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Abstract—Researchers have been applying 

tional intelligence (AI/CI) methods to computer games. In this 
research field, further researchesare required to compare AI/CI 
methods with respect to each game application. In th
our experimental result on the comparison of three evolutionary 
algorithms – evolution strategy, genetic algorithm, and their hybrid 
applied to evolving controller agents for the CIG 2007 Simulated Car 
Racing competition. Our experimental result shows that, premature 
convergence of solutions was observed in the case of ES, and GA 
outperformed ES in the last half of generations. Besides, a hybrid 
which uses GA first and ES next evolved the best solution among the 
whole solutions being generated. This result shows the ability of GA in 
globally searching promising areas in the early stage and the ability of 
ES in locally searching the focused area (fine-tuning solutions).
 

Keywords—Evolutionary algorithm, autonomous 
agent, neuroevolutions, simulated car racing.  

I. INTRODUCTION 

ESEARCHERShave been applying artificial/computa
tional intelligence (AI/CI) methods to computer games, 

and reporting their research results in conferences including 
IEEE Conference on Computational Intelligence and Games 
(CIG) 1  and IEEE Congress on Evolutionary Computation 
(CEC)2. In these conferences, competitions on autonomous 
game AI agents have been held. For example, competitions on 
Simulated Car Racing3, Mario AI4, Ms. Pac
held in CIG 20116. To develop high performance agents, AI/CI 
methods such as artificial neural networks, fuzzy sets, 
evolutionary algorithms, swarm intelligence and enforcement 
learning have been applied. In this research field, further 
researchesare required to compare AI/CI methods with 
to each game application: to investigate which methods can 
derive better agents than others for which application and why.

In this paper, we report our experimental result on 
comparison of three evolutionary algorithms
strategy (ES) [1], genetic algorithm (GA) [
applied to evolving controller agents for the CIG 2007 
Simulated Car Racing competition7. We select ES and GA 
because these are the representatives 
algorithms 

 
Authors are with Department of Intelligent Systems, Faculty of Computer 

Science and Engineering, Kyoto Sangyo University, Japan (email: 
hidehiko@cc.kyoto-su.ac.jp). 

 
1http://www.ieee-cig.org/. 
2http://cec2011.org/. 
3http://cig.ws.dei.polimi.it/?page_id=175 
4http://www.marioai.org/ 
5http://cswww.essex.ac.uk/staff/sml/pacman/PacManContest.html
6http://cilab.sejong.ac.kr/cig2011/?page_id=100 
7http://julian.togelius.com/cig2007competition/ 

Evaluation of Evolution 

R

 

Researchers have been applying artificial/computa- 
tional intelligence (AI/CI) methods to computer games. In this 

required to compare AI/CI 
methods with respect to each game application. In this paper, we report 

comparison of three evolutionary 
evolution strategy, genetic algorithm, and their hybrid –, 

applied to evolving controller agents for the CIG 2007 Simulated Car 
Racing competition. Our experimental result shows that, premature 

olutions was observed in the case of ES, and GA 
outperformed ES in the last half of generations. Besides, a hybrid 
which uses GA first and ES next evolved the best solution among the 
whole solutions being generated. This result shows the ability of GA in 

areas in the early stage and the ability of 
tuning solutions). 

autonomous game controller 
 

have been applying artificial/computa- 
tional intelligence (AI/CI) methods to computer games, 

and reporting their research results in conferences including 
IEEE Conference on Computational Intelligence and Games 

IEEE Congress on Evolutionary Computation 
. In these conferences, competitions on autonomous 

game AI agents have been held. For example, competitions on 
, Ms. Pac-Man5, etc., were 

formance agents, AI/CI 
neural networks, fuzzy sets, 

evolutionary algorithms, swarm intelligence and enforcement 
learning have been applied. In this research field, further 

required to compare AI/CI methods with respect 
application: to investigate which methods can 

derive better agents than others for which application and why. 
paper, we report our experimental result on the 

comparison of three evolutionary algorithms–evolution 
genetic algorithm (GA) [2], and their hybrid–, 

applied to evolving controller agents for the CIG 2007 
. We select ES and GA 

of the evolutionary 

Authors are with Department of Intelligent Systems, Faculty of Computer 
Science and Engineering, Kyoto Sangyo University, Japan (email: 

http://cswww.essex.ac.uk/staff/sml/pacman/PacManContest.html 

II. CIG 2007 SIMULATED 

We selected the CIG 2007 Simulated Car Racing 
competition as the game application because the competition 
provided sample controller agents (written in Java) on the web
The sample agents were neural network based ones: we expect 
sample agents will performwell
connection weights and unit biases. We apply evolutionary 
algorithms to the tuning of the weights and the biases. Training 
neural networks by means of evolutionary algorithms is known 
as neuroevolutions [3],[4]. 
propagation algorithm, neuroevolutions do not require training 
data sets and gradient information of error functions

Fig.1 shows a screenshot of CIG 2007 simulated car racing. 
An autonomous agent controls 
many way-points as possible in a

 

Fig. 1 Screenshot of CIG 2007 simulated car racing
 
A starter kit has been provided on the web

controller agents are included 
insimplerace/classes/
provided as Java classes. Source codes of the agents are also 
provided. We utilized the agent 
(simplerace/classes/
ler.class) in our research, because the agent performed 
better than other sample agents in our experiment. 

The following command starts car racing

>java simplerace.Play evolved.xml

The argument of the 
evolved.xml, is anXML
includes an <object> element with which the agent class 
used as the controller in the simulation is specified. For 
example, the following example of description: 

<object type="simplerace.RMLPController" 
id="0"> 

denotes that the class simplerace.RMLPController
 

8http://julian.togelius.com/cig2007competition/simplerace.zip
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points as possible in a fixed amount of time [5].”  

 
Screenshot of CIG 2007 simulated car racing 

starter kit has been provided on the web8. Samples of car 
controller agents are included 

/simplerace. The agents are 
provided as Java classes. Source codes of the agents are also 
provided. We utilized the agent RMLPController 

/simplerace/RMLPControl
) in our research, because the agent performed 

le agents in our experiment.  
The following command starts car racingsimulation7:  

java simplerace.Play evolved.xml 

The argument of the simplerace.Play class, 
XML-formattedfile. The XML file 
element with which the agent class 

used as the controller in the simulation is specified. For 
example, the following example of description:  

<object type="simplerace.RMLPController" 

simplerace.RMLPController is 

http://julian.togelius.com/cig2007competition/simplerace.zip 

enetic Algorithm 
and their Hyybbrriidd  oonn  Evolving SSiimmuullaatetedd  CCaarr RRaacciningg  

Hidehiko Okada, Jumpei Tokida 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

623

 

 

used as the controller agent. This RMLPController agent is 
implemented with a recurrent multi-layer perceptron (RMLP): 
as the input, the RMLP receives data of car environment 
captured by car sensors, and the RMLP outputs data to actuate 
(control) its car. Values of RMLP weights and biases are 
specified with <array> elements in the XML file. Thus, 
better RMLPController will be evolved as the values of 
<array> elements are tuned. We experimentally compare the 
ability of three evolutionary algorithms on this 
RMLPController neuroevolutions.  

III.  APPLYING EVOLUTIONARY ALGORITHMS TO CAR RACING 

CONTROLLER 

A solution of the optimization problem in our research is a 
162 dimensional real vector ��= (x1, x2, …,x162). Each xi is a 
variable for an <array> element in the XML file.  

A. Evolution Strategy 

The steps of evolution by means of ES in our research are 
shown in Fig. 2. 
 

 
Fig. 2 Steps of evolution by means of ES 

 
1. Initialization 
First, µ solutions �� 1, �� 2, …,�� µ are randomly generated. 

Values of ��
� (i=1,2,…,162; j=1,2,…,µ)are sampled from the 

normal Gaussian distribution with mean=0 and S.D.=1.  
 
2. Reproduction 
New λ offspring solutions are produced by using the currentµ 

parent solutions. Fig.3 shows the steps of reproduction by 
means of ES.  
 

 
Fig. 3 Steps of reproduction by means of ES 

 
 

In the step 2.2 in Fig.3, a new offspring solution �� c is 
generated from the parent solution ��pas:  
 

��c= ��p+ ��, (1) 

 
where, 

� �� is also a 162 dimensional vector (�� = (d1, d2, …, d162)),  
� di is a small random real value for i=r or zero for i�r,and  
� r is a random integer from 1 to 162.  

The random value r is changed each time Eq.(1) is used. In 
our experiment, di is sampled from the normal Gaussian 
distribution with mean=0 and S.D.=1. 
 

3. Evaluation 
In this step, fitness of each solution is evaluated. The fitness 

in this research is the score of simulated car racing in which 
values of xi(i=1,2,...,162) is utilized as the associated <array> 
values in the XML file. In our experiment, we obtain the fitness 
score by utilizing the simplerace.Statsclass7which gives 
us the number of waypoints that the car (controlled by the agent 
specified in the XML file) could visiton 200 trials.  

 
4. Generation change 
In this step, next-generation µsolutions are selected from the 

population of the currentµ solutions and the newly 
generatedλsolutions. Two different methods for this selection 
are known as (µ+λ)-ES and (µ,λ)-ES [1]. As the 
next-generation solutions, (µ+λ)-ES selects the bestµ solutions 
among the µ+λ solutions, while (µ, λ)-ES selects the bestµ 
solutions among thenew λsolutions. We experimentally applied 
both methods and found that, for the optimization problem in 
this research, (µ+λ)-ES could evolve better solutions than (µ, λ) 
ES could.  

The steps 2 to 5 in Fig.2 are repeated MAX_GEN times 
where MAX_GENis a predefined numberof generations.  

B. Genetic Algorithm 

The steps of evolution by means of GA in our research are 
shown in Fig.4. 
 

 
Fig. 4 Steps of evolution by means of GA 

 
The steps 1, 2, and 5 are the same as those for ES.  

 

5. #Generation <= MAX_GEN? 

1. Initialization 
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4. Generation change 

6. STOP 

No
Yes

No
Yes

2.1 A solution is randomly selected 

as a parent from the current μ solutions.

2.2 A new solution is generated 

from the parent solution.

2.3 #New solutions < λ? 

2.4. Finish reproduction 

5. #Generation <= MAX_GEN? 

1. Initialization 

2. Evaluation 

3. Reproduction 

4. Generation change 

6. STOP 

No
Yes
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1. Reproduction 
Figs. 5 and 6 show the steps of reproduction and crossover by 

means of GA respectively.New (1�e)�λoffspring solutions are 
produced by using the current λparent solutions. Note that e�λ 
solutions are copied from/to the current/next generation by the 
elitism operation (so that the reproduction process produces 
only (1�e)�λnew solutions).  
 

 
Fig. 5 Steps of reproduction by means of GA 

 

 
Fig. 6 Steps of crossover by means of GA 

 

C. ES/GA Hybrid 

As a hybrid of ES and GA, we switch the application of the 
two algorithms between the first/last half of the total 
generations. For example, GA is applied in the first half of the 
total generations, and then ES takes over from GA in the last 
half of the total generations. We experimentally evaluated both 
of GA�ES switch and ES�GAswitch, and found that 
GA�ES switch performed better. We report the result of 
GA�ES switch in this paper.  

IV. EXPERIMENTAL EVALUATION  

To fairly compare the three algorithms ((µ+λ)-ES, GA, and 
GA�ES switch), we should make consistent the total number 
of solutions being generated and tested by each algorithm. In 
our experiment, the total number of generations was set to 

1,000, and the population size (the value ofλ) was set to 10. 
Thus, the total solutions being tested was 10,000 (= 10�1,000). 
It took 17 hours in total to test 30,000 solutions (= 10 solutions 
�  1,000 generations �  3 algorithms) by using a PC with a 
2.1GHz Intel Core 2 Duo CPU, 2GB RAM and Mac OS 10.5.8. 
The value ofµ for (µ+λ)-ES was experimentally set to 5, and the 
parameter values for GA wereexperimentally set to:  

� Blend crossover: α=0.5, 
� Elitism: e=10%, 
� Truncation: t=70%, and 
� Mutation: m=1%.  

These values performedthe best than other values in our 
experiment.  

In the case of GA�ES switch, GA with the above setting 
was applied in the first 500 generations, and the 10 
offspringsolutions by GA in the 500th generation were taken 
over to ES as the parent solutions in the 501th generation (the 
best 5 solutions among the 10 inherited solutions were actually 
used as the parents because we utilized (5+10)-ES).  

Fig.7 and Table I show the result, where the fitness scores are 
the best onesamong the 10 solutions in respective generations. 
Fig. 7 plots the fitness scores per 25 generations. In Table I, 
values in the “max” row are the best scores among the total 
10,000 solutions by respective algorithms.  
 

 
Fig. 7 Result of evolutionsby the three algorithms 

 
TABLE I 

FITNESS SCORES BY THE THREE ALGORITHMS 

Generation ES GA GA�ES 

1 221 254 240 
50 3,191 3,210 3,316 

100 3,399 3,282 3,332 
500 3,665 3,793 3,667 

1,000 3,724 3,840 3,868 

max 3,768 3,889 3,894 
 

Fig. 7 and Table I revealed the followings.  

� In the first 25 generations, all of the three algorithms could 
improve solutions rapidly. On the contrary, in the following 
generations after the 26th, they could improve solutions very 
slowly.  

No
Yes

3.1 Elitism: 

The best e% solutions in the current λ 

solutions are copied to the next generation.

3.2 Selection: 

The worst t% solutions in the current λ 

solutions are truncated from the current λ 

solutions (so that the number of the current 

solutions decreases from λ to (1-t) λ).

3.3 Crossover: 

A new solution is produced by the crossover 

with two parent solutions and .

3.4 #New solutions < (1-e) λ?

3.5 Finish reproduction 

3.4 Mutation: 

Each of the 162 value in the offspring solutions 

is mutated under the probability m%. The mutation 

changes the current real value to a random one 

as that in the initialization process. 

3.3.1 From the current (1-t) solutions, 

two parents and are randomly selected.

3.3.2 An offspring is produced by the blend 

crossover (BLX-α)[6] with the two parents. 

3.3.3 Finish crossover. 
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� It seemed that the solutions by ES resulted in undesirable 
premature convergence: the solutions were little improved in 
the latter generations.  

These might due to the fact that the optimization problem in 
this experiment was a large dimensional one (i.e., searching in 
the 162 dimensional real-valued space) and that the population 
size was relatively small(i.e., 10)9. By the mutation operator 
GA could explore solutions globally even after the solutions 
had gathered to some local minimum, but ES could only exploit 
in a local minimum because ES could not generate offspring 
solutions that were far enough from their parents in the search 
space. Besides, the blend crossover operator might contribute 
for GA to inhibit premature convergence, because the operator 
could not only exploit between the two parents but also explore 
outside of the two parents. 

In addition, Fig. 7 and Table I revealed that, in the last 500 
generations, GA�ES switch improved solutions better than ES 
and GA did. GA�ES switch could evolve the best solution 
(which scored 3,894 in the racing simulation) among all of the 
30,000 solutions. This shows that the ability of ES to searching 
solutions locally (fine-tuning solutions) in the last generations 
was better than that of GA. ES applied in our experiment 
changed only one xiof the 162 values in a solution ��(see  III.A) 
so that an offspring solution �� cwas very close to its parent 
solution ��p. This might contribute to exploiting locally better 
solutions – the 162 valuesof x1, x2,…, x162 are weights and 
biases of a neural network so that conservative modifications 
are appropriate in the final stage of fine-tuning weights and 
biases.  

Recently, hybrid uses of evolutionary algorithms and local 
search algorithms have been researched, known as memetic 
algorithms [7]-[9]. The result of our experiment indicates that 
such memetic algorithms are effective for the optimization 
problem in our research. Our future work includes application 
and evaluation of the memetic algorithms.  

V. CONCLUSION 

In this paper, we evaluated effectiveness of the three 
evolutionary algorithms – ES, GA, and their switching hybrid – 
on the optimization problem of the neuro-based CIG 2007 
simulated car racing controller. Premature convergence of 
solutions was observed in the case of ES, andGA outperformed 
ES in the last half of generations. The blend crossover operator 
and the mutation operator of GA mightcontribute to inhibit 
undesirable premature convergence. Besides, thehybrid (in 
which GA/ES was applied in the first/last half of 
generations)evolved the best solution among the entire 30,000 
solutions being generated. This result shows the ability of GA 
in globally searching promising areasin the early stage and the 
ability of ES in locally searching the focused area (fine-tuning 
solutions). Future work includes application and evaluation of 
memetic algorithms and otherAI/CI methods to this 
optimization problem.  
 

9 Under the condition that the total number of solutions was 10,000, 
evolutions by 10 solutions � 1,000 generations were better than evolutions by 
100 solution � 100 generations in our experiment.  
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