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Conjugate Heat Transfer in an Enclosure Containing
a Polygon Object

Habibis Saleh and Ishak Hashim

Abstract—Conjugate natural convection in a differentially heated
square enclosure containing a polygon shaped object is studied
numerically in this article. The effect of various polygon types on the
fluid flow and thermal performance of the enclosure is addressed for
different thermal conductivities. The governing equations are modeled
and solved numerically using the built-in finite element method of
COMSOL software. It is found that the heat transfer rate remains
stable by varying the polygon types.
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I. INTRODUCTION

NATURAL convection heat transfer in a differentially
heated enclosures from side or below has received con-

siderable attention over the past few decades, largely due to
a wide variety of applications, which include double pane
windows, electronic boxes, solar collector technology, energy
storage, nuclear reactor technology, etc. Another practical
application of natural convection is encountered when an
obstacle such as an inserted object placed inside the enclosure.
Many authors reported that this inserted object changes the
flow field and the heat transfer characteristics of the enclosure.

Ref. [1] reported the heat transfer may be enhanced or
reduced by a square object with a thermal conductivity ratio
less or greater than unity. Ref. [2] found placing the solid
objects near to the walls reduce the rate of heat transfer due
to the blockage effects, but placing low conductor objects far
from the boundary layer region may enhance the rate of heat
transfer compared with enclosures without obstacles. Ref. [3]
reported a critical size of the adiabatic object below which the
increasing the size increases the heat transfer and above which
the increasing the size decreases the heat transfer. Ref. [4]
studied when the enclosure were given an inclination angle.
Ref. [5] moved to an inserted cylinder object in the center
of the enclosure. They concluded that the thermophysical
properties of the cylinder object were important on the overall
heat transfer process across the enclosure.

Present work aims to investigate the fluid flow and heat
transfer for various polygon types placed inside the center
of the square enclosure. Complete two dimensional numerical
simulation and systematical generalization of the conjugate
heat transfer behavior occurring in the enclosure by varying
the obstacles shaped is carried out.

II. MATHEMATICAL FORMULATION

A schematic diagram of a square enclosure having a con-
ductive regular polygon placed at the center is shown in in
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Fig. 1. Schematic representation of the model

Fig. 1. The left surface is heated to a constant temperature
Th, and the right surface of the enclosure is cooled to a
constant temperature Tc, while the horizontal surfaces are kept
adiabatic. Thermophysical properties of the fluid in the flow
field are assumed to be constant except the density variations
causing a body force term in the momentum equation. The
Boussinesq approximation is invoked for the fluid properties
to relate density changes to temperature changes, and to couple
in this way the temperature field to the flow field. Under the
above assumptions, the governing equations for steady natural
convection flow using conservation of mass, momentum and
energy can be written in its dimensionless form as follows:
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and the energy equation for the conducting polygon is:
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= 0 (5)

The values of the non–dimensional velocity are zero in the
solid region and on the solid-fluid interfaces. The boundary
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(b) N = 4
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Fig. 2. Streamlines for different polygon size, A and number of polygon sides, N at Kr = 1 and Ra = 105.
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conditions for the non-dimensional temperatures are:

Θ = 1 at X = 0, Θ = 0 at X = 1 (6)
∂Θ

∂Y
= 0 at Y = 0 and Y = 1 (7)

Θ = Θs at the outer polygon surface (8)
∂Θ

∂η
= Kr

∂Θs

∂η
at the inner polygon surface (9)

where Kr = ks/kf is the thermal conductivity ratio. All sides
of the solid polygon are equal in length. Number of sides
is denoted by N , where for N = 3 the shape is triangle,
for N = 4 the shape is quadrilateral, for N = 5 the shape
is pentagon, for N = 6 the shape is hexagon, for N = 7
the shape is heptagon, for N = 8 the shape is hexagon, for
N = 9 the shape is nonagon, for N = 10 the shape is decagon,
for N = 11 the shape is hendecagon and for N = ∞ the
shape becomes cylinder. The polygon to enclosure area ratio
is defined by:

A = R2N
sin( 360N

2
) (10)

The physical quantities of interest in this problem are the
average Nusselt number along the hot wall which is defined
by:

Nu =

∫ 1

0

−∂Θf

∂Y
dY (11)

III. COMPUTATIONAL METHODOLOGY

The governing equations along with the boundary condi-
tions are solved numerically by the CFD software package
COMSOL Multiphysics. COMSOL Multiphysics (formerly
FEMLAB) is a finite element analysis, solver and simulation
software package for various physics and engineering applica-
tions. We consider the following application modes in COM-
SOL Multiphysics. The Incompressible Navier-stokes Equa-
tions mode (ns) for Eqs. (1)–(3), the Convection–Conduction
Equations mode (cc) for Eq. (4) and the Diffusion Equations
mode (di) for Eq. (5). In this study, mesh generation on
square enclosure containing polygon object is made by using
triangles. Several grid sensitivity tests were conducted to
determine the sufficiency of the mesh scheme and to ensure
that the results are grid independent. We use a finer mesh sizes
for all the computations done in this paper.

IV. RESULTS AND DISCUSSION

Fig. 2 illustrates the streamlines for various types of solid
polygon where the solid area attains the value π/100, π/25
and π/16, respectively. The thermal conductivity ratio is fixed
at Kr = 1 and the Rayleigh number at Ra = 105. The fluid
temperature adjoining the hot surface rises and move from
the left to the right, falling along the cold surface, then rising
again at the hot surface. This movement creates a clockwise
circulation cell in free space between the polygon and walls
enclosure. The cell shape near the polygon was distorted by
the presence polygon, N ≤ 5. The distortion takes higher
as the polygon size is made bigger. The strength of the flow
circulation decreases by increasing the solid area for the same
polygon type. It is obvious that increasing the A leads to
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Fig. 3. Variation of Nu with N (a), with A (b) for different values of Kr .

smaller space for the flow to circulate. At fixed A, increasing
N increases the flow strength, as indicated from |Ψ|min values.
This increasing occurs except at small cylinder, A = π/100,
where the flow strength much weaker than the small solid
pentagon inserted in enclosure.

Variations of the average Nusselt number with the number
of polygon sides are shown in Fig. 3(a) for different thermal
conductivity ratio at Ra = 105 and A = π/25. The average
Nusselt number was shown stable for solid pentagon and
above. Increasing thermal conductivity ratio increases the Nu
at fixed N . Variations of the average Nusselt number with
the polygon areas are shown in Fig. 3(b) for different thermal
conductivity ratio at Ra = 105 and N = 5. Fig. 3(b) exhibits a
critical size of the solid pentagon is exist at low conductivities,
Kr = 0.1, 0.5; below which, the increasing the size increases
the Nu and above which the increasing the size decreases the
Nu.

V. CONCLUSION

The present numerical simulations study the effects vari-
ous solid polygon properties on natural convection inside a
square enclosure. The dimensionless forms of the governing
equations were solved using the COMSOL Multiphysics soft-
ware. Detailed computational results for fluid flow and heat
transfer characteristics in the enclosure have been presented
in graphical forms. We conclude that the heat transfer rate
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remains stable by varying the number of polygon sides. The
theoretical prediction in this paper is hoped to be a useful guide
for the experimentalists to study the various combinations of
the polygon shaped and its thermal conductivity properties to
control the fluid flow and thermal performance of enclosure
at different size. The factors of polygon location, orientation
and rotation with different angular speed will be the focus of
our research undertaking.
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