
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

929

Abstract—Software reliability prediction gives a great

opportunity to measure the software failure rate at any point
throughout system test. A software reliability prediction model
provides with the technique for improving reliability. Software
reliability is very important factor for estimating overall system
reliability, which depends on the individual component reliabilities.
It differs from hardware reliability in that it reflects the design
perfection. Main reason of software reliability problems is high
complexity of software. Various approaches can be used to improve
the reliability of software. We focus on software reliability model in
this article, assuming that there is a time redundancy, the value of
which (the number of repeated transmission of basic blocks) can be
an optimization parameter. We consider given mathematical model
in the assumption that in the system may occur not only irreversible
failures, but also a failure that can be taken as self-repairing failures
that significantly affect the reliability and accuracy of information
transfer. Main task of the given paper is to find a time distribution
function (DF) of instructions sequence transmission, which consists
of random number of basic blocks. We consider the system software
unreliable; the time between adjacent failures has exponential
distribution.

Keywords—Exponential distribution, conditional mean time to
failure, distribution function, mathematical model, software
reliability.

I. INTRODUCTION
N important quality attribute of a computer system is the
degree to which it can be relied upon to perform its

intended function. Evaluation, prediction, and improvement of
this attribute have been of concern to designers and users of
computers from the early days of their evolution. Until the late
1960’s, attention was almost solely on the hardware related
performance of the system. In the early 1970’s, software also
became a matter of concern, primarily due to a continuing
increase in the cost of software relative to hardware, in both
the development and the operational phases of the system [1]-
[3].

First serious effort on software reliability started at Bell
Laboratories in 1964. Nonetheless, some of the important
works that appeared in the 1960s were by Haugk, Tsiang, and

L. Mirtskhulava is with the Department of Computer Sciences, Faculty of
Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University.
Tbilisi, Georgia, 0194 (Phone: +995 577 400144, e-mail:
lela.mirtskgulava@tsu.ge).

M. Khunjgurua is with IT Department, United Financial Corporation JSC.
Tbilisi, Georgia, 0112 (Phone: +995 555 252555, e-mail:
m.khunjgurua@gmail.com)

N. Lomineishvili is with the program development division, Ministry of
Economy and Sustainable Development of Georgia. Tbilisi, Georgia, 0108
(Phone: +995 558 366733, e-mail: nino.lomineisvili@gmail.com)

K. Bakuria is with the Department of Information Technologies, Georgian
Technical University, Tbilisi, Georgia. 01 (Phone: +995 599 702717, e-mail:
kobabak@yandex.ru)

Zimmerman, Floyd, Hudson, Barlow and Scheuer, London,
and Sauter [2].

Software is essentially an instrument for transforming a
discrete set of inputs into a discrete set of outputs. It
comprises of a set of coded statements whose function may be
to evaluate an expression and store the results in a temporary
or permanent location, decide which statement to execute
next, or to perform input/output operations [1].

It is well known that fixing a fault in a program becomes
increasingly expensive in later phases of software
development. It is much more cost effective to fix as many
faults as possible before releasing a program. Unfortunately,
because it becomes harder to detect a fault as the software
becomes more reliable, the cost of testing also increases [2],
[3]. Moreover, as the lines of code increase, the point, testing
is no longer cost-effective and the software has to be released.
It has also been observed that modular testing is a testing
effort required to fix a fault grows super-linearly [2]. Hence,
modular testing with fewer lines of code would significantly
reduce the overall effort required for testing.

Conventional approaches to software reliability growth
modeling are black-box based, i.e. the software is treated as a
black-box and its interactions with the external world are
modeled [4], [5]. Tests are generated from the specified
functional properties of the program based on its operational
profile [6]-[8]. The internal structure of the program is not
taken into account while generating the test cases. A
stochastic model is calibrated using the failure data collected
during the functional testing of the software, and this model is
then used to predict the reliability of the software, and to
determine when to stop testing. Thus the black-box approach
relies on the assumption that the software is tested as per its
operational profile.

Software reliability is affected by many factors during the
life cycle of a software product, from the definition of the
product to the operation and maintenance. All the activities
within the software development life cycle are prone to
introduce faults [9]-[11].

II. SOFTWARE RELIABILITY METRICS
• Reliability metrics are units of measure for system

reliability
• System reliability is measured by counting the number of

operational failures and relating these to demands made
on the system at the time of failure

• A long-term measurement program is required to assess
the reliability of critical systems [11]-[14].

Software reliability has been defined as the probability of a
software product to insure operating without failure in a

Software Reliability Prediction Model Analysis
L. Mirtskhulava, M. Khunjgurua, N. Lomineishvili, K. Bakuria

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

930

specified environment, for a given amount of time. Based on
this definition, software reliability prediction has been defined
as a forecast of how reliable a software product will be in the
future, based on data available so far. Software reliability
tends to improve over testing and operating time, due to errors
being removed. This is the reason for the models being named
reliability growth models [15]-[17].

For software products, continuous availability is necessary,
and reliability is an important component of this. Even so,
there can be defects in software products that cause system
failure. In order to avoid these situations and to decrease
support expenses, companies want to deliver to the client’s
reliable software. Developing reliable software is one of the
hardest problems of the IT industry. Pressure brought by
schedule, resource limitations and unrealistic demands can
negatively impact the reliability. Knowing the reliability of a
delivered product is a difficult issue. After reaching the
clients, the reliability is indicated by the feedback coming
from them, under the form of reports, complaints, or
compliments. But, by this time, it is too late to change
anything: that is why companies selling software want to
know ahead of time the product reliability. Reliability models
try to do this.

The most important cause of defects in software is bugs,
which means incorrect implementations. Even the most
talented programmers produce software with defects. The
software products complexity is too big, at this moment, to be
handled by people. With all the progress in programming
techniques, such as splitting the programs in small modules,
using evolved programming languages and complex
developing tools, results are still far away from perfection,
and the programming productivity has not increased
significantly in the past two decades.

The most unpredictable defects in software manifest only
after a specific combination of values for input data or certain
external events that were not predicted by the programmer.
Such combinations appear with low probability during normal
testing procedures, so they often make it to the operating
phase. Also, new versions are built on older versions, fixing
defects found and adding new functionality. Even so, the
process of fixing defects often introduces new defects,
because the effects of a fix have unpredictable consequences.
Defect prediction deals with estimating the number of defects.
Although other terms have been used to describe it, such as
estimation, fault estimation, we should clarify the difference
between the two notions. Defect estimation has been defined
by Nayak as a process of identifying different types of defects
of a software product, aiming to reach high quality. However,
defect prediction helps in estimating the quality of a product
before it is released [2].

III. SOFTWARE REQUIREMENTS

A. Functional and Nonfunctional Requirements
Functional requirements describe the functions that the

software is to execute; for example, formatting some text or

modulating a signal. They are sometimes known as
capabilities. Nonfunctional requirements are the ones that act
to constrain the solution. Nonfunctional requirements are
sometimes known as constraints or quality requirements. They
can be further classified according to whether they are
performance requirements, maintainability requirements,
safety requirements, reliability requirements, or one of many
other types of software requirements. These topics are also
discussed in the Software Quality KA [8].

B. Quantifiable Requirements
Software requirements should be stated as clearly and as

unambiguously as possible, and, where appropriate,
quantitatively. It is important to avoid vague and unverifiable
requirements which depend for their interpretation on
subjective judgment (“the software shall be reliable”; “the
software shall be user-friendly”). This is particularly
important for nonfunctional requirements. Two examples of
quantified requirements are the following: a call center’s
software must increase the center’s throughput by 20%; and a
system shall have a probability of generating a fatal error
during any hour of operation of less than 1 * 10−8. The
throughput requirement is at a very high level and will need to
be used to derive a number of detailed requirements. The
reliability requirement will tightly constrain the system
architecture.

C. System Requirements and Software Requirements
In this topic, system means “an interacting combination of

elements to accomplish a defined objective. These include
hardware, software, firmware, people, information,
techniques, facilities, services, and other support elements.”
as defined by the International Council on Systems
Engineering (INCOSE00). System requirements are the
requirements for the system as a whole. In a system containing
software components, software requirements are derived from
system requirements. The literature on requirements
sometimes calls system requirements “user requirements.” The
Guide defines “user requirements” in a restricted way as the
requirements of the system’s customers or end-users. System
requirements, by contrast, encompass user requirements,
requirements of other stakeholders (such as regulatory
authorities), and requirements without an identifiable human
source.

Reliability is defined as the probability that a device will
perform its required function under stated conditions for a
specific period of time. Predicting with some degree of
confidence is very dependent on correctly defining a number
of parameters. For instance, choosing the distribution that
matches the data is of primary importance. If a correct
distribution is not chosen, the results will not be reliable. The
confidence, which depends on the sample size, must be
adequate to make correct decisions. Individual component
failure rates must be based on a large enough population and
relevant to truly reflect present day normal usages. There are
empirical considerations, such as determining the slope of the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

931

failure rate and calculating the activation energy, as well as
environmental factors, such as temperature, humidity, and
vibration. Lastly, there are electrical stressors such as voltage
and current.

IV. RELIABILITY DEMONSTRATION TESTING
A reliability demonstration test is a test to determine if a

component or system has achieved a specified level of
reliability. Typically, a test plan specifies a test environment,
operational profile, test duration and the number of
permissible failures. The system or component is then
operated according to the plan and the number of observed
failures recorded. The component is rejected if the number of
observed failures is above the number of permissible failures
[15].

V. MODEL DESCRIPTION
The overall system reliability can be estimated from the

individual component reliabilities by modelling the
interactions between the components using one or more of the
building blocks.

In order to estimate the reliability of software, we consider
a mathematical model in the assumption that in the system
may occur not only irreversible failures, but also a failure that
can be taken as self-repairing failures that significantly affect
the reliability and accuracy of information transfer. We focus
on software reliability model in this article assuming that there
is a time redundancy, the value of which (the number of
repeated transmission of information) is a parameter that
allows to optimize.

We introduce the following notations. Assume:
n is the number of the blocks. A sequence of instructions

forms a basic block if: a) the instruction in each
position dominates, or always executes before, all those in
later positions, and b) no other instruction executes between
two instructions in the sequence.
Фj(t) - the probability distribution function of time of the

instruction sequences transmission, which consists of n basic
blocks if transmission is started from j-th block (j n= 1,);

Fj(u)- the distribution function of transmitted block length;
r-1-the quantity of basic block transmission repetition

before repair
α-error rate
G(υ)- the distribution function of recovery.
Main task of the given paper is to find a time distribution

function (DF) of instructions sequence transmission, which
consists of random number of basic blocks.

When creating the given model, we used the following
assumptions (A):

We consider the system software unreliable; the time
between adjacent failures has exponential distribution;

Block Coverage: It is the Number of the basic blocks that
have been executed by the test cases. A basic block, or simply
a block, is a sequence of instructions that. The instructions in
any basic block are either executed all together, or not at all.

Where the block length distribution low has the form:

Fj(u)=1(t-τj), j n= 1, , where τj - time of transmission of j-th
block;

Control of correctness of information is made after the
reception of the next block and the time spent on control is
considered negligible.

Under assumptions (A) in case of failure origin block
transmission is repeated until receiving accurate block but no
more than r-1 times. System need to be repaired after r - times
repetition. The block transmission is renewed after the repair
from distorted block repetition.

System software model, starting with j-th block
transmission is described by the following integral equations:

() () ()

() ()ut
i
j

ujeu
t

jdF

utj

ujeu
t

jdFt
i
j

−
+

Φ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−∫+

+−+Φ
−

∫=Φ

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

1
1

0

1
1

0
α

α

 (1)

() () ()

() () ()υυ
α

α

−−Φ∫
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−∫+

+−+Φ
−

∫=
−

Φ
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

ut
ut
dG

ujeu
t

jdF

utj

ujeu
t

jdFt
r
j

)1(
1

0
1

0

1
1

0

1
 (2)

where j n= 1,

The boundary condition has the following form:

()Φn t+ =1 1 (3)

Taking the Laplace-Stieltjes transform to (1), (2) и (3), we

obtain:

() ()

() ();1

1
1

si
jjsjfsjf

sjjsjfsi
j

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

+Φ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛ +−+

++Φ⎟
⎠
⎞⎜

⎝
⎛ +=Φ

α

α (4)

() ()

() () ()ssgjsjfsjf

sjjsjfs
r
j

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

Φ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛ +−+

++Φ⎟
⎠
⎞⎜

⎝
⎛ +=

−
Φ

1
1

1
1

1

α

α

 (5)

() ;1
1 s

sn =+Φ

Denote:

() ()f j s e stdFj t= −∞
∫
0

() () () ()Φ Φj
i st

j
is e t dt= −

∞

∫
0

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

932

() ()g s e stdG t= −∞
∫
0

;

j n= 1, ; i r= −1 2,

Let αj=αi=α; Fj(u)=Fi(u)=F(u) and for j=n:

[])()()()()()(SsgsfSf
S

sfS
(1)
1

1)-(r
n Φ+−+

+
=Φ αα

for i=r-2:

[]Фn
(r-2)

Фn
(r-1)

() () () () ()S f s
S

f S f s S=
+

+ − +
α α (6)

In (6) instead of Фn
(r-1) ()S substituting its value, we

obtain:

[]

[] ;)()()()()(

)()()()(

⎭
⎬
⎫

⎩
⎨
⎧

Φ+−+
+

×

×+−+
+

=Φ

SsgsfSf
S

sf

sfSf
S

sfS

(1)
1

2)-(r
n

αα

αα (7)

For i=r-3

()

[]);()(
3

)()(

2
)()()()(1

)()(

SsgsfSf

sfSfsfSf

S
sfS

(1)
1

3)-(r
n

Φ+−+

+⎥⎦
⎤

⎢⎣
⎡ +−++−+

+
+

=Φ

α

αα

α

 (8)

Finally:

()
[]

[]);()()()(

1)()(

1)()()(
)(

Ssg
ir

sfSf

sfSfS

ir
sfSfsf

S

(1)
1

(i)
n

Φ
−

+−+

+
−+−

⎭
⎬
⎫

⎩
⎨
⎧ −

−
+−+

=Φ

α

α

αα
 (9)

For j=n-1

[]Фn-1
(i)

Фn
(1)

Фn-1
(i+1)

() () () () () ();S f s S f S f s S= + + − +α α (10)

[]Фn-1
(r-1)

Фn
(1)

Ф1
(1)

() () () () () () ();S f s S f S f s g S S= + + − +α α (11)

For i=r-2

[]
[]

[]
[]);()(

2
)()(

)()(1)()(

)()()()()()(

)()()()()(

SSgsfSf

sfSfSsf

SSgsfSfSsf

sfSfSsfS

(1)
1

(1)
n

(1)
1

(1)
n

(1)
n

2)-(r
1-n

Φ+−+

++−−Φ+=

=
⎭
⎬
⎫

⎩
⎨
⎧ Φ+−+Φ+×

×+−+Φ+=Φ

α

αα

αα

αα

 (12)

as a result, we obtain:
()

[]
[]);()()()()(

1)()(

1)()()(
)(

Ssg
ir

sfSfS

sfSfS

ir
sfSfsf

S

(1)
1

(1)
n

(i)
1-n

Φ
−

+−+Φ×

×
−+−

⎭
⎬
⎫

⎩
⎨
⎧ −

−
+−+

=Φ

α

α

αα

j n= 1, ; i r= −1 1,

For i=1

),...()()()()()1(

1

)1(

1
sSbSSaS

j ΦΦ +=Φ
+

(1)
j

 (13)

where

()
a S

f s f S f s
r

f S f s
()

() () ()

() ()
;=

+ − +
−

−
⎧
⎨
⎩

⎫
⎬
⎭

− + −

α α

α

1
1

1
 (14)

[]b S f S f s
r

g s() () () ();= − +
−

α
1 (15)

where

f(0)=1; g(0)=1; j n= 1,

first-order difference equation (8) is solved by successive
substitution:
for j=n

Фn
(1)

Ф1
(1)

() () () ();S a s
S

b s S= + (16)

for j=n-1

[]Фn-1
(1)

Ф1
(1)

() () () () ();S a s
S

b s a s S= + +
2

1 (17)

under j=n-2

[]Фn-2
(1)

Ф1
(1)

() () () () () ();S a s
S

b s a s a s S= + + +
3

1 2 (18)

Фn-2
(1)

Ф1
(1)

() () ()
()

() ()...S a j s
S

a j s
a s

b s S=
+

+
+ −

−

1 1 1
1

under j=n-1, we have:

Ф1
(1)

Ф1
(1)

() () ()
()

() ()S an s
S

an s
a s

b s S= +
−

−
1

1
 (19)

Finally, we obtain:

() () () ()[]
()() () ()

Φ1
1 1

1 1
s

an s a s

s a s an s b s
=

−

− − −⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 (20)

Conditional mean time to failure:

() ()
() ()

()() ()() ()

11 1 1
1 0 0

1 1

na s a s
T s sm s sna s a s b s

⎡ ⎤−⎣ ⎦− = Φ == =⎡ ⎤− − −⎢ ⎥⎣ ⎦

(21)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

933

where

() ()a b0 1 0= − ; () ()[]b f
r

0 1
1

= −
−

α

After solving (12):

()[] ()[]
() ()

()
3;1

0

1

0

11

≥
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−×

×
−−−+

=−

rna

bf
bfrfb

mT
α

τατατ â (23)

where

⎟
⎠
⎞⎜

⎝
⎛′−= 0grτ ; ()τb f= − ′ 0

VI. CONCLUSION
In this paper, we have investigated a queuing-based model

for software analysis, which allows investigating the problem
of determination of the probability characteristic of time of the
blocks performance with account of failure origin. We
focused on software reliability model assuming that there is a
time redundancy for recovery of the system, the value of
which (the number of repeated transmission of the sequences)
is a parameter that allows to optimize.

We have found a time distribution function (DF) of
instructions sequence transmission, which consists of random
number of basic blocks.

VII. BACKGROUND AND RELATED WORK
This section provides a brief overview of relevant

background and related studies in the analysis of software
reliability prediction.

Dhillon in his book “Applied Reliability and Quality:
Fundamentals, Methods and procedures”, Chapter 7 presents
some aspects of software reliability evaluation models. In this
chapter two mathematical models: Mills and Musa models are
presented. Firs model was developed by arguing that the faults
remaining in a given software program can be estimated
through a seeding process that makes an assumption of a
homogeneous distribution of a representative class of faults.
Thus, both seeded and unseeded faults are identified during
reviews or testing and the discovery of seeded and unseeded
faults permits an assessment of remaining faults for the fault
type in question. Second model is based on the premise that
reliability assessments in the time domain can only be based
upon actual or real execution time, as opposed to elapsed or
calendar time, because only during execution a software
program really becomes exposed to failure-provoking stress.
Some of the important assumptions pertaining to this model
are as follows: Failure intervals follow a Poisson distribution
and are statistically independent; failure rate is proportional to
the remaining defects; execution times between failures are
piecewise exponentially distributed [1]-[10].

There is a definite need for reliability and quality
professionals working in diverse areas to know about each
other’s work activities because this may help them, directly or
indirectly, to perform their tasks more effectively. At present
to the best of author's knowledge, there is no book that covers
both applied reliability and quality within its framework. More
specifically, at present to gain knowledge of each other’s
specialties, these specialists must study various books,
articles, or reports on each of the areas in question. This
approach is time consuming and rather difficult because of the
specialized nature of the material involved [1].

My previous work is devoted to study and evaluation of
data transmission through unreliable wireless channel,
subjected to distortions on the physical layer. The time
between neighboring failures is distributed according to
Erlang ratio. The method of enhance of reliability of
transmission through unreliable wireless channel (WCH) is
suggested [18]. My previous work describes the study of
special Erlang distribution model in wireless networks and
mobile computing. Demonstrates the applicability of the
Erlang distribution, where queueing model is considered as
wireless channel where the interarrival times between failures
have the Erlang Distribution [19]. In my previous works
Modeling based approach is described for analyzing and
evaluating Internet server system reliability and availability in
this paper. In the given model the states are defined by the
different kinds of failures of the server system. The Markov
model evaluates the probability of jumping from one known
state into the next logical state. The probabilities between
transitions of the states are a function of the failure rates of the
transitional probabilities from one to another state. The
number of first-order differential equations is equal the
number of the states of the servers. First-order differential
equations are developed by describing the probability of being
in each state in terms of states of the model [20].

REFERENCES
[1] B. S. Dhillon, Applied Reliability and Quality: Fundamentals, Methods

and Procedures. © Springer-Verlag London Limited 2007. P. 252
[2] Schick, G.J., Wolverton, R.W., A Analysis of Competing Software

Reliability Models, IEEE Trans. on Software Engineering, Vol. 4, 1978,
pp. 140-145.

[3] Dhillon, B.S., Reliability in Computer System Design, Ablex Publishing,
Norwood, New Jersey, 1987.

[4] Dhillon, B.S., Reliability Engineering in Systems Design and Operation,
Van Nostrand Reinhold Company, New York, 1983.

[5] Dhillon, B.S., Design Reliability: Fundamentals and Applications, CRC
Press, Boca Raton, Florida, 1999.

[6] Pecht, M., Editor, Product Reliability, Maintainability, and
Supportability Handbook, CRC Press, Boca Raton, Florida, 1995.

[7] Musa, J.D., Iannino, A., Okumoto, K., Software Reliability, McGraw-
Hill Book Company, New York, 1987.

[8] Sukert, A.N., An Investigation of Software Reliability Models,
Proceedings of the Annual Reliability and Maintainability Symposium,
1977, pp. 478-484.

[9] Mills, H.D., On the Statistical Validation of Computer Programs, Report
No. 72-6015, 1972. IBM Federal Systems Division, Gaithersburg,
Maryland, U.S.A.

[10] Musa, J.D., A Theory of Software Reliability and Its Applications, IEEE
Transactions on Software Engineering, Vol. 1, 1975, pp. 312-327.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

934

[11] Dunn, R., Ullman, R., Quality Assurance for Computer Software,
McGraw-Hill Book Company, New York, 1982.

[12] Jim Darroch., Norman McWhirter. Demonstrating Software Reliability:
A White Paper. Emerson Network Power™.

[13] Jim Darroch. Demonstrating Software Reliability: A White Paper. A
White Paper from Emerson Network Power™ Embedded Computing.

[14] Kline, M.B., Software and Hardware Reliability and Maintainability:
What are the Differences? Proceedings of the Annual Reliability and
Maintainability Symposium, 1980, pp. 179-185.

[15] Grant Ireson, W., Coombs, C.F., Moss, R.Y., Handbook of Reliability
Engineering and Management, McGraw Hill Book Company, New
York, 1996.

[16] Dhillon, B.S., Reliability Engineering in Systems Design and Operation,
Van Nostrand Reinhold Company, New York, 1983.

[17] Dhillon, B.S., Kirmizi, F., Probabilistic Safety Analysis of Maintainable
Systems, Journal of Quality in Maintenance Engineering, Vol. 9, No. 3,
2003, pp. 303-320.

[18] Lela Mirtskhulava, Mathematical Model of Prediction of Reliability of
Wireless Communication Networks. Cambridge, United Kingdom 10-12
April 2013. UKSim-AMSS 15th International Conference on Computer
Modeling and Simulation. IEEE transactions. pp. 677- 681.

[19] L.Mirtskhulava, Member, IAENG, G. Gugunashvili, M. Kiknadze,
Modeling of Wireless Networks as Queuing System. Proceedings of the
World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA.

[20] Lela Mirtskhulava, Revaz Kakubava, Natela Ananiashvili and Giorgi
Gugunashvili. Internet Reliability and Avaliability Analysis Using
Markov Method. 2014 UKSim-AMSS 16th International Conference on
Computer Modelling and Simulation. Cambridge, UK. 26-28 April 2014.

