
International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:5, No:10, 2011

598

Abstract—The P-Bigram method is a string comparison methods
base on an internal two characters-based similarity measure. The edit
distance between two strings is the minimal number of elementary
editing operations required to transform one string into the other. The
elementary editing operations include deletion, insertion, substitution
two characters. In this paper, we address the P-Bigram method to
sole the similarity problem in DNA sequence. This method provided
an efficient algorithm that locates all minimum operation in a string.
We have been implemented algorithm and found that our program
calculated that smaller distance than one string. We develop P-
Bigram edit distance and show that edit distance or the similarity and
implementation using dynamic programming. The performance of
the proposed approach is evaluated using number edit and percentage
similarity measures.

Keywords—Edit distance, String Matching, String Similarity

I. INTRODUCTION
HE edit distance is a common similarity measure between
two strings. It is defined as the minimum number of
insertions, deletions or substitutions of single terminal

needed to transform other of the strings into the other one.
This distance is a key importance in several fields, such as
Bioinformatics, Text processing consequently computational
problems. Given a string S1 = [a1 a2 a3…an] and S2 = [b1 b2
b3…bm] as the minimal cost of transforming S1 into S2 using
the three operations insert, delete, and substitution, where only
unit cost operations are considered in edit distance. The cost
of elementary editing operations is given by some scoring
function which induces a metrical on strings. The similarity of
two strings is the minimum number of edit distance. DNA
sequence can be seen as a pair of reverse complementary
repeats in a string that are separated by a number of
Nucleotide. The complementary relation on nucleotides (A T
C G) means that A is complementary to T and C is
complementary to G.In this paper, we develop two-letter edit
distance. We compute the edit distance and the cost of
operation with dynamic programming. The new algorithm is
to find all minimal distance in a string.

II. RELATED WORK
The early works on finding similarity in strings deal with

edit distance. The edit distance models were studied in two
contexts, for string matching and for sequence similarity. A lot
of works have been on string matching (see [6-11]).

P. S. Author is with the Faculty of Information Science and Technology

Mahanakorn University of Technology, Nongchock, 10530 Bangkok Thailand
(e-mail: psomboonsak@yahoo.com).

M. M. Author, is with the Faculty of Information Science and Technology,
Mahanakorn University of Technology, Nongchock, 10530 Thailand (e-mail:
mmunlin@gmail.com).

We will focus on edit distance techniques as our main goal
here is to concentrate on similarity. We decided to use the
most common measure: the Levenshtein edit distance[4]. In
the text is typically assumed to be random, i.e., each character
is chosen uniformly and independently from the alphabet. A
sequence alignment is a way of arranging the sequence of
DNA, RNA or protein to identify regions of similarity that
may be a consequence of functional, structural or evolutionary
relationships between the sequences[2]. The first application
of the edit distance algorithm for protein sequence was studied
by Needleman-Wunsch[1].It is commonly used in
bioinformatics to align protein or nucleotide sequences. To
find the alignment with the highest score, a two-dimensional
array. The algorithm is an example of dynamic programming
matrix. There is one column for each character in sequence A,
and one row for each character in sequence B. This algorithm
progresses, the Fi,j will be assigned to be the optimal score for
alignment of the first i = 0,…n characters in A and the first j =
0,…m characters in B. This algorithm works in the same way
regardless of length or complexity of sequences. The simplest
and most common scoring function is the Levenshtein
distance[4] which assigns a uniform score of string for every
operation. Determining the edit distance between a pair of
string is a fundamental problem in computer science in
general, and in combinatorial pattern matching in particular,
with applications ranging from database indexing and word
processing, to bioinformatics[3][5]. The Levenshtein
distance[4] between two strings is the minimum number of
editing steps that convert one string into another. Given two
string A[1…m] and B[1…n], one can calculate their edit
distance by dynamic programming. We refer to matrix
D[0..m, 0..n] as the edit distance table of string A and B.
Initialy, D[i,0] = i for 0 ≤ i ≤ m and D[0,j] = j for 1 ≤ i ≤ n.
Then the cell D[i,j], where i,j > 0, stores the edit distance of
string A[1…i] and B[1…j]. We also say that the cells D[i,j],
where j - i = d are on diagonal d of D[15]. We introduce some
important properties of the edit distance table that are
constantly used in later discussion. The Longest common
subsequence(LCS)[14] problem is to find the maximum
possible length of a common subsequence of two strings, ‘a’
of length |a| and b of length |b|. The sequence similarity
analysis is the Longest Common Subsequence(LCS) problem,
where we eliminate the operation of insertions deletions and
substitutions[14]. Given strings S and T of lengths n and m,
respectively, over an alphabet ∑, determine the lengths of the
longest subsequence that is common to both s and t. Here, s
subsequence of S = s1s2,…sn is a string of the form si1 si2,…
sik, where each ij is between 1 and n and 1 ≤ i1 < i2 ,…< ik ≤ n.
For example, if ∑ = {A, T, C , G}, S = AGCGA and T =
CAGATAGAG, then CGA is a subsequence of length 3 of
both S and T. However, it is not the longest common

A New Edit Distance Method for Finding
Similarity in Dna Sequence

Patsaraporn Somboonsak, Mud-Armeen Munlin

T

International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:5, No:10, 2011

599

subsequence of S and T, since the string AGGA is also a
common subsequence of length 4 of both S and T. Since these
two strings do not have a common subsequence of length of
the longest common subsequence of S and T is
4[16].Bioinformatics have developed several means to
characterize the similarity between genetic sequences. One
intuitively appealing measure is the edit distance. The edit
distance was originally proposed by Levnshtein[4]. One of the
major problems is that of edit distance. To compare two
strings, a common technique is so called string edit distance,
as a measure of their dissimilarity. Edit distance is equal to the
minimum number of editing operations required to transform
one sequence into the other. The three basic editing operations
are insertion, deletion, and substitution[11]. The operations to
transform one string into anther string using the basic
character wise operation delete, insert and substitution. If each
operation has cost of 1, then edit distance is the number of
operations. The minimal number of these operations is called
edit distance or Levenshtein[4] distance. Each operation has
an associated cost, which is a function of characters involved
in operation. The cost of transformation is the sum of cost the
individual operations. Dynamic programming (DP) is a
method used for optimizing a multistage process and that is
particularity applicable to problems requiring a sequence of
interrelated decisions. Each decision transforms the current
situation into a new situation. A sequence of decisions, which
in turn yields a sequence of situations, is sought that
minimizes some measure of value. The value of a sequence of
decisions is generally equal to the sum of the values of the
individual decisions and situations in the sequence. It is a
“solution seeking” concept which replaces a problem of n
decision variable. Such an approach allows analysts to make
decisions stage by stage, until the final result is obtained. We
use the following formulation[13].Let S = [s1,s2…sm] be the
source sequence, T = [t1,t2…tn] the target sequence, and di,j
the distance between the subsequence [s1,s2,…si] and
[t1,t2…tj];
Then for 1 ≤ i ≤ m, 1 ≤ j ≤ n,
 d0,0 = 0
 di,0 = di-1,0 + c(Si,Ø),

di-1,j-1 = dj-1,0 + c(Ø,tj),

and
 di-1,j + c(Si,Ø),
 di,j = min di-1,0 + c(Ø,tj),

 dj-1,0 + c(Si,tj),
where c(Si,Ø) is the cost of deleting Si, c(Ø,tj) is the cost of
inserting tj, and c(Si,tj) is the cost of substituting tj for si. The
edit distance between S and T is simply dm,n.

III. MATERIALS AND METHODS
In this section we describe the algorithm for finding P-

Bigram similarity new edit distance. We first describe P-
Bigram Distance, following which we describe reduced
operation to achieve a time and space efficient algorithm. The
reduce use similar idea to those in Levenshtein[4] distance.

 This P-Bigram edit distance is an importance of the edit
distance for two characters which is also used for measuring
the similarity.

A. P-Bigram Edit Distance
We define a P-Bigram Edit Distance as a character that is

present in two nucleotide sequences. So, we estimate the
minimum length for which a maximal match is significant,
according to the length of the two compares sequences. Let S
= {s1,s2,s3,…sn} be a set of n characters and T = {t1,t2,t3,…tm}
in a text of m characters which are strings of nucleotide
sequence characters of length i and j over the nucleotide
alphabet S = {A, C, G, T}.

Definition 1. A P-Bigram Edit distance solution for
computing the edit distance between a pair of string S =
s1,s2…sN and T = t1,t2…tM involves filling in an (n+1) X
(m+1) table P, with P[i,j] sorting the edit distance between
s1,s2…si and t1,t2…tj. In addition let |S| and |T| denote the
length of string S and T. We consider the Levenshten edit
distance. The computation is done according to the base-case
rules given by P[0,0] = 0, P[i,0] = T[i-1,0] + cost of deleting
si, and P[0,j] = P[0,j-1] +1 cost of inserting tj, and according to
the following dynamic programming step:

 P[i-1,j] + the cost (1) of delete si

P[i,j] = min P[i,j-1] + the cost (1) of insert tj.
 P[i-1,j-1] + the cost (1) of substitute si with tj

Definition 2. For a string S and value of Є, let P = Є |S| and

string T and value of Є, let P = Є |T|. For example, the two-
letter alphabet {s, t}, if S = ATTCCGGTCAAG and T =
ATTGGTTCCAAGGA. The first scans and match two-letter
of sequence from left to right then a pair of string S is{ AT,
TC, CG, GT, CA, AG } and a pair of- string T is { AT, TG,
GT, TC, CA, AG, GA }. The P-Bigram Edit Distance between
two characters with two strings. Given two strings S, T a
standard technique for computing P-Bigram (S, T) is the
dynamic programming method, where we compute the DP
matrix of size (|S| + 1) for which DP [i,j] = P-Bigram (S
[1..i]), T[1..j]) for 1 ≤ i ≤ |S| and 1 ≤ j ≤ | T|.

The compute matrix is the following:

 0 if i = 0 or j = 0,
DP[i,j] = max DP [i-1, j], DP[i, j-1]) if i,j >0 and S [i] ≠ T [j]
 DP [i-1, j-1] +1 if i,j >0 and S [i] = T [j]

Therefore, to compute P-Bigram = DP S and T of length |S|
and |T| with a time complexity of O(| S| X |T|) and space
complexity of O(min(| S| X |T)).

International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:5, No:10, 2011

600

ALGORITHM I
P-BIGRAM EDIT DISTANCE

1 EditDistance S(0…s-1) T(0…t-1)
2 int m[i,j] = 0
3 for i 0 to n
4 do m[i,o] = i
5 i = i + 1
6 for j 0 to m
7 do m[o,j] = j
8 j = j + 1
9 for i 0 to n; i ++
10 for j 0 to m; j ++
11 if s[i,i-1] = t[j,j-1] then
12 cost 0
13 m[i,j] m[i,j] +1
14 opt delete(i,n) // opt operation of i and j
15 else
16 if s[i,i-1] ≠ t[j,j-1] then
17 cost 1
18 m[i,j] m[i,j] +1
19 opt insert(n,i,j) // opt operation of i and j
20 else
21 if s[i,i-1] ≠ t[j,j-1] then
22 cost 1
23 m[i,j] m[i,j] +1
24 opt substitution(n,i,j) // opt operation of i and j
25 for i 1 to |S|
26 do for j 1 to |T|
27 do m[i,j] = min{m[i-1,j-1]
28 m[i-1,j] + 1,
29 m[i,j-1] + 1}
30 return m[n,m]

P-Bigram algorithm compute the edit distance. Suppose we
wish to calculate the edit distance between the strings S =
s1,s2…sn and T = t1,t2…tm.

1. We begin by forming an (n + 1) X (m + 1) matrix P
initially containing all zeros, that is P(i,j) = 0 for i =
0,1,2,…,n and for j = 0,1,2,…,m.

2. Assign values P0j = j, j = 0,1,2,…,m and P0i = i, i =
0,1,2,…,n.

3. Starting from the second top row and going from left to
right, we fill in the values Pi,j according to the
following step:

Insertion = Pi-1, j-1 + cost Deletion = Pi-1, j + 1
Substitution = Pi, j-1 + 1 Pi,j = min(substitution,
deletion , insertion).

 Where cost = 0 if si = tj and cost = 0 if si ≠ tj.
4. After computing a row, move to the row below, until

the bottom row is reached.
5. The value Pnm is the edit distance between the string S

and T.

Example Here is an example of computing the P-Bigram edit
distance of two characters in two strings.

 Tj AT TG GT TC CA AG GA
Si 0 1 2 3 4 5 6 7
AT 1 0 1 2 3 4 5 6
TC 2 1 1 2 2 3 4 5
CG 3 2 2 2 3 4 5 6
GT 4 3 3 2 3 4 5 6
TC 5 4 4 3 2 3 4 5
CA 6 5 5 4 3 2 3 4
AG 7 6 6 5 4 3 2 3

Fig. 1 P-Bigram edit distance of Si = ATTCCGGTCAAG and Tj =
ATTGGTTCCAAGGA.

The values of the above table have been obtained with the

following unitary costs(Fig. 1, Fig. 2) Sub(s, t) = 1 if s ≠ t and
Sub(s,t) = 0, Insert(t) = Delete(t) for s,t Є P.
 A score (instead of a cost) is associated with each
elementary edit operation. For s,t Є P:

- Sub(s,t) denotes the score of substituting the character t
for the character s,

- Del(t) denotes the score of deleting the character t,
- Ins(t) denotes the score of inserting the character t.

Fig. 2 The DP matrix for P-Bigram(S,T), where S =
ATTCCGGTCAAG and T = ATTGGTTCCAAGGA

The main idea behind the P-Bigram edit distance described

above is that each entry Pi,j corresponds to the minimal
number of editing operations required to transform the
substring Si = s1,s2…si into the substring Tj = t1,t2… tj.
Initially, an empty string to transformed into a string of k
characters by using exactly k additions (Step2). Explanation
of Step3:

- If we can transform Si into Tj-1 in Pi,j -1 operations, then
we can transform Si into Tj in insertion = Pi-1,j-1 + 1
operations by simply adding the characters si to Tj-1.

- If we can transform Si-1 into Tj in Pi-1, j operations, then
we can transform Si into Tj in deletion = Pi-1,j + 1
operations by simply deleting the characters si from to
Si.

- If we can transform Si-1 into Tj-1 in Pi-1,j-1 operations,
then we can transform Si into Tj in substitution = P i,j-1 +
1 cost operations by simply substitution the characters si
with Tj if they are different (cost = 1).

S

T

International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:5, No:10, 2011

601

- The minimal number of operations required to
transform Ti into Sj is the minimum of the three
quantities: Pij = min(substitution, deletion , insertion).

IV. EVALUATION AND RESULTS
In this section, we want to evaluate a similarity measure, so

our evaluation will focus on edit distance a set of source
nucleotide to a set of target nucleotide. We suppose that the
size of the target set is a part of nucleotide to contain possible
other similar nucleotides. The P-Bigram Edit Distance task
consist of comparing two characters with two strings that
contain nucleotide virus in order to decide whether two strings
refer to the same entity. A data set used for testing the
nucleotide virus dynamic programming techniques is usually
represented as two sets of strings and subset of their Cartesian
product that defines valid matches. We measured percentage
similarity and edit of the matched characters in the string. It
follows from definitions that the following (Table 1).

TABLE I
 NOTATION

sim Similarity between S and T is
related to their commonality

sim edit (x,y) Similarity of edit
editDist(x,y) Minimum number of character

(insertion, deletion, substitution)

Several metrics to evaluate effectiveness of character
identification techniques have been proposed, combining such
criteria. The problem of DNA similar measure is a different
measures how many match is identified in relation to the total
number of edit. The Results given in Table1 are the percent
similarity and number of edit[12][17].

 sim edit (x,y) = 1
 1 + editDist(x,y)

Where editDist(x,y) is the minimum number of data(DNA)
insertion deletion and substitution operations needs to
transform one string to the other.

Example Here is an example of computing the P-Bigram
similarity of two characters in two strings(ATTCCGGTCAAG,
ATTGGTTCCAAGGA).

 sim edit (s,t) = 1
 1 + 3 (s,t)

 = 0.25
 Similarity = 25.00%

Our training set is an export of the NCBI(National Center
for Biotechnology Information) data. To simplify the
evaluation, we had to set a threshold to decide if a nucleotide
is a small edit operation. Using our trained similarity measure
we computed the similarity between two characters in two
strings and look for minimum edit distance (similarity) that
was able to reduce edit operations. Our evaluation

concentrates on trying to match two characters nucleotide. We
summarize the results using edit and similarity in Table1,
Table II, Table III, Figure 4, Figure 5.

TABLE II

 NUMBER EDIT FOR PAIR OF DNA SEQUENCE
Source Destination LD LCS ND PB

Edit Edit Edit Edit
ATTCCG
GTCAAG

ATTGGTT
CCAAGGA

6 10 7 3

GAATTC
AGTTA

ATTGGTTC
CCAAGGA

5 6 8 4

GCATCG
GTAATT

ATCTCG
GACG

7 6 6 5

GCCCTA
GCG

GCGCAA
TG

4 5 8 3

TGATCG
ATC

CTGATCG
ATC

1 9 7 1

By using the edit distance we find the possible edit of

sequence. Now to edit distance in many algorithms we used to
compare edit. A better approach is to edit in such a way which
minimum edit.

TABLE III

 SIMILARITY FOR PAIR OF DNA CHARACTERS IN MANY ALGORITHM
Source Destination LD LCS ND PB

Similarit
y

Similarit
y

Similarit
y

Similarit
y

ATTCCG
GTCAAG

ATTGGTT
CCAAGGA

14.29% 9.09% 12.50% 25.00%

GAATTC
AGTTA

ATTGGTTC
CCAAGGA

16.67% 14.29% 11.11% 20.00%

GCATCG
GTAATT

ATCTCG
GACG

12.50% 14.29% 14.28% 16.67%

GCCCTA
GCG

GCGCAA
TG

20.00% 16.67% 11.11% 25.00%

TGATCG
ATC

CTGATCG
ATC

50.00% 10.00% 12.50% 50.00%

0

2

4

6

8

10

12

1 2 3 4 5

Dataset

N
um

be
r

E
di

t

Levenshtein

Longest Common
Subsequence

Needleman

P -Bigram

Fig. 4 Number Edit

Fig. 4 Show the comparisons of different algorithms with

the sim edit metrics. The current metrics gives good
performance in reducing the number of editions compared
with other popular methods.

International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:5, No:10, 2011

602

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1 2 3 4 5

Dataset

P
er

ce
nt

ag
e

S
im

ila
ri

ty Levenshtein

Longest Common
Subsequence

Needleman

P -Bigram

Fig. 5 Comparison of different algorithms with percentage similarity

Fig. 5 The cross line shows the P-Bigram algorithm where
as longest common subsequence algorithm and Needleman
algorithm and Levenshtein shown by square, triangle,
diamond. The P-Bigram Edit distance is a cheap distance
measure which always returns a distance rather smaller than
the Unigram edit distance, there are shown for typical results
in Fig. 4 and Fig. 5. For given string S and T this distance can
be calculated in O(n2). The P-Bigram Edit distance is then
divided to this transformation the P-Bigram distance similarity
measure will always be smaller than the edit distance
similarity measure.

V. CONCLUSION
We proposed an edit distance of the P-Bigram method

integrating the dynamic programming concept to compared
similarity. That edit distance implements a heuristic of giving
grater importance in the combined measure to the pairs of
strings whose similarity is higher in comparison with the
similarity of other pairs. The proposed method was tested on 5
dna-matching datasets with representative two characters-
based string measures: Levenshtein distance. The result
showed that the performance of the P-Bigram method can be
improved. The result of such process can then compute
similarities between two characters two nucleotide with quit
high accuracy. However there are several improvements we
will try to address in the future.

ACKNOWLEDGMENT
This works was financially supported by Faculty of

Information Science and Technology Mahanakorn University
of Technology.

REFERENCES
[1] Saul B. Needleman, Christlan D. Wunsch, “A General Applicable to the

Search for Similarities in the Amino Acid Sequence of two Proteins”, J
Mol. Biol, Vol. 48, 1970, pp. 443-453.

[2] David Sankoff, “Simultaneous solution of the RNA folding alignment
and protosequence problems”, Siam J. Appl Math, Vol. 45, 1985, pp.
810-825.

[3] A drien Coyette, et al., “Trainable Sketch Recognizer of Graphical User
Interface Design”, International Federation for Information Processing,
Vol. 1, 2007, pp. 124-135.

[4] Levenshtein V.I. “Binary codes capable of correcting deletions,
insertions and reversals”, Soviet Physics Doklady, Vol. 8, 1966, pp. 705-
710.

[5] Gusfield. “Algorithms on String Trees and Sequences”, Computer
science and Computational Biology Cambridge University Press, 1997.

[6] Hall, P.A.V, Dowling, G.R. “Approximate string matching”, ACM
Computing Surveys, Vol. 4, 1980, pp. 381-402.

[7] Christen, P. “A Comparison of Personal Name Matching Techniques and
Practical Issues”, Technical Report TR-CS-06-02, Joint Computer
Science Technical Report Series, Department of Computer Science,
2006.

[8] Cohen, W. Ravikumar, P. Fienberg, S.”A comparison of string distance
metrics for name-matching tasks”, IJCAI Workshop on Information
Integration on the Web, Acapulco, Mexico, 2003, pp. 73-78.

[9] AbdulJaleel, N. Larkey, L.S. “Statistical transliteration for English-
Arabic cross language information retrieval”, CIKM, 2003, PP. 139-146.

[10] Linden, K, “Multilingual Modeling of Cross-Lingual Spelling Variants
spelling variants Information Retrieval”, Vol. 3, 2006, pp. 295-310.

[11] Ristad, E.S. Yianilos, P.N. “Learning string-edit distance”, IEEE
Transactions or Pattern Analysis and Machine Intelligence, 1998.

[12] Carlo Batini, Monica Scannapieco, “Data Quality Concepts,
Methodologies and Techniqes”, Springer, DCSA, 1998, pp. 117-127.

[13] Heikki Hyyrö, Ayumi Shinohara, “New Bit-Parallel-Distance
Algorithm”, Nikoletseas, LNCS 3503, 2005, pp. 380-390.

[14] Adrian. Horia Dediu, et al., “A fast Longest Common Subsequence
Algorithm for Similar Strings”, Language and Automata Theory and
Applications, International Conference, LATA, 2010, pp. 82-93.

[15] Heikki Hyyrö, “Restricted Transposition Invariant Approximate String
Matching Under Edit Distance”, SPIRE, LNCS 3772, 2005, pp. 256-
266.

[16] M.H. Alsuwaiyel, “Algorithms design techniques and analysis”, World
Scientific Connecting Great Minds, Vol. 7, 1999, pp. 203-208.

[17] Dekang Lin(1998), “An Information Theoretic Definition of similarity”,
Proceedings of the 15th international conference on statistic”, Citeseer.

Mud-Armeen Munlin holds a Ph.D. degree in
Computer Science from The University of
Leeds, UK in 1995. Assistant Professor worked
as associate Dean for Academics Faculty of
Information Science and Technology
Mahanakorn University of Technology
Thailand. His specialized in solid modeling,
virtual reality, medical application, internet and
mobile applications.

Patsaraporn Somboonsak recrived the Master
degree in Management Information
Technology from Walailak University Thailand
in 2006. Currently she is a Ph.D. student at
Faculty of Information Science and
Technology Mahanakorn University of
Technology Thailand. Her interesting research
are bioinformatics and computational for health
medicine.

