semantics
of the updated database.

Example 2: Consider the logic � � and a database
� �

� � � � �
defined by:�

:  � � " 
 " � � 
 � � " and
� � �

.
Let � be the semantics of

�
. As

� � �
, the semantics of�

is that of
�

, i.e. � �  � � � and � � " � � � � � � � � � .
Suppose now that we want to update the database by adding
the fact �  � � 	 � � . Let

� � � � � � � � �
be the updated database.

Intuitively, it is natural to consider as “meaning” for
� � the

following valuation � � : � � �  � � � 	 � (because we added the
fact �  � � 	 � � ) and � � � " � � � � � � � � � � . Informally, the
reason why  and " remain false is because trying to “prove”

" we need to “prove” � and trying to “prove” � we need to
“prove” " . The situation here is similar to that with unfounded
sets of well-founded semantics (and here the set

� " � � � reminds
us of an unfounded set). �
More formally, database updating is defined as follows:

Definition 10: Let
� � � � � � �

be a consistent database.
The update of

�
by a fact � � � � � , denoted by # � � � � � � � � �

,
is a new database

� � � � � � � � �
, where

� � is defined by:
(1) remove from

�
every fact � � � � � � such that � � �� �

and
(2) to the result thus obtained, add � � � � � . �
We note that, when � � � , the operation # � � � � � � � � �

corresponds to “insert � in
�

” and when � � � � , the operation
# � � � � � � � � �

corresponds to “delete � from
�

”. However, �
can have any other value from � � .
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D. Properties of Updates

Database updating, as defined here, enjoys certain properties
that correspond to intuition. In order to state these properties,
let us call two databases

�
and

�
� (with the same Herbrand

base) equivalent if they have the same semantics. We shall
denote this by

� � �
� . The first property of updating is

idempotence, as expressed by the following proposition:
Proposition 11: For any database

�
, and for any instanti-

ated atom � and logical value � , we have:
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

. �
The following property says that, under certain conditions, the
order in which updates are performed is not important:

Proposition 12: For any database
�

, and for any instanti-
ated atoms � and � � and logical values � and � � we have:

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � �
and if

� and � � are distinct atoms then
� � � � � � � � � � � � � � � � �

� � �
� � � � � � � � � � � � � �

� � �
� � � � � �

. �
The following proposition states a property of “reversibility”
for updates. Roughly speaking, this property means that if we
modify the value of a database fact � � � � � from � to � � , and
from � � back to � , then we recover the original database.

Proposition 13: Let
�

be a database and let � � � � � be a
database fact. Then

� � � � � � � � � � � � � �
� � � � � � � �

. �
Another property of updates is monotonicity. Roughly speak-
ing, this property means that if the value of a database
fact increases then so does the database semantics. In the
knowledge order, this property holds for any database:

Proposition 14: Let
� � � � � � �

be a database with seman-
tics � , let � � � � � be any fact, and let � � be the semantics
of the database

�
�

� � � � � � � � � � �
. Then the following

statements hold:
(1) if � �

� � � � �
then � �

�
� �

(2) if � � � � � � �
then � � � � � . �

In the truth order, however, monotonicity holds only for
positive databases:

Proposition 15: Let
� � � � � � �

be a database with seman-
tics � , let � � � � � be any fact, and let � � be the semantics of
the database

�
�

� � � � � � � � � � �
. If

�
is a positive program,

then the following statements hold:
(1) if � �

� � � � �
then � �

�
� �

(2) if � � � � � � �
then � � � � � . �

V. CONCLUSION

We have seen an approach in which deductive databases are
extended in two ways. First, the database can contain uncertain
information and, second, the database updating is deterministic
over intentional predicates. In order to express uncertainty we
have introduced a multivalued logic called � � , with a double
algebraic structure of lattice and semilattice w.r.t. two orders -
the truth order and the knowledge order, respectively. We have
defined a multivalued semantics for programs and databases in
the context of the logic � � . This semantics extends successful
conventional semantics as the three-valued stable semantics
and the well-founded semantics, and has a polynomial data
complexity.
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