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Mean square exponential synchronization of
stochastic neutral type chaotic neural networks with
mixed delay
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Abstract—This paper studies the mean square exponential syn-
chronization problem of a class of stochastic neutral type chaotic
neural networks with mixed delay. On the Basis of Lyapunov stability
theory, some sufficient conditions ensuring the mean square expo-
nential synchronization of two identical chaotic neural networks are
obtained by using stochastic analysis and inequality technique. These
conditions are expressed in the form of linear matrix inequalities
(LMIs), whose feasibility can be easily checked by using Matlab LMI
Toolbox. The feedback controller used in this paper is more general
than those used in previous literatures. One simulation example is
presented to demonstrate the effectiveness of the derived results.

Keywords—Exponential synchronization, stochastic analysis,
chaotic neural networks, neutral type system.

[. INTRODUCTION

INCE the seminal works of Pecora and Carroll [1], [2],

chaos synchronization has been intensively researched be-
cause of its potential applications in various fields such as se-
cure communication, biological systems, information science,
etc (see [3]-[13]). On the other hand, delayed neural networks
as special complex dynamical systems, have also been found to
exhibit unpredictable behaviors such as periodic oscillations,
bifurcation and attractors. The study on chaos synchronization
of delayed neural networks have also been proposed (see [3]-
[11]). In [5], Lou and Cui studied the synchronization of neural
networks based on parameter identification and via output or
state coupling. In [6] Li and Yang discussed the adaptive
exponential synchronization of delayed neural networks with
reaction-diffusion terms. In [10] Yang and Cao researched the
exponential lag synchronization of a class of chaotic delayed
neural networks with impulsive effects. In [11] exponential
synchronization of chaotic neural networks with mixed delays
was investigated.

It’s worth pointing out that neutral type dynamical model
as one of the most important dynamical system is ubiquitous
in both nature and man-made systems. However, to the best
of our knowledge, few results for mean square exponential
synchronization of a class of stochastic neutral type chaotic
neural networks with mixed delay are reported.

Motivated by the above analysis, in this paper, we’ll focus
on the mean square exponential synchronization of a class
of stochastic neutral type chaotic neural networks with mixed
delay. And the same, a more general feedback controller which
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relates not only to the discrete delay but also to the distributed
delay is considered.

Compared with the existing results on the analysis of
exponential synchronization, the work of our paper has three
features. First, we consider the drive system with distributed
and discrete delays. Secondly, the feedback controller used in
this paper is more general than that used in previous literatures.
Thirdly, both of the drive system and the response system are
neutral type neural networks, and the response system includes
stochastic factors.

II. PRELIMINARIES

Notations. The notations are used in our paper except where
otherwise specified. Let N denotes the nature number set,
(Q,.7,{Z}i>0, P) denotes a complete probability space with
filtration {.#};>0, || - || a vector or a matrix norm; %, Z" are
real and n-dimension real number sets respectively, Z™*™ de-
notes n X n matrix set. Apin (+)(Amin(+)) the smallest(largest)
eigenvalue of given matrix, E(-) denotes the mathematical
expectation with respect to the given probability measure P. &
denotes the well-known _Z-operator given by the Ito’s formula,
I denotes the identity matrix,

In this paper, we consider the following neutral type chaotic
neural networks

dlz(t) — Ex(t — h)] = [-Cz(t) + Af(x(t))

+Bf(z(t—71))+ D K(t—s)f(z(s))ds

J—oo )
+ I'ldt,t > 0
CE(G) = ¢(9)7 RS (70070}7
where x(t) = (21(t),22(t),...,2,(t))T is a real n-vector

which denotes the state variable, C' = diag(cy,ca,...,cn),
¢ > 0,6 = 1,2,...,n represents the rate with which
the ith unit will reset its potential to the resting state
in isolation when disconnected from the network and the
external inputs; A = (ai;j)nxn represents the connec-
tion weight matrix, B = (bij)nxn, D = (dij)nxn. E =
(€ij)nxn represent the delayed connection weight matrices,
I’ represents the external input, f is activation function,
f(l'(t)) = (fl(ml(t))7f2($2(t))’ s 7fn(mn(t)))T’ f(l'(t -
7)) = (filzi(t = 7)), fa(@a(t = 7)), ..., falzalt — 7)7,
7 > 0,h > 0 are the transmission delays, K(t — s) =
diag(k1(t — s),ka(t — 8),...,kn(t — s)) is delayed kernel
function, ¢(-) denotes the continuous initial function.
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In order to synchronize system (1) via the feedback control,
we introduce the respond system from the unidirectional linear
coupling approach as follows:

dly(t) — By(t — 0)] = [~Cy(t) + Af(y(t))
FBSt-m)+D [ K- fw(s)ds

+I' +u(t)]dt + o(t,e(t),e(t — 7))dw(t), t > 0.
y(e) = @(0)’ AS (—OO, 0]7
where 0 : ZXRZ" X H" — B, w(t) = (wi(t),wa(t),- -,
Wi (t))T denotes a m-dimensional standard Brownian motion
defined on a complete probability space (2, %, {.Z}i>0, P),
u(t) = Fre(t)+Fy ftt_T e(s)ds is the state feedback controller
given to achieve the synchronization between drive-response
system, and [}, F, are the feedback gain parameters to be
scheduled, e(t) = y(t) —x(t) represents the error, ¢(-) denotes
the continuous initial function.
Throughout this paper, we always make the following
assumptions:

(A1) fiCw) = fi()]] < Lllw — o], Yu,v € 2™
(Ag)  trace[oT (t,e(t),e(t — 7))o (t, e(t), e(t — 7))]
< [Mre(o)? + | Mae(t — ).

(As) / kj(s)ds = 1,/ e*kj(s)ds = k < oo.
0 0

where My, M are constant matrices with appropriate dimen-
sions, € > 0 is a constant scalar. From system (1) and (2) we
can obtain the error system as follows:

dle(t) — Ee(t — h)] = [(F1 = C)e(t) + Ag(e(t))

+ Bg(e(t— 7)) + D[ K(t—s)g(e(s))ds

2

+ F /t e(s)dsldt + o(t,e(t),e(t — 7))dw(t),t > 0,

-7

e(0) = ¥(0), 0 € (—00,0],

3

where g(e(t)) = f(y(t)) — f(x(t)), gle(t — 7)) = fly(t -
7)) = f(a(t = 7)), %(t) = ¢(t) — ¢(1).

For further discussion, we introduce the following definition
and lemmas.

Definition 2.1: The drive system (1) and the response sys-
tem (2)are said to be mean square exponentially synchronized
if for a suitably designed feedback controller, there exist
positive scalars « > 0,3 > 1, such that for any ¢ > 0 and
¢ € C([fT» O}»%n)

E(lle(t])® < aE(|[[la)?e™",

where [[1]la £ sup_ <o [¢(0)]], and the constant 3 is

defined as the exponential synchronization rate.

Lemma 2.1: [7] For any constant symmetric positive de-
fined matrix W, scalars a < b, vector function f : [a,b] — R"
such that the integrations concerned are well defined, then

b b b
(/ f(t)dt)TW(/ f(t)dt)g(b—a)/ FOTW f(t)dt.

III. MAIN RESULTS

In this section, we’ll consider the synchronization problem
between the drive system (1) with the response system (2).

Theorem 3.1: Suppose that ||E| < 1/2, then, if there
exist positive definite matrices P, N1, N2, N3, positive definite
diagonal matrices M, N4 and positive scalar € such that

[1]

Hin Z12 0 Ewi 15 Eie 17
*  Hao 0 EHag E3zq EHae Ear
* * 533 0 0 0 0
== * * x Egq O 0 0 <0,
* ES ES * 555 0 0
* * * * * —-M 0
* * * * * * Sy

where
Z1=eP+P(-C+F)+(-C+F)TP
+Ny + N3+ kLML + 72 FY Fy + Moo (P)ME My,
E1p = —¢PE— (F, - C)'PE,
Hi4=PA+ %LN4, 215 = PB,Eig = PD,Z,; = PF,,
Boo = cETPE — Nije ",
Bos = —ETPA, 9 = —ETPD,=y; = —ETPF,,
Z33 = —N3e = + Appaw(P)MI My,
By = —ETPB,E4y = Ny — Ny, E55 = —Noe ™7

S = =T FL Fy, M = diag(my,ma, ..., my,),

then the drive system (1) and the response system (2) are mean
square exponentially synchronized.

Proof. Set 2(t) = e(t)— FEe(t—h), we construct the Lyapunov
functional for system (3) by V(t,e(t)) = Vi+Va+ V3 +Vy+
Vs + Vi, where

Vi = 9T () PD(t),

¢
Vo = / e“*eT (s)Nie(s)ds,
t—h

ng/ti g7 (e(s)) Nag(e(s))ds,
Vim [ et o) Nacls)ds,

t
Vi = T/ (s —t+7)e*eT (s)Fy Fae(s)ds,
t

—7

3 h t (&+s) 2
V = . k £ s 2 ) dd
6 ;mj/o ](5)/t_5€ gj(ej(s)) S 57
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then LV = LV1 + LVo + LVs + LV + LVs + LV, From Assumption A;, we have g¢7(e(t))NyLe(t) =
where i1 gilei®)naliei(t) = i nag? (eit) = g7 (e(t))

ZLVs = e"[g" (et))Nag(e(t)) —e~g" (e(t—7)) Nag(e(t—7))].

S B Nyg(e(t)), where Ny = diag(ng,,nyg,,...,nq,) and L =

LVy = e T () PD(t) + 2¢ 9T (8) P[(F1 — C)e(t) diag(ly,ls, .. .,1,) are positive definite diagonal matrices, thus
+Ag(e(t)) + Ba(e(t — 7)) . ,

t 2LV < elg (e(t)) (N2 — Na)g(e(t)) + g (e(t)) NaLe(t)

+D/ K(t— s)g(e(s))ds +F2/t els)ds] —e==gT (e(t — 7)) Nag(e(t — 7))]. )

+efttracelo” (t, e(t), e(t — 7)) Po(t,e(t), e(t — 7)) T ey

= et (e (t) — ( ~ W)ET)P(e(t) — Ee(t — h)) LVy =ele’ (t)Nze(t) —e Te' (t —7)Nsze(t —7)]. (8)
+2e5 9T (t)P[(Fy — O)e(t)

+Ag(e(t)) + Bg(e (t —7)) LVs = el (t)Fl Fae(t)

—|—D/ K(t—s)g(e(s))ds + Fy e(s)ds] 77'/; e*el (s)Fy Fae(s)ds
+ettrace[o” (t,e(t), e(t — T))Po(t, e(t),e(t —7))] < %t () Fy Fae(t)

< ee(e7 (1) — "t~ WET)P(et) = Be(t — b)) ety / ¢T () F Fye(s)ds
+2e“gT(t) {(F1 Ce(t) t—r

+Ag(e(t)) + By(e(t — 7)) = el (t )tFTer(t)

+D/ K(t—s)g ds+F2/ e(s)ds] _e_ETT/t . T(s)Fy Fae(s)ds]

IN

+Amaz (P)e E’trace[ T(t,e(t), eEt[TQeT(tt)FQTFZe(t) t

e(t = m)o(t. e(t),e(t — 7))] e / e(s)ds)T FT Fi / e(s)ds)]. 9)
<eet(eT(t) — eT(t — h)ET)P(e(t) — Ee(t — h)) t=r t—T

+2e% 7T () P[(Fy — O)e(t)

+4g(e(t)) + By(e(t — 7)) t LY%=3"m, /°° k(€)% g2(e; (1))
+D K(t—s)g(e(s))ds + Fy e(s)ds] J=1 0

/ /t T —e“g?(eg (t—€)))d¢
+)\maz(P)6 [ ( )MlTMle(t) 2
veT(t — 7)) MT Mae(t — 7)] = Zma / ki (£)e g3 (e (t))d¢
=T (t)[eP+P(F, - C)+ (F, —O)TP
+)\maw(P)M1TM1] (t) — 2T (t)[ePE — ij / €€tg]2(ej (t — &))de
+(Fy — C)T'PEJe(t — h) +2eT (t)PAg(e(t))
+2¢1 ()P By(e(t = 7)) = 3 g2 1) / ki (€)eSede

+26T(t)PDL K(t—s)g(e(s))ds

t B n j Ookj ) o ,
R @OPE) [ es)ds 2m JRIGEOIRTS

+eT'(t — h)eET PEe(t — h) = eff[z m;g3(e;(t)k
—2e¢T(t — h)ETPAg(e(t)) N
~2¢7(t = h)E"PBy(e(t — 7)) —Zm] / ) [ k(a2 et - )ac)]

—2eT(t — h)ETPD/ K(t—s)g(e(s))ds

t < 3 migi e )k
—2¢T(t — h)(ET PF) / e(3)ds e [Zm a2 (e
FAmaz (P)eT (t — 7)MF Moe(t — 7)}. ) - ij / (€)gj(ej(t —£))dE)?]

PVo = eeT (t)Nie(t) — e ="eT (t — h)Nye(t — h)]. (5) t
Ot ( el ) < +et ke (t)LM Le(t) — (/_ k(t — s)g(e(s))ds)T x

o MO k=gl (10)
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From (4) to (10) we can get

2V < e (t)[eP 4+ P(F, — O) + (Fy
+Ny + N3+ kLML + m*F{ Fp
+Amaz (P)M] Mile(t) + €T (t)[-2ePE
—2(F, — C)TPEle(t — h)

e’ (t)[2PA + LN4]g(e(t))

+eT(t)2PBg(e(t — 1)) + €T (t)(2PFy) /ti e(s)ds

-o'p

+eT(t)(2PD)[ K(t—s)g(e(s))ds

+eT(t — h)[eETPE — Nie="]e(t — h)
h

—2¢"(t — h)ET PAg(e(t))
—eT'(t — h)2ET PBy(e(t — 7))
—~¢T(t— h)2ETPD / K (t = s)g(e(s))ds

t
—eT(t—h)2ETPF2/ e(s)ds
t—71

+eT(t — 7)[=N3e 7
+Amaz(P)My Myle(t — 7)

+9" (e(t))[N2 — Nulg(e(t))

—g" (e(t — 7))[Nae ™" g(e(t — 7))

—</_ Kt — 5)g(e(s))ds)"
M( / K(t — 5)g(e(s))ds)
e / e(s)ds)T FY Fi( /  (s)ds))

= ' (t)En(t) < (11)

Where U () = [6() e(t — h), (t = 7),9(e(t)),
f_ K(t—s)g(e(s))ds, ft e

by Ito’s formula we have

gle(t —
(s)ds]. On the other hand,

OV (t,e(t))

dV (¢, e(t)) = %0

LV (t,e(t))dt+ o(t,e(t),e(t—7))dw(t).

12

Integrating both side of equation (12) from 0 to ¢, we can

obtain
/ LV (s, e(
OV (s,e(s
+/0 T(S)U(S7 e(s),e(s —1))dw

Taking mathematical expectation of the both side of equation
(13), we have

V(t,e(t))

(s)(13)

EV (t,e(t)) = EV(0,e(0)) —1—/0 EZLV (s,e(s))ds. (14)

In views of inequality(11), we can obtain

EV(t,e(t)) <EV(0,e(0))
= E{[e(0) — Ee(—h)]" Ple(0) —

0
+ / e“*eT (s)Nyie(s)ds
—h

Ee(=h)]

+ [ g els)Vaglel)is
+[ e=*eT (s)Nze(s)ds

+7 /0 (s +7)e*eT (s)Ff Fae(s)ds

'ILiT o0 O
. ) €(§+.s) 2
+jz=;mj/0 kj(f)[g 5 (ej(s))dsdS}
< E{Amae(P)(1 + | ED?[9]2
0
FAman (V) 013 / s

0
Amas (V)22 [[4]2 / e“sds
0 T
A (N [0113 / e5*ds

0
Bl [ s

+ Z:; m; /0 G [ Z T Iile (s)dsds}

< EAmae (P + D)3

2 Domae (VIR + A N1
Pnaa (NI + P IUIA)

+Zma / &)e*71e3 (s)|a /_ ¢ dsde}

< E P14 B3

1
+ = Pomaa (NP + Amaz (V) [ L2 [0 3

FAmaz (Na) [0 + 72 F2 || [|A
+Zmﬂ§|€?(8)lA/ k;(€)es¢de]}
j=1 0
1
< Pmaz(P)(1 + [|E|))? + ~[Pmaa(N1)

+/\7711190(]\]2)||L2H + Mnaz(N3) + 7'2HF2H2
k| MIILIPDEN %[ (15)

This means that

Amaz (P)eTE|2(1)|* < BV (t,e(t) < o'El[¢X, (16)
where o/ £ M\yu(Pla = Apae(P)(1 + | E|)?
1[)‘maZ(N1) + )‘maZ(N2)||L2H + /\maz(NB + TQHF ||2
FIMI|IZ]1?]. Namely

E|2()|]> < oE[l¢[|ae =" (17)
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On the other hand, since ||F|| < 1/2, we can obtain

Ele@®)* < 2E(|12@®)*) + 2|EI*E(le(t - h)]*)
< 2E(|2O1) + | EIE(lle(t — )]*). (18)

In what follows, we’ll prove that

20E(|[4[I2)

E(le)) < [T~ e

+E([¢l3)]e ", (19)

where 3 is a positive scalar and satisfies 3 < ¢, || E||e®" < 1.
When t = 0, from (18) we can obtain

B(eO)) < 28(120)I) + |BIE(le(-h)1?)
< 2E@OF) + IEIE(WIE)
< 12 cegeR). eo

this means that inequality (19) hold when ¢ = 0.
If inequality (19) not hold when ¢ > 0, then there exists ¢*
such that

20E(|[v[I3)

E(let)]*) = [W +E([9[R)]e, @D

and

20E([[4]I3)
1—|E]esh

Then we can obtain
E(le(t)[I?) 2E(|2(t)]1%) +*||EHE(II6(t* - )%
< 20E([[¢[IA)e

E(lle®]*) <[ +E([vlI2)]le, vt € (0,t).

IN

2R | gy e
< 20E(IUR)e
200 EEIR) e
L= [E]
HEIE(]R)e )
< BB s equie, e

this contradicts with equality (21), which means that for all
t > 0, we have
2c

1—||E]je’"
which complete the proof.

Corollary 3.1: Suppose that ||E|| < 1/2, then, if there
exist positive definite matrices Nj, No, N3, positive definite
diagonal matrices M, N4 and positive scalar ¢, ;¢ such that

Elle)* < +1E[ylRe,

Euin Ei2 0 Eu puB uD pk
¥ Hoo 0 Z2q4 EZas E26  Eor
* * 533 0 0 O 0
= = * * * 544 0 0 0 < 0,
* * * *  Zss 0 0
* * * * * —M 0
* * * * * * Eor

where
En =epl + p(—=C+ Fy) + p(—C + F)T + Ny
+N3 4+ kLML + 72 FI Fy + pMT M,

Ei2 = —peE — p(F = O)E,
Eig = pA+ %LN4,

Zgo = peETE — Nyje ",

Spy = —pETA 295 = —nETB,
Z96 = —uETD, 297 = —uET Fy,
E33 = —Nse 7 + pM; Mo,

Z44 = Na — Ny, =55 = —Nae™ 7,

— T .
o = —e"TFy Fy, M = diag(my, ma, ..., my).

then the drive system (1) and the response system (2) are mean
square exponentially synchronized.

Proof. Let P = pI. We can obtain Corollary 3.1 directly by
Theorem 3.1.

If E = 0 in system (1) and (2), then the considered
models degenerate to the general stochastic neural networks
with mixed delay, in this case, we can obtain the following
Corollaries.

Corollary 3.2: If there exist positive definite matrices
P, N1, Ny, N3, positive definite diagonal matrices M, N4 and
positive scalar € such that

211 0 0 =14 PB PD PF,
* =0 0 0 0 0 0
* * 533 0 O 0 O
== * * * 544 0 0 0 < 07
* * * *  —Noe 7 0 0
* * * * * —M 0
* * * * * * =ves

where
Zn1=eP+P(-C+F)+(-C+F)T'P+N; + N
+kLML + 72 F] Fy + Appae(P) MY My,

1
Z14 = PA+ §LN4,E22 = 7N1€78h’

E33 = —N3e " + Anaa(P)M3 M2, Z44 = N3 — Ny,
S = —e FE Fy, M = diag(mi,ma, ..., my).

then the drive system (1) and the response system (2) are mean
square exponentially synchronized.

Corollary 3.3: If there exist positive definite matrices
Ny, Ny, N3, positive definite diagonal matrices M, N, and
positive scalar ¢, 4 such that

En 0 0 Zwu wB uD uk
x  Hoo O 0 0 0 0
== * * * =44 0 0 0 < 07
* * * * S5 = 0 0
* * * * * -M 0
* * * * * * Sy

where
En =epl + p(~C+ F1) + p(-C + )"
+N1 4 N3+ kLML + 72 FI Fy + uMT M,
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1
B =pA+ 5LN4’E22 = —Nje ",
Eg3 = —Nge_” + /LAIQTMQ,
Ega = Na — Ny, Es55 = —Noe™ 7,

[ _ eT T I X
Eqr = —€TFy Fo, M = diag(my, ma,...,my).

then the drive system (1) and the response system (2) are mean
square exponentially synchronized.

IV. NUMERICAL EXAMPLE

In this section, we shall present one numerical example to
illustrate the validity of our results.

Example. consider the following neutral type delayed neu-
ral networks

d[z(t) — Ex(t — h)] = [-Cz(t) + Bf (z(t — 7))
+ Af(z(t)) + D[ K(t—s)f(z(s))ds + I'|dt, (23)
z(0) = ¢(0),

10 2.0 —0.1
C‘( 1)’A_(—5.0 3.0 )

~15 —0.1 0.1 0
B_<—0.2 —2.5)’D_( 0 0.1)’

0.1 0.01
E‘<0.01 0.1 >

f(x®) = tanh(z(t)),7 = h = 1,K(t) = diag(te ", te ™).

ZAS (—O0,0],

In order to synchronize system (23) via the feedback con-
troller, we introduce the respond system from the unidirec-
tional linear coupling approach as follows:

dly(t) — Ey(t — h)] = [-Cy(t) + Bf(y(t — 7))
FAfO)+D [ K(t—s)f(y(s))ds + 1"
+ u(t)]dt + o(t, e(t), e(t — 7))dtw(t),t > 0,
y(e) = 99(0)7 0e (_0070]7

(24)

where

C( VOZe(t)  VOBeolt—7)
"“ve(t%@(t‘”)—(mmw V0 2es(t) )

Then we have L = I, MT M, = 0.21, MT M, = 0.3,k ~
1.4286.

By system (23) and (24) we can obtain the error system as
follows

dle(t) — Ee(t — h)] = [(F1 — C)e(t) + Ag(e(?)

+Bg(6(t—7))+D/ K(t — s)g(e(s))ds
! - (25)
+ 5 /t_ e(s)ds]dt + o(t,e(t),e(t — 1))dtw(t)),

AS (_0070}7

Chaotic behaviors of the drive system
T

Chaotic behaviors of the response system
T T T

y2
=)

Fig. 1. Phase trajectories and state trajectories of drive and response system

where F, F5 are the gain matrix which need to be estimated
in the feedback controller u(t) = Fie(t)+ F» ftt_T e(s)ds. Set

e = 0.3, = 0.3, from Corollary 3.1 and using LMI toolbox
in Matlab, we can obtain the following feasible solution:

o= —83.4826 6.4319 M= 2.0000 0
1= 1.1299 —89.2625 ) *° 0 2.0000 /"

16.1562 0.1353 N, — 0.4498 0.0350
0.1353 15.9428 J**'2 = \ 0.0350 0.4870 )’

—0.0675 16.1525 0  1.0000

6.5944 —0.0622 >,M:< 2.0000 0 )

0.0126

Ny = (
Ny — ( 16.0922 —0.0675 >’N4: < 1.0000 0 )
F= ( 6.6165

0 2.0000

V. CONCLUSIONS

In this paper, by constructing appropriate Lyapunov func-
tional, we have derived some sufficient conditions to guar-
anteeing the mean square exponential synchronization of two
identical chaotic neural networks. And the feedback controller
are designed by LMI toolbox in MATLAB. One simulation
numerical example shows that our results are valid.
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