
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:7, 2013

1152

 

 

  

Abstract—In this work, we apply the Modified Laplace 
decomposition algorithm in finding a numerical solution of Blasius’ 
boundary layer equation for the flat plate in a uniform stream. The 
series solution is found by first applying the Laplace transform to the 
differential equation and then decomposing the nonlinear term by the 
use of Adomian polynomials. The resulting series, which is exactly the 
same as that obtained by Weyl 1942a, was expressed as a rational 
function by the use of diagonal padé approximant. 
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I. INTRODUCTION 
INCE its introduction by G. Adomian, the Adomian 
Decomposition Algorithm has been used in finding 

numerical solutions to a wide variety of problems in 
Mathematics, Physics and Engineering. It is fundamentally 
based on providing a solution in the form of series and 
decomposing nonlinear terms by the use of Adomian 
polynomials [1]-[2].  In recent years Adomian’s algorithm has 
been modified to make it more effective in providing solutions 
to differential and integral equations. 

Yahya Qaid Hassan and Liu Ming Zhu [3]-[4] used a 
Modified Adomian Decomposition method in solving singular 
boundary value problems of higher ordinary differential 
equations. S. N. Venkatarangan and T. R. Sivakumar [5] 
adopted a Modified Decomposition method for Boundary 
Value problems. A. M. Wazwaz [6] combined the Adomian 
Decomposition method and Pade Approximants in solving 
Flierl-petviashivili Equation and its variants. In 2001, Khuri [7] 
proposed the Laplace Decomposition method which was later 
developed by Yusufoglu [8] in 2006. A reliable modification of 
this decomposition method was achieved by Khan [9] in 2009. 
Our current work is motivated by Yasir Khan and Naeem Farz  
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[10] and Rashidi, M. M. [11] who applied the modified 
Laplace decomposition method in solving boundary layer 
equation.  

In this work we applied the Laplace Decomposition method 
to obtain a series solution of Blasius’ boundary layer equation 
for the flat plate. It is interesting to note here that the series 
solution obtained by our method is exactly the same as that 
obtained by Weyl 1942a, see [12].  

II. MODIFIED LAPLACE DECOMPOSITION ALGORITHM 
We illustrate the Laplace decomposition algorithm for 

solving Blasius’ Boundary layer equation as follows: 
Consider the homogenous nonlinear differential equation 
 

( ) ( ) 0/// =+ ηη gf                        (1) 

( ) af =0 , ( ) bf =0/ , ( ) cf =0//                   (2) 
 

By the Laplace decomposition algorithm, proposed by Khuri 
[7] 2001 and Yusufoglu 2006 [8], we 
have ( )[ ] ( )[ ] 0/// =+ ηη gLfL , where L  denotes the 
Laplace transform. 

Thus    
           

( )[ ] ( ) ( )[ ] 0)0(0)0( ///23 =+−−− ηη gLfsffsfLs    
 

Applying the boundary conditions in (2) gives 
 

( )[ ] ( )[ ] 023 =+−−− ηη gLcbsasfLs             (3) 
 

Let ( ) cbsassH ++= 2  so that (3) becomes 
 

( )[ ] ( ) ( )[ ]ηη gL
s

sH
s

fL 33
11

−=                (4) 

 
By the Adomian decomposition algorithm the solution to 
( )ηf  in (4) is given by the series 
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( )ηf = ( )∑
∞

=0n
nf η                           (5) 

and the nonlinear term ( )ηg  is given by the Adomian 
polynomials 

( ) ∑
∞

=

=
0n

nAg η .                         (6) 

 
where ,.....3,2,1,0=n .  
Substituting (5) and (6) in (4) gives 
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Taking the inverse Laplace of both sides of (7) gives 

 

( )∑ ∑
∞

=

∞

=

−−
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−⎥⎦

⎤
⎢⎣
⎡=

0 0
3

1
3

1 11
n n

nn AL
s

LsH
s

Lf              (8) 

 
As a first approximation to ( )f η  in (8), the Laplace 

decomposition algorithm assumes  
 

( )⎥⎦
⎤

⎢⎣
⎡= − sH

s
Lf 3

1
0

1
                        (9) 

 
Higher iterates of ( )ηf are obtained from the recurrence 

relation  

( ) ( )⎥⎦
⎤

⎢⎣
⎡−= −

+ nn AL
s

Lf 3
1

1
1η                    (10) 

.0≥n  

III. SOLUTION TO BLASIUS’ BOUNDARY LAYER EQUATION FOR 
THE FLAT PLATE IN A UNIFORM STREAM BY THE LAPLACE 

DECOMPOSITION ALGORITHM 
The equation of Blasius for the flat plate in a uniform stream 

is 
 

0///// =+ fff  ( )ηff =                      (11) 
 

with boundary conditions 
 

( ) ( ) ;000 / == ff  ( ) 10// =f [12]                   (12) 
 

Applying Laplace transform to (1) gives 
 

( ) ( ) ( ) ( ) ( ) 0000 /////23 =+−−− ffLfsffsfLs  

 
Using the boundary conditions in (12) gives 
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By the Adomian decomposition algorithm we can express 

(13) as 
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where ∑
∞

=

=
0

//

n
nAff  and the A domian polynomials nA  are 

obtained from 
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From (15) we have 
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As a first approximation to ( )ηf  in (14) we take  
 

( )
2

2

0
ηη =f                            (17) 

 
Subsequent iterates are obtained from the recurrence relation 

( ) ( )
⎭
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Thus  
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=7f !23
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TABLE I 
THE [10,10] PADE APPROXIMANT SOLUTION OF (11) 

η  ( )0f  ( )0/f  ( )0//f  η  ( )0f  ( )0/f  ( )0//f  

0 0 0 1 2.6 2.501198 1.172317 -1.816971 

0.2 0.019998 0.199933 0.998668 2.8 2.389023 0.893722 -2.611255 

0.4 0.079915 0.398937 0.989396 3.0 1.919599 0.595299 -3.252987 

0.6 0.179357 0.594660 0.964702 3.2 1.397027 0.306177 -3.736494 

0.8 0.317314 0.783380 0.918533 3.4 1.157629 0.033964 -4.099834 

1.0 0.491930 0.960413 0.847581 3.6 1.153555 -0.222775 -4.379842 

1.2 0.700367 1.120782 0.752298 3.8 1.240840 -0.467063 -4.602194 

1.4 0.938827 1.259952 0.636289 4.0 1.343252 -0.701283 -4.783355 

1.6 1.202674 1.374089 0.501647 4.2 1.433771 -.926975 -4.933887 

1.8 1.486436 1.458718 0.336329 4.4 1.505622 -1.145108 -5.060800 

2.0 1.782948 1.504160 0.091963 4.6 1.559043 -1.356328 -5.168962 

2.2 2.079493 1.488726 -.326230 4.8 1.596361 -1.561122 5.261905 

2.4 2.345381 1.381721 -.990116 5.0 1.620271 -1.759904 -5.342293 

 
 

Substituting (24) in (14) gives 
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Equation (25) can be expressed in the form     

       ( )ηf =   23

0
)1( +

∞

=
∑ − n

n
n

n C η .                                       (26) 

 
 where nC  satisfies the relation   
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and  
!2

1
0 =C , 

!5
1

1 =C . 

It is interesting to note that (26) is exactly the same as the 
numerical series solution proposed by Weyl 1942a, see [12]. 
 
 

 

Fig. 1 Pade approximant solutions of ( )ηf  for 30 ≤≤ η dot =[8,8], 
dash = [9,9], solid = [10,10], ticks = [11,11], long dash = [12,12] 

 

 

Fig. 2 Pade approximant solutions of ( )η/f  for 5.20 ≤≤ η dot 
=[8,8], dash = [9,9], solid = [10,10], ticks = [11,11], long dash = 

[12,12] 
 

 

 
 

Fig. 3 Pade approximant solutions of ( )η//f for 4.20 ≤≤ η  
Dash = [8, 8], solid = [10, 10], ticks = [11, 11], long dash = [12, 12] 

IV. CONCLUSION 
In this work we obtained an alternative procedure to a series 

solution of the Boundary layer equation of a flat plate in a 
uniform stream by means of the Laplace decomposition 
algorithm. This algorithm, as demonstrated in equations (15) to 
(27) above, proved to be an easy and efficient tool in finding a 
numerical solution to the boundary layer equation (11). The 
solution obtained by our method above is exactly the same as 
that obtained by Weyl 1942a. It is worth noting that the series 
solution (25) is only valid for small values of η ,as noted by 
Weyl. The graphs in Figures 1 to 3 demonstrate the behavior of 
f , /f  and //f  for small values of η . These solutions are 

of great importance in understanding the physical problem 
represented by (11). For instance, ( )ηf  is useful in finding 

the stream function, ( )η/f  is useful in determining the 
velocity distribution of flow and the displacement thickness 
and ( )η//f  is useful in finding the shearing stress and the 
coefficient of drag along the plate. 

This Algorithm is very useful in providing numerical 
approximations to boundary layer equations. 
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