
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

622

Abstract—Researchers have been applying

tional intelligence (AI/CI) methods to computer games. In this
research field, further researchesare required to compare AI/CI
methods with respect to each game application. In th
our experimental result on the comparison of three evolutionary
algorithms – evolution strategy, genetic algorithm, and their hybrid
applied to evolving controller agents for the CIG 2007 Simulated Car
Racing competition. Our experimental result shows that, premature
convergence of solutions was observed in the case of ES, and GA
outperformed ES in the last half of generations. Besides, a hybrid
which uses GA first and ES next evolved the best solution among the
whole solutions being generated. This result shows the ability of GA in
globally searching promising areas in the early stage and the ability of
ES in locally searching the focused area (fine-tuning solutions).

Keywords—Evolutionary algorithm, autonomous
agent, neuroevolutions, simulated car racing.

I. INTRODUCTION

ESEARCHERShave been applying artificial/computa
tional intelligence (AI/CI) methods to computer games,

and reporting their research results in conferences including
IEEE Conference on Computational Intelligence and Games
(CIG) 1 and IEEE Congress on Evolutionary Computation
(CEC)2. In these conferences, competitions on autonomous
game AI agents have been held. For example, competitions on
Simulated Car Racing3, Mario AI4, Ms. Pac
held in CIG 20116. To develop high performance agents, AI/CI
methods such as artificial neural networks, fuzzy sets,
evolutionary algorithms, swarm intelligence and enforcement
learning have been applied. In this research field, further
researchesare required to compare AI/CI methods with
to each game application: to investigate which methods can
derive better agents than others for which application and why.

In this paper, we report our experimental result on
comparison of three evolutionary algorithms
strategy (ES) [1], genetic algorithm (GA) [
applied to evolving controller agents for the CIG 2007
Simulated Car Racing competition7. We select ES and GA
because these are the representatives
algorithms

Authors are with Department of Intelligent Systems, Faculty of Computer

Science and Engineering, Kyoto Sangyo University, Japan (email:
hidehiko@cc.kyoto-su.ac.jp).

1http://www.ieee-cig.org/.
2http://cec2011.org/.
3http://cig.ws.dei.polimi.it/?page_id=175
4http://www.marioai.org/
5http://cswww.essex.ac.uk/staff/sml/pacman/PacManContest.html
6http://cilab.sejong.ac.kr/cig2011/?page_id=100
7http://julian.togelius.com/cig2007competition/

Evaluation of Evolution

R

Researchers have been applying artificial/computa-
tional intelligence (AI/CI) methods to computer games. In this

required to compare AI/CI
methods with respect to each game application. In this paper, we report

comparison of three evolutionary
evolution strategy, genetic algorithm, and their hybrid –,

applied to evolving controller agents for the CIG 2007 Simulated Car
Racing competition. Our experimental result shows that, premature

olutions was observed in the case of ES, and GA
outperformed ES in the last half of generations. Besides, a hybrid
which uses GA first and ES next evolved the best solution among the
whole solutions being generated. This result shows the ability of GA in

areas in the early stage and the ability of
tuning solutions).

autonomous game controller

have been applying artificial/computa-
tional intelligence (AI/CI) methods to computer games,

and reporting their research results in conferences including
IEEE Conference on Computational Intelligence and Games

IEEE Congress on Evolutionary Computation
. In these conferences, competitions on autonomous

game AI agents have been held. For example, competitions on
, Ms. Pac-Man5, etc., were

formance agents, AI/CI
neural networks, fuzzy sets,

evolutionary algorithms, swarm intelligence and enforcement
learning have been applied. In this research field, further

required to compare AI/CI methods with respect
application: to investigate which methods can

derive better agents than others for which application and why.
paper, we report our experimental result on the

comparison of three evolutionary algorithms–evolution
genetic algorithm (GA) [2], and their hybrid–,

applied to evolving controller agents for the CIG 2007
. We select ES and GA

of the evolutionary

Authors are with Department of Intelligent Systems, Faculty of Computer
Science and Engineering, Kyoto Sangyo University, Japan (email:

http://cswww.essex.ac.uk/staff/sml/pacman/PacManContest.html

II. CIG 2007 SIMULATED

We selected the CIG 2007 Simulated Car Racing
competition as the game application because the competition
provided sample controller agents (written in Java) on the web
The sample agents were neural network based ones: we expect
sample agents will performwell
connection weights and unit biases. We apply evolutionary
algorithms to the tuning of the weights and the biases. Training
neural networks by means of evolutionary algorithms is known
as neuroevolutions [3],[4].
propagation algorithm, neuroevolutions do not require training
data sets and gradient information of error functions

Fig.1 shows a screenshot of CIG 2007 simulated car racing.
An autonomous agent controls
many way-points as possible in a

Fig. 1 Screenshot of CIG 2007 simulated car racing

A starter kit has been provided on the web

controller agents are included
insimplerace/classes/
provided as Java classes. Source codes of the agents are also
provided. We utilized the agent
(simplerace/classes/
ler.class) in our research, because the agent performed
better than other sample agents in our experiment.

The following command starts car racing

>java simplerace.Play evolved.xml

The argument of the
evolved.xml, is anXML
includes an <object> element with which the agent class
used as the controller in the simulation is specified. For
example, the following example of description:

<object type="simplerace.RMLPController"
id="0">

denotes that the class simplerace.RMLPController

8http://julian.togelius.com/cig2007competition/simplerace.zip

volution Strategy, Genetic

Controllers

IMULATED CAR RACING COMPETITION

We selected the CIG 2007 Simulated Car Racing
competition as the game application because the competition
provided sample controller agents (written in Java) on the web7.
The sample agents were neural network based ones: we expect

wellas we tune values of their unit
connection weights and unit biases. We apply evolutionary
algorithms to the tuning of the weights and the biases. Training
neural networks by means of evolutionary algorithms is known

]. Unlike training with the back
propagation algorithm, neuroevolutions do not require training

gradient information of error functions.
shows a screenshot of CIG 2007 simulated car racing.

t controls its associated car to “visit as
points as possible in a fixed amount of time [5].”

Screenshot of CIG 2007 simulated car racing

starter kit has been provided on the web8. Samples of car
controller agents are included

/simplerace. The agents are
provided as Java classes. Source codes of the agents are also
provided. We utilized the agent RMLPController

/simplerace/RMLPControl
) in our research, because the agent performed

le agents in our experiment.
The following command starts car racingsimulation7:

java simplerace.Play evolved.xml

The argument of the simplerace.Play class,
XML-formattedfile. The XML file
element with which the agent class

used as the controller in the simulation is specified. For
example, the following example of description:

<object type="simplerace.RMLPController"

simplerace.RMLPController is

http://julian.togelius.com/cig2007competition/simplerace.zip

enetic Algorithm
and their Hyybbrriidd oonn Evolving SSiimmuullaatetedd CCaarr RRaacciningg

Hidehiko Okada, Jumpei Tokida

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

623

used as the controller agent. This RMLPController agent is
implemented with a recurrent multi-layer perceptron (RMLP):
as the input, the RMLP receives data of car environment
captured by car sensors, and the RMLP outputs data to actuate
(control) its car. Values of RMLP weights and biases are
specified with <array> elements in the XML file. Thus,
better RMLPController will be evolved as the values of
<array> elements are tuned. We experimentally compare the
ability of three evolutionary algorithms on this
RMLPController neuroevolutions.

III. APPLYING EVOLUTIONARY ALGORITHMS TO CAR RACING

CONTROLLER

A solution of the optimization problem in our research is a
162 dimensional real vector ��= (x1, x2, …,x162). Each xi is a
variable for an <array> element in the XML file.

A. Evolution Strategy

The steps of evolution by means of ES in our research are
shown in Fig. 2.

Fig. 2 Steps of evolution by means of ES

1. Initialization
First, µ solutions �� 1, �� 2, …,�� µ are randomly generated.

Values of ��
� (i=1,2,…,162; j=1,2,…,µ)are sampled from the

normal Gaussian distribution with mean=0 and S.D.=1.

2. Reproduction
New λ offspring solutions are produced by using the currentµ

parent solutions. Fig.3 shows the steps of reproduction by
means of ES.

Fig. 3 Steps of reproduction by means of ES

In the step 2.2 in Fig.3, a new offspring solution �� c is
generated from the parent solution ��pas:

��c= ��p+ ��, (1)

where,

� �� is also a 162 dimensional vector (�� = (d1, d2, …, d162)),
� di is a small random real value for i=r or zero for i�r,and
� r is a random integer from 1 to 162.

The random value r is changed each time Eq.(1) is used. In
our experiment, di is sampled from the normal Gaussian
distribution with mean=0 and S.D.=1.

3. Evaluation
In this step, fitness of each solution is evaluated. The fitness

in this research is the score of simulated car racing in which
values of xi(i=1,2,...,162) is utilized as the associated <array>
values in the XML file. In our experiment, we obtain the fitness
score by utilizing the simplerace.Statsclass7which gives
us the number of waypoints that the car (controlled by the agent
specified in the XML file) could visiton 200 trials.

4. Generation change
In this step, next-generation µsolutions are selected from the

population of the currentµ solutions and the newly
generatedλsolutions. Two different methods for this selection
are known as (µ+λ)-ES and (µ,λ)-ES [1]. As the
next-generation solutions, (µ+λ)-ES selects the bestµ solutions
among the µ+λ solutions, while (µ, λ)-ES selects the bestµ
solutions among thenew λsolutions. We experimentally applied
both methods and found that, for the optimization problem in
this research, (µ+λ)-ES could evolve better solutions than (µ, λ)
ES could.

The steps 2 to 5 in Fig.2 are repeated MAX_GEN times
where MAX_GENis a predefined numberof generations.

B. Genetic Algorithm

The steps of evolution by means of GA in our research are
shown in Fig.4.

Fig. 4 Steps of evolution by means of GA

The steps 1, 2, and 5 are the same as those for ES.

5. #Generation <= MAX_GEN?

1. Initialization

2. Reproduction

3. Evaluation

4. Generation change

6. STOP

No
Yes

No
Yes

2.1 A solution is randomly selected

as a parent from the current μ solutions.

2.2 A new solution is generated

from the parent solution.

2.3 #New solutions < λ?

2.4. Finish reproduction

5. #Generation <= MAX_GEN?

1. Initialization

2. Evaluation

3. Reproduction

4. Generation change

6. STOP

No
Yes

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

624

1. Reproduction
Figs. 5 and 6 show the steps of reproduction and crossover by

means of GA respectively.New (1�e)�λoffspring solutions are
produced by using the current λparent solutions. Note that e�λ
solutions are copied from/to the current/next generation by the
elitism operation (so that the reproduction process produces
only (1�e)�λnew solutions).

Fig. 5 Steps of reproduction by means of GA

Fig. 6 Steps of crossover by means of GA

C. ES/GA Hybrid

As a hybrid of ES and GA, we switch the application of the
two algorithms between the first/last half of the total
generations. For example, GA is applied in the first half of the
total generations, and then ES takes over from GA in the last
half of the total generations. We experimentally evaluated both
of GA�ES switch and ES�GAswitch, and found that
GA�ES switch performed better. We report the result of
GA�ES switch in this paper.

IV. EXPERIMENTAL EVALUATION

To fairly compare the three algorithms ((µ+λ)-ES, GA, and
GA�ES switch), we should make consistent the total number
of solutions being generated and tested by each algorithm. In
our experiment, the total number of generations was set to

1,000, and the population size (the value ofλ) was set to 10.
Thus, the total solutions being tested was 10,000 (= 10�1,000).
It took 17 hours in total to test 30,000 solutions (= 10 solutions
� 1,000 generations � 3 algorithms) by using a PC with a
2.1GHz Intel Core 2 Duo CPU, 2GB RAM and Mac OS 10.5.8.
The value ofµ for (µ+λ)-ES was experimentally set to 5, and the
parameter values for GA wereexperimentally set to:

� Blend crossover: α=0.5,
� Elitism: e=10%,
� Truncation: t=70%, and
� Mutation: m=1%.

These values performedthe best than other values in our
experiment.

In the case of GA�ES switch, GA with the above setting
was applied in the first 500 generations, and the 10
offspringsolutions by GA in the 500th generation were taken
over to ES as the parent solutions in the 501th generation (the
best 5 solutions among the 10 inherited solutions were actually
used as the parents because we utilized (5+10)-ES).

Fig.7 and Table I show the result, where the fitness scores are
the best onesamong the 10 solutions in respective generations.
Fig. 7 plots the fitness scores per 25 generations. In Table I,
values in the “max” row are the best scores among the total
10,000 solutions by respective algorithms.

Fig. 7 Result of evolutionsby the three algorithms

TABLE I

FITNESS SCORES BY THE THREE ALGORITHMS

Generation ES GA GA�ES

1 221 254 240
50 3,191 3,210 3,316

100 3,399 3,282 3,332
500 3,665 3,793 3,667

1,000 3,724 3,840 3,868

max 3,768 3,889 3,894

Fig. 7 and Table I revealed the followings.

� In the first 25 generations, all of the three algorithms could
improve solutions rapidly. On the contrary, in the following
generations after the 26th, they could improve solutions very
slowly.

No
Yes

3.1 Elitism:

The best e% solutions in the current λ

solutions are copied to the next generation.

3.2 Selection:

The worst t% solutions in the current λ

solutions are truncated from the current λ

solutions (so that the number of the current

solutions decreases from λ to (1-t) λ).

3.3 Crossover:

A new solution is produced by the crossover

with two parent solutions and .

3.4 #New solutions < (1-e) λ?

3.5 Finish reproduction

3.4 Mutation:

Each of the 162 value in the offspring solutions

is mutated under the probability m%. The mutation

changes the current real value to a random one

as that in the initialization process.

3.3.1 From the current (1-t) solutions,

two parents and are randomly selected.

3.3.2 An offspring is produced by the blend

crossover (BLX-α)[6] with the two parents.

3.3.3 Finish crossover.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

625

� It seemed that the solutions by ES resulted in undesirable
premature convergence: the solutions were little improved in
the latter generations.

These might due to the fact that the optimization problem in
this experiment was a large dimensional one (i.e., searching in
the 162 dimensional real-valued space) and that the population
size was relatively small(i.e., 10)9. By the mutation operator
GA could explore solutions globally even after the solutions
had gathered to some local minimum, but ES could only exploit
in a local minimum because ES could not generate offspring
solutions that were far enough from their parents in the search
space. Besides, the blend crossover operator might contribute
for GA to inhibit premature convergence, because the operator
could not only exploit between the two parents but also explore
outside of the two parents.

In addition, Fig. 7 and Table I revealed that, in the last 500
generations, GA�ES switch improved solutions better than ES
and GA did. GA�ES switch could evolve the best solution
(which scored 3,894 in the racing simulation) among all of the
30,000 solutions. This shows that the ability of ES to searching
solutions locally (fine-tuning solutions) in the last generations
was better than that of GA. ES applied in our experiment
changed only one xiof the 162 values in a solution ��(see III.A)
so that an offspring solution �� cwas very close to its parent
solution ��p. This might contribute to exploiting locally better
solutions – the 162 valuesof x1, x2,…, x162 are weights and
biases of a neural network so that conservative modifications
are appropriate in the final stage of fine-tuning weights and
biases.

Recently, hybrid uses of evolutionary algorithms and local
search algorithms have been researched, known as memetic
algorithms [7]-[9]. The result of our experiment indicates that
such memetic algorithms are effective for the optimization
problem in our research. Our future work includes application
and evaluation of the memetic algorithms.

V. CONCLUSION

In this paper, we evaluated effectiveness of the three
evolutionary algorithms – ES, GA, and their switching hybrid –
on the optimization problem of the neuro-based CIG 2007
simulated car racing controller. Premature convergence of
solutions was observed in the case of ES, andGA outperformed
ES in the last half of generations. The blend crossover operator
and the mutation operator of GA mightcontribute to inhibit
undesirable premature convergence. Besides, thehybrid (in
which GA/ES was applied in the first/last half of
generations)evolved the best solution among the entire 30,000
solutions being generated. This result shows the ability of GA
in globally searching promising areasin the early stage and the
ability of ES in locally searching the focused area (fine-tuning
solutions). Future work includes application and evaluation of
memetic algorithms and otherAI/CI methods to this
optimization problem.

9 Under the condition that the total number of solutions was 10,000,
evolutions by 10 solutions � 1,000 generations were better than evolutions by
100 solution � 100 generations in our experiment.

ACKNOWLEDGMENT

This research was partially supported byKyotoSangyo
University Research Grants.

REFERENCES
[1] H.-P.Schwefel, Evolution and Optimum Seeking. New York: Wiley &

Sons, 1995.
[2] D. E.Goldberg, Genetic Algorithms in Search Optimization and Machine

Learning. Addison Wesley, 1989.
[3] X. Yao, “A review of evolutionary artificial neural

networks,”International Journal of Intelligent Systems, vol.4,
pp.539-567, 1993.

[4] K.O. Stanley and R. Miikkulainen,“Evolving neural networks through
augmenting topologies,”EvolutionaryComputation, vol.10, no.2,
pp.99-127, 2002.

[5] S. Lucas, and J.Togelius, “Point-to-point car racing: an initial study of
evolution versus temporal difference learning,”Proc. of IEEE Conference
on Computational Intelligence and Games (CIG) 2007, pp.260-267,
2007.http://cswww.essex.ac.uk/cig/2007/papers/2071.pdf

[6] L.J.Eshelman, “Real-coded genetic algorithms and
interval-schemata,”Foundations of Genetic Algorithms 2, pp.187-202,
1993.

[7] Y.S. Ong, M.H.Lim, N. Zhu and K.W.Wong, “Classification of adaptive
memetic algorithms: acomparative study,”IEEE Transactions on Systems
Man and Cybernetics–Part B, vol.36, no.1, pp.141-152, 2006.

[8] J.E.Smith, “Coevolving memetic algorithms: areview and progress
report,”IEEE Transactions on Systems Man and Cybernetics –Part B,
vol.37, no.1, pp.6-17, 2007.

[9] F. Neri, C. Cotta, and P. Moscato (eds), Handbook of Memetic
Algorithms. Springer, 2011.

