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Positive periodic solutions for a predator-prey
model with modified Leslie-Gower Holling-type II

schemes and a deviating argument
Yanling Zhu and Kai Wang

Abstract— In this paper, by utilizing the coincidence degree
theorem a predator-prey model with modified Leslie-Gower Holling-
type II schemes and a deviating argument is studied. Some sufficient
conditions are obtained for the existence of positive periodic solutions
of the model.
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I. INTRODUCTION

THE famous Leslie predator-prey system was introduced
by Leslie in [1] as follows,⎧⎨

⎩
ẋ = x(a − bx) − p(x)y,

ẏ = y(c − d
y

x
),

where the carrying capacity of the predator’s environment is
proportional to the number of prey, x(t), y(t) stand for the
population of the prey and the predator at time t respectively,
and p(x) is the so-called predator functional response to prey.
This interesting formulation for the predator dynamics has
been discussed by Leslie and Gower in [2] and by Pielou
in [3]. When p(x) = ex

f+x , the functional response p(x) is of
type II, which was also proposed by Holling, so it is called a
functional response of the predator of Holling type. The term
d y

x of the above equation is called Leslie-Gower term, which
measures the loss in the predator population due to rarity (per
capita y/x) of its favorite food. In the case of severe scarcity,
y can switch over to other populations but its growth will be
limited by the fact that its most favorite food x is not available
in abundance. This situation can be taken care of by adding a
positive constant k to the denominator, see [4]. Recently, there
are several papers [5-9] on positive periodic solutions of the
predator-prey model. Now we consider the following system⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) = x(t)
[
r1(t) − b(t)x(t) − a1(t)y(t)

x(t) + k1

]
,

ẏ(t) = y(t)
[
r2(t) − a2(t)y(t − r(t))

x(t − r(t)) + k2

]
.

(1)
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In [10], by using Floquet theory of linear periodic impulsive
equation the authors have studied the dynamic behaviors
of the periodic predator-prey model without the deviating
argument. In [11], the authors studied the global stability
of the positive equilibrium when the delay is a constant in
the system (1). Time delay plays an important role in many
biological dynamical systems, being particularly relevant in
ecology, where time delays have been recognized to contribute
critically to the stable or unstable outcome of prey densities
due to predation. Therefore, it is interesting and important to
study the above delayed modified Leslie-Gower and Holling-
type-II schemes. As far as we know, there are few papers
for the existence of periodic solutions for above system with
deviating arguments.

Stimulated by this reason, in this paper we consider the exis-
tence of positive periodic solutions for the predator-prey model
(1) with modified Leslie-Gower Holling-type II schemes and
a deviating argument. We assume that x is the size of the
prey population, and y is the size of the predator population;
r1, r2, a1, a2, b are positive T -periodic continuous functions,
k1, k2 are positive constants with the ecology meaning as
follows,

r1: the growth rate of prey;
r2: the growth rate of predator;
a1: the maximum value which per capita reduction rate of

prey can attain;
a2: the maximum value which per capita reduction rate of

predator can attain;
b: the strength of competition among individuals of species;
k1: the extent to which environment provides protection to

prey;
k2: the extent to which environment provides protection to

predator.

r(t) is nonnegative, bounded and continuous function on
[0,+∞). If set r = sup{r(t) : t ∈ [0,+∞)}, obviously we
obtain r ∈ [0,+∞). Considering the application of model (1)
to population dynamic systems, we assume that all positive
solutions of model (1) satisfy the initial conditions as follows,{

x(θ) = ϕ(θ), θ ∈ [−r, 0], ϕ(0) = ϕ0 > 0,

y(θ) = ψ(θ), ψ ∈ [−r, 0], ψ(0) = ψ0 > 0.
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where ϕ and ψ are given nonnegative and bounded continuous
functions on [−r, 0].

The remainder of this paper is organized as follows. In the
following section some useful lemma and notations are given.
By using some analysis techniques and the coincidence degree
theorem, we estimate a priori bounds of positive periodic
solutions for system (1) in section 3. The significance of this
paper is that the conditions are easy to be verified.

II. LEMMA AND NOTATIONS

In order to present sufficient conditions for guaranteeing
the existence of positive periodic solutions for system (1), we
firstly introduce the coincidence degree theorem.

Let X and Y be two Banach spaces, L : DomL ⊂ X → Y

is linear map, and N : X → Y is continuous map. If
dim KerL = codim ImL < +∞ and ImL ∈ Y is closed,
then we call operator L a Fredholm operator with index
zero [12]. And if L is a Fredholm operator with index zero
and exist continuous projects P : X → X and Q : Y → Y

such that ImP = KerL, ImL = KerQ = Im(I − Q), then
L|DomL∩KerP : (I − P )X → ImL exists inverse function,
we set it as Kp. Assume that Ω ∈ X is any open set, if
QN(Ω) is bounded and Kp(I − Q)N(Ω) ∈ X is relative
compact, then we call that N ∈ Ω is L-compact. For ImQ

and KerL are isomorphism, there exists an isomorphism map
J : ImL → KerL.

Lemma 2.1.(See [12])(Coincidence degree theorem)
Let X and Y be two Banach spaces, L : Dom(L) ⊂ X → Y

be a Fredholm operator with index zero, Ω ⊂ Y be an open
bounded set, and N : Ω → X be L-compact on Ω. If all the
following conditions hold

[C1] Lx �= λNx, for x ∈ ∂Ω ∩ Dom(L), λ ∈ (0, 1);
[C2] Nx /∈ ImL, for x ∈ ∂Ω ∩ KerL;
[C3] deg{JQN, Ω∩KerL, 0} �= 0, where J : ImQ → KerL

is an isomorphism.

Then equation Lx = Nx has at least one solution on
Ω

⋂
Dom(L).

For convenience, we use the following notations. For a T -
periodic continuous function f , we denote

f =
1
T

∫ T

0

f(t) dt, fL = min
t∈[0,T ]

f(t),

fM = max
t∈[0,T ]

f(t), |f |0 = max
t∈[0,T ]

|f(t)|.

III. MAIN RESULT

In this section, we will establish some sufficient conditions
for the existence of positive T -periodic solutions for the
predator-prey model (1).

Theorem 3.1. Suppose that the following conditions are
satisfied

[D1]
[
k1 r1 − a1e

A5
]L

> 0, and
[D2] k1r1 − a1e

B2 > 0, where A5 and B2 are defined
in the proof of the theorem.

Then system (1) has at least one positive T-periodic solution.

Proof Let x(t) = eu(t), y(t) = ev(t), then from (1)
we have⎧⎪⎪⎨

⎪⎪⎩
u̇(t) = r1(t) − b(t)eu(t) − a1(t)

k1 + eu(t)
ev(t),

v̇(t) = r2(t) − a2(t)
k2 + eu(t−r(t))

ev(t−r(t)).

Let X = Y = {z(t) = (u(t), v(t))� ∈ C(R, R2) : z(t +
T ) ≡ z(t)} equipped with the norm

||z|| = ||(u(t), v(t))�|| = max
t∈[0,T ]

|u(t)| + max
t∈[0,T ]

|v(t)|,

then X and Y are Banach spaces. We define operators L, P

and Q as follows, respectively

L : DomL ∩ X → Y, Lz =
dz

dt
,

P (z) = z(0), Q(z) =
1
T

∫ T

0

z(t)dt,

where DomL = {z ∈ X : z(t) ∈ C1(R, R2)}, and define
N : X → Y by the form

Nz =

⎡
⎢⎢⎣

r1(t) − b(t)eu(t) − a1(t)
k1 + eu(t)

ev(t)

r2(t) − a2(t)
k2 + eu(t−r(t))

ev(t−r(t))

⎤
⎥⎥⎦

.

Then it follows that KerL = R2, ImL = {z ∈ Y :∫ T

0
z(t)dt = 0} is closed in Y . dimKerL = codimImL, and

P, Q are continuous projectors such that

ImP = KerL, KerQ = ImL = Im(I − Q),

thus L is a Fredholm mapping of index zero. Furthermore,
the generalized inverse (to L) KP : ImL → KerP ∩ DomL is
given by the following form

Kp(z) =
∫ t

0

z(s)ds − 1
T

∫ T

0

∫ t

0

z(s) ds dt.

Therefore,

QNz =

⎡
⎢⎢⎢⎣

1
T

∫ T

0

[
r1(s) − b(s)eu(s) − a1(s)

k1 + eu(s)
ev(s)

]
ds

1
T

∫ T

0

[
r2(s) − a2(s)

k2 + eu(s−r(s))
ev(s−r(s))

]
ds

⎤
⎥⎥⎥⎦
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and

Kp(I − Q)Nz

=

⎡
⎢⎢⎣

∫ t

0

[
r1(s) − b(s)eu(s) − a1(s)

k1 + eu(s)
ev(s)

]
ds

∫ t

0

[
r2(s) − a2(s)

k2 + eu(s−r(s))
ev(s−r(s))

]
ds

⎤
⎥⎥⎦

−

⎡
⎢⎢⎢⎣

1
T

∫ T

0

∫ t

0

[
r1(s) − b(s)eu(s) − a1(s)ev(s)

k1 + eu(s)

]
dsdt

1
T

∫ T

0

∫ t

0

[
r2(s) − a2(s)ev(s−r(s))

k2 + eu(s−r(s))

]
dsdt

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎣

T − 2t

2T

∫ t

0

[
r1(s) − b(s)eu(s) − a1(s)ev(s)

k1 + eu(s)

]
ds

T − 2t

2T

∫ t

0

[
r2(s) − a2(s)ev(s−r(s))

k2 + eu(s−r(s))

]
ds

⎤
⎥⎥⎦

.

Obviously, QN and KP (I − Q)N are continuous, it is not
difficult to know that KP (I−Q)N(Ω) is compact for any open
bounded set Ω ⊂ X by employing Arzela-Ascoli theorem.
Moreover, QN(Ω) is clearly bounded. So N is L-compact on
Ω.

Now we consider the operator equation

Lz = λNz, λ ∈ (0, 1).

We can get

u̇(t) = λ

(
r1(t) − b(t)eu(t) − a1(t)

k1 + eu(t)
ev(t)

)
, (2)

v̇(t) = λ

(
r2(t) − a2(t)

k2 + eu(t−r(t))
ev(t−r(t))

)
. (3)

Let

u(ξ1) = max
t∈[0,T ]

u(t), u(η1) = min
t∈[0,T ]

u(t),

v(ξ2) = max
t∈[0,T ]

v(t), v(η2) = min
t∈[0,T ]

v(t).

One easily know that

u̇(ξ1) = u̇(η1) = 0, v̇(ξ2) = v̇(η2) = 0.

Then from (2) and (3) we know

r1(ξ1) = b(ξ1)eu(ξ1) +
a1(ξ1)

k1 + eu(ξ1)
ev(ξ1). (4)

r2(ξ2) =
a2(ξ2)

k2 + eu(ξ2−r(ξ2))
ev(ξ2−r(ξ2)). (5)

We get from (4) that

eu(ξ1) � r1(ξ1)
b(ξ1)

�
[r1

b

]M

,

i.e.,

u(ξ1) � ln
[r1

b

]M

:= A1. (6)

Similarly, from (5) we have

ev(ξ2−r(ξ2)) � (k2 + eA1)r2(ξ2)
a2(ξ2)

� (k2 + eA1)
[

r2

a2

]M

,

i.e.,

v(ξ2 − r(ξ2)) � ln

[
(k2 + eA1)

[
r2

a2

]M
]

:= A2. (7)

On the other hand, it follows from (3) that

ev(η2−r(η2)) =
(k2 + eu(η2−r(η2)))r2(η2)

a2(η2)

� k2

[
r2

a2

]L

,

i.e.,

v(η2 − r(η2)) � ln k2

[
r2

a2

]L

:= A3 (8)

By the continuity of function v, (7) and (8), there is a constant
ξ∗ ∈ [0, T ] such that

|v(ξ∗)| ≤ max{|A2|, |A3|} := A4,

which yields that

|v|0 � |v(ξ∗)| +
∫ T

0

∣∣∣∣r2(t) − a2(t)
k2 + eu(t−r(t))

ev(t−r(t))

∣∣∣∣dt

� A4 + 2Tr2 := A5.
(9)

In addition, from (2) we can easily get that

r1(η1) − b(η1)eu(η1) � 1
k1

a1(η1)ev(η1),

i.e.,

u(η1) � ln
[
k1r1 − a1e

A5

k1b

]L

:= A6. (10)

Now by (6), (9) and (10) we obtain the priori bounds of
z(t), ∀ t ∈ [0, T ], that is

A6 � u(t) � A1 and − A5 � v(t) � A5, for t ∈ [0, T ].

Set M1 = max{|A1|, |A6|} and take M = M1 + A5 + ε,
where ε is a positive constant which is large enough such
that every solution (u∗, v∗)� (if the system has at least one
solution) of the following system of algebraic equation set⎧⎪⎪⎨

⎪⎪⎩
r1 − b eu − a1 ev

k1 + eu
= 0,

r2 − a2 ev

k2 + eu
= 0,

(11)

satisfies
|u∗| + |v∗| < M

and
max(|B1|, |B4|) + max(|B2|, |B3|) < M,

where

B1 = ln
r1

b
, B2 = ln

r2(k2 + eB1)
a2

,

B3 = ln
k2r2

a2
and B4 = ln

k1r1 − a1e
B2

k1b
.
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Now let Ω = {z ∈ X : ||z|| < M}, then Ω satisfies condition
[C1] in Lemma 2.1, ∀z = (u∗, v∗)� ∈ (∂Ω ∩ KerL), then
||z|| = M . If the system of algebraic equation set (11) has at
least one solution, we conclude that

QNz =

⎡
⎢⎢⎣

r1 − b eu − a1 ev

k1 + eu

r2 − a2 ev

k2 + eu

⎤
⎥⎥⎦ �= 0.

If the system of algebraic equation set (11) has no solution,
one can directly obtain QNz �= 0. Finally in order to prove
[C3] in Lemma 2.1 we define a homomorphism mapping

J : ImQ → KerL, Jz ≡ z,

and

H : DomX × [0, 1],

H(u, v, μ) =

⎡
⎢⎣

r1 − b eu

r2 − a2 ev

k2 + eu

⎤
⎥⎦ + μ

⎡
⎣ − a1 ev

k1 + eu

0

⎤
⎦ ,

where μ is a parameter. Now we claim that

H(u, v, μ) �= 0,∀ (u, v, μ) ∈ (∂Ω ∩ KerL) × [0, 1].

If not, then there exist z = (u, v)� ∈ ∂Ω ∩ KerL, μ ∈ [0, 1]
with |u| + |v| = M such that

H(u, v, μ) = 0,

i.e.,

r1 − b eu − μa1 ev

k1 + eu
= 0, (12)

r2 − a2 ev

k2 + eu
= 0. (13)

By (12) we easily see

u � ln
r1

b
= B1.

Similarly, from (13) we obtain

v � ln
r2(k2 + eB1)

a2
= B2

and

v � ln
k2r2

a2
= B3.

Also from (12) we can get

u � ln
k1r1 − a1e

B2

k1b
= B4.

Therefore,

|u| + |v| � max(|B1|, |B4|) + max(|B2|, |B3|) < M,

which leads to a contradiction. Hence by a direct calculation
we have

deg{JQN,Ω ∩ KerL, 0}
=deg{H(u, v, 1),Ω ∩ KerL, 0}
=deg{H(u, v, 0),Ω ∩ ker L, 0}
=deg

{
(r1 − b eu, r2 − a2 ev

k2 + eu
)�,Ω ∩ ker L, 0

}

>0.

So [C3] in Lemma 2.1 is satisfied. By applying Lemma 2.1, we
conclude that system (1) has at least one positive T -periodic
solution. The proof is now finished. �
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