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Abstract—In general, image-based 3D scenes can now be found in 
many popular vision systems, computer games and virtual reality 
tours. So, It is important to segment ROI (region of interest) from input 
scenes as a preprocessing step for geometric stricture detection in 3D 
scene. In this paper, we propose a method for segmenting ROI based 
on tensor voting and Dirichlet process mixture model. In particular, to 
estimate geometric structure information for 3D scene from a single 
outdoor image, we apply the tensor voting and Dirichlet process 
mixture model to a image segmentation. The tensor voting is used 
based on the fact that homogeneous region in an image are usually 
close together on a smooth region and therefore the tokens 
corresponding to centers of these regions have high saliency values. 
The proposed approach is a novel nonparametric Bayesian 
segmentation method using Gaussian Dirichlet process mixture model 
to automatically segment various natural scenes. Finally, our method 
can label regions of the input image into coarse categories: “ground”, 
“sky”, and “vertical” for 3D application. The experimental results 
show that our method successfully segments coarse regions in many 
complex natural scene images for 3D. 
 

Keywords—Region segmentation, tensor voting, image-based 3D, 
geometric structure, Gaussian Dirichlet process mixture model 

I. INTRODUCTION 

N  general, image-based rendering during the past decade has 
advanced the commercial production of virtual models from 

photographs a reality. Image based 3D modeling can be found 
in many popular computer games and virtual reality tours. 
However, the generation of 3D scene from 2D natural scene 
remains a complicated and time-consuming process, often 
requiring special equipment, a large number of photographs, 
manual interaction, or all of them. So, it has given to the 
professionals and ignored by the general public. In order to 
solve problems of 3D modeling, various researches have been 
performed Image-based 3D modeling methods by [1,2,3,4]. 
To this work, we consider to dealing with outdoor scenes and 
assume that a scene is consisted in a single ground plane, 
piece-wise planar objects sticking out of the ground at right 
angles, and the sky. First of all, we perform simple feature such 
as pixel colors and filter responses. So, we find uniform region, 
called ‘superpixels” in the input scene [13]. To fine superpixels 
in this work, we segment uniform region based on Gaussian 
Dirichlet process mixture model. The goal of scene 
segmentation is to classification a given input image into 
homogeneous regions, or pattern classes. The work can be 
applied to a multitude of important computer vision 
applications, ranging from vision guided autonomous robotics,   
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remote sensing to medical diagnosis, and retrieval in large 
image database. In general, various segmentation approaches 
have been proposed. These can be largely categorized into four 
classes: threshold-based, edge or boundary-based, 
region-based, and model-based techniques [5-6]. 

Here, we have mainly an interest with a segmentation 
method using model-based techniques. One of these methods 
expresses the probability density for the whole data set as a 
finite mixture model, in case that the mixtures can be 
constructed with any types of components, but more commonly 
multivariate Gaussian densities are used. However, most of 
these algorithms require the analyst to specify the number of 
classes based either on a priori knowledge or on an educated 
guess. It is obvious that the quality of resulting segmentation is 
largely dependent on the exact estimation of mixture 
components. Hence, we have to determine the optimal number 
of clusters before analyzing a given data. To solve this problem, 
various criteria have been proposed in the literature. These 
criteria are Akaike’s information criterion (AIC), Bayesian 
information criterion (BIC), minimum description length 
(MDL), cross validation information criterion (CVIC), and 
covariance inflation criterion (CIC). Nevertheless, these 
methods are not able to determine automatically the number of 
components when we segment a given image into several 
regions.  

To resolve these optional issues, a relatively new tool, 
Dirichlet process mixture (DPM) models have been proposed 
in machine learning literature. DPM models have emerged as a 
nonparametric alternative to finite mixture models with 
theoretically a countable infinite number of mixture 
components. Eventually, as part of the model-fitting procedure, 
the nonparametric Bayesian inference scheme induced by the 
DPM model yields a posterior distribution on the proper 
number of model component densities, rather than selecting a 
fixed number of mixture components.  Hence, the obtained 
nonparametric Bayesian formulation eliminates the need for 
doing inferences about the number of mixture components 
required for representing the modeled data.  
Under this motivation, we propose a novel nonparametric 
Bayesian segmentation method using Gaussian Dirichlet 
process mixture model, to automatically segment various color 
images. This method incorporates both Dirichlet process 
mixture model as the prior distribution for mixture components 
and the multivariate Gaussian distribution as the likelihood 
function of observed data. We have also described an efficient 
variational Bayesian inference algorithm newly proposed 
recently to learning the proposed model. And we apply it to a 
series of color images, demonstrating its advantages over 
existing methodologies.  
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II.  DIRICHLET PROCESS M IXTURE BASED ON GAUSSIAN 

A. Dirichlet Process 

The Dirichlet process, denoted as DP�α, G��, is a random 
measure on measures and is parameterized by the innovation 
parameter α and a base distribution G� [7,8]. That is, for any 
finite measurable partition �A
, A�, � , A
�  of a measurable 
space � , the random vector �G�A
�, G�A��, � , G�A
��  is 
distributed as a finite-dimensional Dirichlet distribution with 
parameters  �αG��A
�, αG��A��, � , αG��A
�� :   
�G�A
�, G�A��, � , G�A
�~�αG��A
�, αG��A��, � , αG��A
��. 

A first interpretation on the Dirichlet process is provided by the 
Polya urn scheme due to Blackwell and MacQueen (1973). The 
Polya urn scheme shows that not only are draws from the 
Dirichlet process discrete, but also that they exhibit a clustering 
property. Assume we randomly draw a sample distribution G  
from a DP�α, G��, and subsequently, we independently draw N 
random variables φ
, φ�, � ,φ� from G  

G | �α, G�� ~ DP�α, G��                                                 (1) 
 φ� | G  ~  G ,   n � 1, � , N. 

Integrating out G , the joint distribution of the variables  
φ
, φ�, � ,φ�  can be shown to exhibit a cluster effect. 
Specifically, given the first N � 1 samples of  G , 
φ
, φ�, � ,φ��
, it can be shown that a new sample φ� is either 

drawn from the base distribution G� with probability 
α

α���

 or 

selected from the existing draws, according to a multinomial 
allocation, with probabilities proportional to the number of the 
previous draws with same allocation. Let �φ


� , φ�
� , � ,φ�

�  � 
denote the distinct values of φ
,φ�, � ,φ��
 , and let 
�n
, n�, � , n�� be the number of values in φ
,φ�, � , φ��
that 
equal to φ


� ,φ�
� , � , φ�

� . Then, the conditional distribution of φ� 
given φ
,φ�, � ,φ��
 follows a Polya urn scheme and has the 
following form: 
p φ� ! "φ�, n � 1, � , N � 1#,α, G�� � α

α���

G� $ ∑ �&

α���

δφ&

�
�
'(
               (2) 

where δφ&
�  denotes the distribution concentrated at a single 

point φ'
� . These results illustrate two key properties of the DP 

scheme. First, the innovation parameter α plays a key role in 
determining the number of distinct parameter values. A larger α 
induces a higher tendency of drawing new parameters from the 
base distribution G�; indeed, as α ) ∞, we get G ) G�. On the 
contrary, as α ) 0, all φ
,φ�, � ,φ� tend to cluster to a single 
random variable. Second, the more often a parameter is shared, 
the more likely it will be shared in the future. 

Another characterization of the unconditional distribution of 
the random variable G drawn from DP�α, G�� is provided by 
the stick-breaking construction due to Sethuraman (1994) [8]. 
The stick-breaking construction is based on two infinite 
collections of independent random variables �v'�'(


∞  
and  �θ'�'(


∞ : 
v'  |  α, G�  ~  Beta�1, α� ,  θ'  |  α, G�  ~  G�, 

where Beta�a, b� is the Beta distribution with parameters a and 
b. The stick-breaking construction of G is then given by 

G � ∑ π'�1�δθ&
∞
'(
 ,                                            (3) 

where  
π'�1� � v' ∏ �1 � v3� 4 50.17'�


3(
 ,  ∑ π'�1∞
'(
 � � 1. (4) 

In this case, we may interpret the sequence 8 � �8'�'(

∞  as a 

random probability measure on the positive integers. Under the 
stick-breaking representation of the Dirichlet process, the 
atoms θ', drawn independently from the base distribution G�, 
can be seen as the parameters of the component distribution of a 
mixture model comprising an unbounded number of 
component densities, with mixing proportions  π'�1� . 
Sethuraman(1994) showed that G as defined in this way is a 
random probability measure distributed according 
to  DP�α, G��[8]. This stick breaking representation of G makes 
clear that the random measure G drawn from  DP�α, G��  is 
discrete. It shows explicitly that the support of G consists of a 
countably infinite sum of atoms located at θ' , drawn 
independently from G�. 

B. Gaussian Dirichlet Process Mixture Model 

One of the most important applications of the Dirichlet 
processes is as a nonparametric prior distribution of a mixture 
model. In particular, suppose that observation 9�  arise as 
follows: 

φ�  |  G  ~  G,  9�  |  φ�  ~  F�φ�� 
where F�φ��  denotes the distribution of the observation  9� 
given  φ� . The factors  φ�  are conditionally independent 
given G, and the observation y�is conditionally independent of 
the other observations given the factor φ� . When G  is 
distributed according to a Dirichlet process, this model is 
referred to as a Dirichlet process mixture (DPM) model. Since 
G can be represented using a stick-breaking construction (3), 
the factors φ�  take on values θ'  with probability π'�v�. We 
may denote this using an indicator variable  <�, which takes on 
positive integral values �k|k � 1, � ,∞�  and is distributed 
according to 8 � �π'�'(


∞ .  
Next, suppose that we have a set of d -dimensional 

independent multivariate observations  ? � �9
, 9�, � , 9��. We 
want to model this data by mans of nonparametric Bayesian 
formulation of Gaussian Dirichlet process mixture (GDPM) 
model. For this purpose, since the number of mixture 
component K is unknown, we have to consider the mixture 
model with countably infinite components. Therefore, we will 
use the Diriclet process mixture model as the prior distribution 
over the number of components generating the data, and we 
also assume the probability distribution of observations as the 
multivariate Gaussian distribution. Moreover, introducing a set 
of latent variables A � �z
, z�, � , z��  indicating the 
component labels associated with the observation data as 
defined on above. Then, the GDPM model for the observed 
data set can be described as follows. First, we have used the 
multi-dimensional Gaussian distribution with parameter 
�' � �C', D' �for the likelihoods of the observations; 

9�  |  z� � k ; �'  ~  F�C', D'
�
� .                                 (5) 

Second for the prior distribution of total cluster memberships, 
we assume that 

p�z
, � , z�� !  8�1�G � ∏ p�z�| �
�(
  8�1��  

where  p�z� � k | 8�1� � is the prior probabilities of the cluster 
membership stemming from the imposed Drichlet process, that 
is,  

p�z� � k | 8�1� � ~ Multi�8�1��, 
Multi�8�1�� denotes the multinomial distribution over 8�1�. 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:6, No:4, 2012

408

 

 

Third, the probabilities of countable infinite number of 
components in the mixture model is given by the 
stick-breaking representation of the DP, that is,   

              v'  |  α, G�  ~  Beta�1, α�, k � 1, � , ∞   
π'�1� � v' ∏ �1 � v3� 4 50.17'�


3(
 ,   ∑ π'�1N
'(
 � � 1.              (6) 

Forth, Bayesian inference for the assumed GDPM model 
involves the assumption of a set of appropriate priors over the 
model parameters, and derivation of the corresponding 
posterior densities. We choose the conjugate-exponential prior 
distributions over the model parameters. Hence, we impose a 
joint normal-Wishart distribution over the mean vector and 
precision matrix for a multivariate Gaussian distribution of the 
model component as follows: 

C' | D'
�
  ~  F�C' | O' , �λ' D'��
 �                       (7) 

D'  ~  Q� D'| ω' , S' �. 
Finally, taking under consideration the effect of effective 
mixture components of the GDPM model, we choose to also 
impose a hyper-prior over the innovation hyper-parameter α of 
the GDPM model. We use a Gamma prior with parameter 
η
  and  η� : 

α  |  η
, η�  ~  Γ �α | η
 , η� �.                                  (8) 
    Hence, the joint probability of latent variables and all 
parameters considered up to now can be rewritten as 
  p�?, A, 8�1�, α, C, D� 

= p�? | A, C, D� p�A ! 8�1�Gp�1 | α�p�C | D� p�D�           (9) 
where the individual factors are  
p�? | A, C, D� = ∏ ∏ F�9� | C', D'

�
�VW&N
'(


�
�(
  

p�A ! 8�1�G = ∏ p�z�| 8�1���
�(
 ,  

p z� !8�1�G � ∏ π'�v�VW&∞
'(
  , z�' 4 �0,1�                                       (10) 

p�1 | α� = ∏ α �1 � v'�X�
N
'(
  ,  v'   4   50,17 

p�C' | D'� = F�C' | O' , �λ' D'��
 �, p�DY� = Q� D'| ω' , S' �.                  
(10) 
and 
    F�9  | C , Z � = 




��[�\/^




|Z|_/^ ` exp �� 


�
 �9 � C�bΣ�
 �9 � C�) 

 Q�D| ω , S� = B�ω , S� |D|�d�e�
�/� ` exp �� 


�
Tr�S�
D�  

 B�ω , S�  = |S|�d/��2de/�πe�e�
�/i ` ∏ Γ�d�
�j

�
e
j(
 � ��
. 

III.  VARIATIONAL BAYESIAN INFERENCE 

Inference for the GDPM model can be conducted based on a 
Bayesian setting, typically by means of variational Bayesian 
methods. Variational Bayesian inference implies that the actual 
posterior distribution p�k |l , ?�  over a set of all hidden 
variables and unknown parameters of GDPM model, k �
�A , 1, α, C, D� given an observed date set, ? and the set of the 
hyper-parameters of the assumed priors, l � �λ, O, ω, S,
η
, η�� is approximated by a variational Bayesian posterior 
distribution, q�k� . To derive the variational Bayesian 
distribution  q�k�, we consider a well-known equation for the 
log evidence  log p�? | l�. This can be expressed as 

log p�? | l � �  p q�k�G $ q�r�q�k�||p�k| ?, l�             (11) 
where 

p q�k�G �  s q�k� log t�?|k�t�k|l�

u�k�
dk                           (12) 

and 

q�r�q�k�||p�k| ?, l� �  s q�k� log u�k�

t�k|?,l�
dk.            (13) 

Here, q�r�q�k�||p�k| ?, l� stands for the Kullback-Leibler 
(KL) divergence between the approximate variational posterior 
q�k� and the actual posterior p�k| ?, l� and p q�k�G called 

the variational free energy, forms a strict lower bound of the log 
evidence. Hence, maximizing the variational free energy 
p q�k�G is equivalent to minimizing the KL divergence. By 
appropriate choice of  q�k�, p q�k�G  becomes tractable to 
compute and to maximize.  

For computational convenience, the variational posterior 
q�k� is expressed in a factorized form, with the same form as 
the priors  p�k|l�, and each parameter represented by its own 
conjugate exponential prior. Furthermore, variational Bayesian 
inference assumes to formulate under infinite dimensional 
setting. But, it is actually not tractable. For this reason, we 
employ a common strategy in DPM literature, formulated on 
the basis of a truncated stick-breaking representation of the DP. 
That is, we fix a value K and we let the variational posterior 
over the stick-breaking random variables v'  have the 
property  q�v� � 1� � 1 . This implies that the mixture 
proportions π'�v�  are equal to zero for  k v w. Therefore, for 
GDPM model proposed in this paper, the variational Bayesian 
posterior is given as the following form: 

q�k� �  ∏ q�z��q�α� ∏ q�v'� ∏ q�C', D'�.�
'(


��

'(


�
�(
          (14) 

Then, substituting (10) and (14) into (12), we have the 
following variational free energy for our model; 
 p q�k�G �  ∑ s s q�C', D'��

'(
 ln t�C&,D&|x&,O&,d&,S&�

u�C&,D&�
dC'dD'  

          $ s q�α��ln t�X|y_,y^�

u�X�
$ ∑

 
s q�v'� ln t�z&|X�

u�z&�
dv'�dα��


'(
                   (15) 

         $ ∑ ∑ q�z�
�
�(
 � k��

'(
 �s q�1� ln t VW('!8�1�G

u�VW('�
d1      

         $ s s q�C', D'�ln p�9�|C', D'� dC'dD'�                                           
 

Derivation of the optimal variational posterior distribution 
q�k� involves the maximization of the variational free energy 
over each one of the factors q�k{� of q�k� in turn, holding the 
others fixed. Using the calculus of variations, it can be shown 
that the best distribution q�Φ{�� for each of the factors can be 
expressed as: 

q�k{� �  exp� Ej~{5log p�?, k |l�7�/Z{, 

where Z{  denotes the normalized constant of variational 
distribution q�k{� .  Hence, the update equations for the 
variational posteriors of each factors are given as follows.  
 
(1)  The variational posterior of mixture component indicator 
variable        
q�z� � k� �
exp�  E5 8�1�75ln p�z� � k|8�1�7 $ E5 C,D75ln p�9�  | z� � k , C, D7 � 

= π�'�v� ` p��9� | C', D'�                                                                (16) 
 Where   
 π'��v� � exp� E5 u�1�75ln p�z� � k|8�1��7 � 
            � exp�E5u�1�75ln v'7 $ ∑ E5u�1�75ln �1 � vj

'�

j(
 � � 

 p��9� | C', D'� � exp �� 

�

ln 2π $ 

�

E5u�D&�75ln |D'|7 

     � 


�
E5u�C&,D&�75�9� � C'�b D'�9� � C'�7}, 

 and  
E5u�1�75ln v'7 �  ψ�β�',
� � ψ�β�',
 $ β�',��, 
E5u�1�75ln�1 � v'�7 �  ψ�β�',�� � ψ�β�',
 $ β�',��,   

   E5u�C&,D&�75�9� � C'�b D'�9� � C'�7

�
d
λ'

$ ω'�9� � O'�bS'
�
�9� � O'� 

     E5u�D&�75ln |D'|7  � � ln | S&

�
 | $ ∑ ψ�d&�
�'

�
�e

'(
  , 

   where ψ�·� is the Digamma function.  
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 (2) The variational posterior of the DP parameters 
q�α� � exp �ln p�α� $ E5u�1�75ln p�1 |α�7�  

where 
E5u�1�75ln p�1 |α�7 � ∑ E5u�z�75ln p�v' |α�7��


'(
  . 
Hence, 

q�α� � Γ�η�
, η���,                                                  (17) 
 where 

η�
 �  η
 $ K � 1, η�� �  η� � ∑ 5 ψ β�',�G � ψ β�',
 $ β�',�G 7��

'(
  
 
 

(3) The variational posterior of stick-breaking variables 
q�v'� � exp �E5u�<�75ln p�< |8�1��7 $ E5u�X�75ln p�v' |α�7� 

where 
E5u�<�75ln p�< |8�1��7 � ∑ q�z� � k��

�(
   
E5u�X�75ln p�v' |α�7 � E5u�X�75α7 $ ∑ ∑ q�z� � l��

�(

�
3('�
  . 

Hence, 
q�v'� � Beta β�',
, β�',�G     k � 1, � , K � 1                           (18) 

where 
β�',
 � 1 $ ∑ q�z� � k��

�(
 , β�',� � y�_

y�^
$ ∑ ∑ q�z� � l��

�(

�
3('�
  . 

 
(4) The variational posterior of the likelihood function 
parameters 
q�C' , D'� � exp�ln p�C' , D'�+ ∑ q�z� � k��ln p�9� |C', D'��

�(
 � . 
Hence, 

 q�C', D'� � F�C'|O' , �λ'D'��
�Q�D' |S' , ω' ,                (19) 
where 
N' � ∑ q�z� � k��

�(
  ,  λ' � λ� $ N',   ω' � ω� $ N' 

9�' �  


�&
∑ q�z� � k� 9�

�
�(
  ,  

�' � ∑ q�z� � k��
�(
 �9� � 9�'��9� � 9�'�b  

O' � 


x&
�λ�O� $ N'9�'�,  

S' � S� $ �' $ x���

x���&
�9�' � O'��9�' � O'�b   

 
As a last step, after updating the posterior distributions 

(16)-(19) using the variational Bayesian inference algorithm for 
the GDPM model at each iteration, we use a Bayesian rule 
which allocates each pixel to one of regions in accordance with 
their posterior probabilities to segment a given color image. 
That is, every pixel is assigned to the class having the highest 
posterior probability that the observation originated from this 
class. 

IV. 3D GEOMETRY ESTIMATION 

In this section, we present an automatic approach for creating 
a 3D model based on region segmentation by statistic model 
from a single scene. The model is made up of several 
texture-mapped plannar billboards and has the complexity of a 
typical children’s pop-up book illustration. The proposed core 
technology is that we are based on statistical-model geometric 
features defined by their orientation components in the image 
instead of attempting to recover precise geometry. First of all, 
regions are created by labeling of the segmented input image 
into coarse categories: “ground”, “sky”, and “vertical”. In the 
second step, each label is used to “cut and fold” the image into a 
pop-up model using a set of simple assumptions. In general, we 
can show the results for creating virtual walkthroughs that is 
completely automatic and requires only a single photograph as 
input scene [13].  

V. EXPERIMENTAL RESULTS 

First, to verify the application of GDPM model to image 
segmentation, we have used various color images data. Figure 
1(a) shows the color images used at our experiment and Figure 
1(b) also shows the results of segmentation for color images 
using proposed model. From the experimental results, we note 
that our algorithm manage to discriminate exactly each objects 
in color image.    
 

   

   

     
   (a) Color images (b) Segmentation results 

Fig. 1 Results of segmentation for color images using the proposed 
approach 

 
We can observe that the GDPM model is able to converge 

with the optimal likelihood function without dependent on 
assumed initial values for model parameters. Therefore, this 
model can classify or partition exactly each pixels into proper 
regions, and we can obtain the excellent segmented regions. 

In order to test the performance of the proposed method, we 
use Hoiem’s publicly available code to generate the 3D model 
from an image based MATLABE [13]. Fig. 2 shows the 
qualitative results of the proposed method on several images. 
Therefore, we can set out with the goal of automatically 
creating visually pleasing 3D models for a 2D scene of an 
outdoor image. We can create beautiful 3D scenes for various 
images. 
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Fig. 2 Input scenes and novel views taken from automatically 

generated 3D models 
 

VI. CONCLUSIONS 

In this paper, we present automatically creating visually 
pleasing 3D models from a single 2D image of an outdoor scene. 
The proposed approach can observe single-view modeling 
paves the way for a new class of applications. First, in order to 
segment of ROI from natural scene, we apply new 
segmentation method based GDPM model, which can 
automatically determinate the number of mixture components 
at a unsupervised segmentation. The method uses the 
variational Bayesian inference method recently very often used, 
and we have conducted to segment various color images by 
using the trained GDPM model. Therefore, the experimental 
results indicate that the proposed method can be effective in 3D 
modeling with natural single scene. 
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