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Abstract—It is known that the heart interacts with and adapts to 

its venous and arterial loading conditions. Various experimental 

studies and modeling approaches have been developed to investigate 

the underlying mechanisms. This paper presents a model of the left 

ventricle derived based on nonlinear stress-length myocardial 

characteristics integrated over truncated ellipsoidal geometry, and 

second-order dynamic mechanism for the excitation-contraction 

coupling system. The results of the model presented here describe the 

effects of the viscoelastic damping element of the electromechanical 

coupling system on the hemodynamic response. Different heart rates 

are considered to study the pacing effects on the performance of the 

left-ventricle against constant preload and afterload conditions under 

various damping conditions. The results indicate that the pacing 

process of the left ventricle has to take into account, among other 

things, the viscoelastic damping conditions of the myofilament 

excitation-contraction process.

Keywords—Myocardial sarcomere, cardiac pump, excitation-

contraction coupling, viscoelasicity

I. INTRODUCTION

IFFERENT approaches have been followed in the 

modeling of the left-ventricular pump. Some of these 

approaches are: lumped time-varying elastance [1], finite 

element [2], and geometric integration of muscle 

characteristics [3], [4], [5]. The original model of our work 

[3], [4] has been built from serial and parallel arrangement of 

sarcomere units. Each sarcomere unit consists of parallel 

active and passive elements that were described by nonlinear 

stress-length functions. The myocardial functions were 

integrated over a cylindrical geometry of the structure to 

obtain the global left ventricular function. Time-variation was 

introduced via a lumped periodic excitation-contraction 

coupling mechanism of the myocardial fibers. The 

cardiovascular lumped system consisting of the left ventricular 

model with its venous preload and arterial load was used to 

study left ventricular hemodynamics, energetics, and 

physiological hypertrophy for varying chronic load conditions. 

II. DERIVATION OF THE MODIFIED MODEL 

In this work, a new relationship between ventricular 

pressure and volume is derived from myocardial properties 

integrated over a truncated ellipsoidal geometry. The 

myocardial sarcomere is the essential force producing element 

in the heart. It consists of a parallel arrangement of actin and 

myosin fibrils (Fig.1). The Ca++ concentration ([Ca++]) 

controls the longitudinal force produced by these fibers in the 

process known as the excitation-contraction coupling 

mechanism [6]. 

Fig. 1 Model of the cardiac sarcomere unit. Upper drawing: 

functional structure consisting of the actin-myosin sliding filaments 

and an elastic element due to elastin and collagen connective mesh. 

Lower drawing represents a rectangular volume unit which embodies 

the sarcomere structure and prescribes the dimensions of the element 

Experiments have been performed to obtain the function 

of the sarcomere. For example, the time development of 

muscle force (Fig.2a) originates from the periodic increase 

(release) and decrease (uptake) in [Ca++]. The peak muscle 

force is found to increase with increasing muscle length 

(Fig.2b) i.e., the Starling law for muscle [7]. A maximum 

force occurs at an optimal length, thought to be the position of 

optimal fiber overlap. 

The model of the sarcomere unit consists of two basic 

elements: active contractile and passive elastic elements, 

arranged in parallel (Fig.1). The active element provides the 

force-generating mechanism, while the passive component 

imparts the stiffness to the sarcomere. The level of force 

produced by the contractile unit model is determined by the 

excitation-contraction coupling mechanism, which is a 

function of the time-varying [Ca++] and muscle contractility. 
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This function is responsible for the shape of the isometric 

muscle force curve (Fig.2a). This is indicated in Figure 1 by a 

time-varying level of [Ca++] in a volume surrounding the 

sarcomere unit. The level of the force produced is modulated 

by the length of the contractile unit at any given time, 

according to the Starling law (Fig.2b). 

Fig. 2 (a) The time dependent isometric myocardial force (Modified 

from [11]. (b) Active and passive cardiac muscle force-length curves 

[Modified from [12]. 

The sarcomere model can be transformed into its proper 

mathematical form. Normalization of the measured tension by 

the peak isometric tension yields the time-dependent normal 

muscle stress, EC(t), known as the excitation-contraction 

function. The time-varying shape of the EC(t) function is 

assumed to be independent of length. 

For isovolumic beats, it has been found that the time-

dependence of ventricular pressure can be represented by a 

sinusoid [8]. However, this function was not apparently 

sufficient, and an exponential decay function, for example, has 

been added to the sinusoidal function [13]. 

In the current work, the excitation-contraction function is 

derived using a second order dynamic system approach (fig. 

3a). The system consists of [Ca++] activation-deactivation 

periodic function, Ein(t), that serves as an input (stimulus) to a 

second order electromechanical system. The stimulus is 

represented by different constant activation and deactivation 

rates. The response of the system is a normalized excitation-

contraction function, EC(t). The second order system is 

conceived from the process of filament mass acceleration in 

the viscoelastic medium of the contractile element (fig. 3b). 

The Starling stress-length relationship of a muscle unit 

(Fig.2b) is defined as the general function H{l–la}, where l is 

the actual muscle length and la is the minimal muscle length at 

which the active stress drops to zero. The active stress, a{t,

l}, developed by a given myofibril can be written as a product 

of the excitation-contraction function and the modulating Hill 

relation, 

a{t, l} = EC(t)·H{l–la}           (1)

Fig. 3 (a) Second-order dynamic system used to model the excitation-

contraction process. (b) Electrochemical-mechanical structure used to 

derive the excitation-contraction function. The parameters used 

represent the following:  relative change in sarcomere length; k,

 viscoelastic coefficients of the sarcomere inner structure; km

elastic coefficient of the filament membrane; and Ein(t)  [Ca++]

represents the electrochemical stimulation-calcium flow process. 

The functions in (Eq.1) have been measured for different 

animals and are available in the literature [9]. The most 

appropriate relationship for the active stress-length function of 

the muscle is not clear, since linearity has been mostly applied. 

However, muscle physiology dictates that nonlinear function 

must apply. For lack of the true stress-length function, a 

second-order polynomial was assumed for H{l la} to proceed 

with the analysis. 

H{l–la } = a(l–la)
2
 + b(l–la)          (2)

where a and b are constants that can be evaluated from muscle 

data. 

The stress developed by the passive fibers of the 

sarcomere unit is, by definition, independent of time. This 

passive stress can be measured when the active elements are 

not stimulated (Fig.2b) and has been found to be primarily a 

function of the muscle length. Thus, the passive sarcomere 

unit behaves as a spring with a nonlinear elastic response and 

is defined by a general function K{l–lo}, where lo is the 

resting length or zero-stress length. This function can be 

analytically represented, or replaced with the proper muscle 

data obtained from the literature. 

The passive stretch of muscle has been shown to follow 

an exponential stress-length relationship ([10]. In our work, a 

nonlinear muscle stress-length law was incorporated, where 
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K{l–lo} has been represented by an exponential function in 

terms of the length l.

K{l–lo} = {exp[ (l–lo)] – 1}          (3)

where,  and  are empirical constants determined from 

muscle data. 

Finally, the total stress developed by the contractile unit 

model can be obtained as 

{t, l} = EC(t)·H{l–la} + K{l–lo}           (4)

A 3-D array of myocardial units that has been previously 

arranged into a cylindrical geometry [3], [4] is now replaced 

by a truncated ellipsoidal geometry chosen to represent the 

structure of the ventricle (Fig.4) in the derivation of the new 

nonlinear pressure-volume function. 

Fig.  4  A truncated ellipsoid, representing the shape of the left 

ventricle, where “a” is the major semi-axis, “b” is minor semi-axis, 

and “ R1” and “ R2” are the longitudinal and circumferential stresses, 

respectively. 

By combining geometric functions with stress-length and 

stress-pressure relationships, the global left-ventricular 

pressure-volume is obtained, i.e., 

P(t) = Pg(t, V) + Pc(V)           (5)

In equation 5, Pg(t, V) and Pc(V) represent the nonlinear active 

and passive pressure-volume characteristics of the left 

ventricle, respectively. 

Fig. 5 Prototype model of the cardiovascular system. The left 

ventricle ellipsoid model is connected to the preload and the afterload 

models of the cardiovascular system. Here, 
aoP  is the value of the 

mean aortic pressure to which the left ventricle is adjusting (not 

implemented in this paper). 

In our model, the lumped left ventricle-systemic 

circulation consists of three compartments: venous preload, 

left ventricle, and arterial load. The left ventricle is the central 

compartment of this system. It receives blood from the preload 

compartment during the filling phase and pumps it to the 

arterial load during the contraction phase. This pump has the 

characteristics described earlier. In the prototype model (Fig. 

5), the left ventricle is shown as an ellipsoid connected to the 

preload and arterial load models. In the equivalent analog 

circuit (Fig.6), the left ventricle is represented by the active 

pressure (voltage) source, Pg(t, V), in series with the passive 

elastic element, Pc(V), that were derived earlier. 

The actual physiological preload to the left ventricle has 

been lumped, since the interaction among its various 

compartments is not a subject of this work. This lumped 

preload system is represented in the physical prototype model 

(Fig.5) by a filling reservoir connected to the left ventricle via 

a resistive tube. The pressure of the fluid in the filling 

reservoir represents the mean filling pressure, Pp, of the left 

ventricle. The resistance of the filling tube, Rp, represents the 

lumped value of the flow resistance of the pulmonary venous 

return and inflow tract. 

Fig. 6 Analog circuit representing the proposed model of the left 

ventricle connected to the preload and afterload counterparts of the 

cardiovascular system (see text for details). 

The arterial load system represents the arterial system, 

from the root aorta up to systemic vasculature. In the 

prototype and analog equivalent circuit (Figs. 5 and 6), the 

arterial load is represented by the modified Windkessel model 

consisting of the impedance at the root aorta, Zo, the total 

systemic compliance, Cs, and the total peripheral resistance, 

Rs. The system equations obtained from the analog model 

(Fig. 6) are: 

t,C,P,P,Pf
dt

dP
vsvp

c
1           (6) 

t,C,P,P,Pf
dt

dP
vsvp

s
2            (7)
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Here, Rmv and Rav represent valve resistances, which are 

functions of the pressure gradient across them. The system 

response is obtained by numerical computational technique, 

using Newton-Raphson root-solving and fourth-order Runge-

Kutta integration algorithms. Thus, the instantaneous values of 

the ventricular volume and pressure, and systemic pressure 

can be determined. Then, the corresponding mitral flow (Qm),

aortic flow (Qao), aortic pressure (Pao), stroke volume (SV), 

end-diastolic volume (EDV), end-systolic volume (ESV), 

cardiac output (CO), and ejection fraction (EF) are computed. 

III. RESULTS

The effects of the viscoelastic damping conditions on the 

hemodynamic response of paced left ventricle are examined 

with this model. The hemodynamic response of the modified 

excitation-contraction system is shown below for a range of 

damping ratio,  (zeta) values and fixed heart rate. 

The pressure and volume waveforms obtained from the 

model are shown in Figure 7, with the left-ventricular P-V 

loops. The results indicate that the damping element of the 

electromechanical excitation-contraction process has 

significant effects on the pressure and volume waveforms. 

Low values of the damping ratio, , lead to very fast blood 

ejection and oscillation in the LV systolic pressure. The 

diastolic phase is also affected by low values of , where  

pressure oscillations and phase filling of different rates are 

observed. As the damping ratio increases, the oscillations in 

systolic pressure disappear, while the ejection rate becomes 

slower, extending a little longer in time, with slow ejection 

rate occurring toward the end of the ejection interval. As the 

damping ratio is further increased, the isovolumic contraction 

interval increases, leading to a decrease of the end-diastolic 

volume under constant rate of left-ventricular pacing 

conditions. 

The effects on the pressure and volume waveforms are 

reflected onto the pressure-volume loop. As the viscoelastic 

damping ratio is increased, the P-V loop is reduced with lower 

end-diastolic volume and lower pressure during ejection. 

However, it can be observed that the end-diastolic volume did 

not change significantly for  between 0.3 and 1.1. Also, the 

ejection at lower values of  occurs at a faster rate compared 

to that at higher values of . A reduced P-V loop area suggests 

lower work performed by the left ventricle. It is important to 

indicate here that this change in the value of  is applied at a 

constant heart rate (HR) value of 75 beats/min and without 

any compensation mechanism. In the actual cardiovascular 

system, the effect of the viscoelastic damping element would 

interact with short-term and long-term regulation and 

compensation mechanisms. 

In Figure 8, the effects of  are examined for different 

values of HR. In general, the effects of increased value of 

appear to be more intensified at higher HR levels. The 

hemodynamic response variables shown are end-diastolic 

volume (EDV), ejection fraction (EF), cardiac output (CO), 

and mean systemic pressure (MAP). 
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Damping Ratio Effect on End-Diastolic Volume
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Fig. 8 Hemodynamic response variable variations with variation of 

damping ratio in the range 0.1 to 2.3 

The EDV curves (Fig.8a) indicate that at high HR and 

high values of , the EDV is significantly reduced. This 

reduction cannot be attributed to HR alone or  alone. In fact, 

at low HR values (between 50 and 60 beats/min), EDV is 

relatively independent of . And over some range of  (0.4 to 

0.8 for the case here), different HR values result in very small 

changes in EDV. High values of HR imply less time for 

filling, yet this phenomenon is intensified at high viscoelastic 

damping ratio conditions. 

While a  range exists over which HR-induced variations 

in EDV are not significant, this is not the case for SV (Fig.8b) 

which seems to be highly affected by the variations of  and 

HR. At low HR values the SV undergoes a small decrease 

with . The results show that the slope of decrease in SV with 

 gets larger at higher HR values. It can be observed also that 

at high HR and large damping, the decrease in SV starts to 

take a sharper drop. 

The combined effects of HR and  on the EDV and SV 

extend onto the EF or the ratio of SV over EDV. In general, 

EF decreases with . The decrease is small at low HR levels, 

and it becomes more significant at higher levels of HR. The 

small increase in EDV at low range of  combined with the 

decrease in SV results in decrease of EF (Fig.8c). On the other 

hand, the EDV drops significantly in the upper range of  at 

high HR values, whereas the SV drop over this range is rather 

linear. This is reflected in the observed increase in EF at the 

upper range of  for the high HR values.  

Now, while the SV is generally lower at high HR, the 

reduction in SV is compensated for by the HR when it comes 

to the estimation of CO (Fig.8d). Thus the CO levels are 

generally higher at high HR values. In general, the CO 

decrease over the range of  becomes more significant as HR 

level is increased. It can be observed that as the viscous 

damping gets larger, the HR compensation becomes less 

effective in indication of the higher energy losses and lower 

output, therefore lower efficiency. 

The variations in CO over the range of  and at different 

HR levels have high degree of correlation with those in the 

MAP (Fig.8e). This shows that, while the model is highly 

nonlinear and pulsatile, the well known relationship among 
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MAP, CO, and total peripheral resistance (TPR), kept fixed in 

this case, is still holding here, i.e., 

MAP (mmHg) = CO (mL/sec)  TPR (mmHg·sec/mL). 

In fact, the TPR is calculated for each value of zeta at different 

HR conditions. The results are shown in Fig.9. The actual 

value of systemic resistance used in the model simulation is 

1.10 mmHg·sec/mL. A small deviation (about 2%) in the 

calculated value of TPR relative to the actual value is observed 

at high HR and large damping. 
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Fig. 9 TPR values calculated from MAP and CO results for each 

value of zeta at different HR conditions; the actual value of systemic 

resistance used in the model simulation is 1.10 mmHg·sec/mL 

IV. CONCLUSION

In the current approach of left ventricular pump model, 

the modifications introduced attempted to separately model 

the time-excitation and the length- and shape-modulated 

periodic contraction mechanisms of the left-ventricular pump. 

We have combined at the level of the basic muscle unit a 

second-order viscoelastic time-excitation into nonlinear stress-

length muscle characteristics in order to numerically generate 

the hemodynamic response of the left ventricle. While such 

complexity has been avoided in lumped and some other 

modeling approaches, this approach provides an alternative to 

explore and examine a wider variety of cases, and the 

individual effects of the various components of the system, 

mainly at the level of muscle building unit. 

The hemodynamic response of the model presented for 

the case considered agrees with physiological findings. This 

response depends on the specific values of the stress-length 

function parameters, as well as on the geometric dimensions of 

the left ventricle. This is so due to high level of 

interdependence between the time-variance and nonlinearity of 

the system. However, the amount of information one can draw 

from the numerical computation of this model for various 

cases is worth the time and effort. The results also show that 

the nonlinearity of this pulsatile model and the viscoelastic 

damping ratio of the excitation-contraction coupling 

mechanism did not alter the well established steady-state 

relationship among the mean systemic pressure, the cardiac 

output, and the total peripheral resistance. 
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