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An Alternative Proof for the NP-completeness of
Top Right Access point-Minimum Length Corridor

Problem
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Abstract—In the Top Right Access point Minimum Length Corri-
dor (TRA-MLC) problem [1], a rectangular boundary partitioned into
rectilinear polygons is given and the problem is to find a corridor
of least total length and it must include the top right corner of the
outer rectangular boundary. A corridor is a tree containing a set of
line segments lying along the outer rectangular boundary and/or on
the boundary of the rectilinear polygons. The corridor must contain
at least one point from the boundaries of the outer rectangle and
also the rectilinear polygons. Gutierrez and Gonzalez [1] proved that
the MLC problem, along with some of its restricted versions and
variants, are NP-complete. In this paper, we give a shorter proof
of NP-Completeness of TRA-MLC by findig the reduction in the
following way.

Connected vertex cover in 2-connected planar graph with maximum
degree 4

↓
Top-Right Access Point Minimum Length Corridor ( TRA-MLC)

Keywords—NP-complete, 2-Connected planar graph, Grid embed-
ding of a plane graph.

I. INTRODUCTION

In the Minimum-Length Corridor (MLC) problem [1], a
rectangular boundary partitioned into rectilinear polygons is
given and the problem is to find a corridor of least total length.
A corridor is a tree containing a set of line segments lying
along the outer rectangular boundary and/or on the boundary
of the rectilinear polygons. The corridor must contain at least
one point from the boundaries of the outer rectangle and also
the rectilinear polygons. An access point of a cooridor is
any point on the rectangular boundary. If this access point is
constrained to be at the top right corner of the outer rectangular
boundary, then this problem is referred to as TRA-MLC. In
the MLC problem, and in its variants, it is assumed that the
rectangular boundary and the partitions are orthogonal. In
fig. 1 , we can see an instance of TRA-MLC and the thick
line refers to an optimal corridor with top right access point
included.
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Fig 1: An Optimal corridor for an instance of TRA-MLC

The decision version of TRA-MLC can be defined as
follows

Instance: A Pair (F, R) and a real number k, where F
is a rectangular boundary and R is a set of rectilinear
partitions R1, R2, ...Rp

Question: Does there exist a set S of line segments which
form a tree such that L(S) ≤ k, where L(S), called the
edge length, is the sum of the lengths of the line segments
in S.

This problem has many applications in laying optical fibre
cables for data communication and electrical wiring in floor
plans. We can consider (F, R) as floor plan with the recti-
linear partitions representing p rooms. The corridor refers to
placement of cables. There are many other applcations which
include signal communication in circuit layout design [1].

The Minimum Length Corridor (MLC) problem was first
posed by Naoki Katoh [2] as an architectural design problem
and its restricted version MLC-R was introduced by Eppstein
[3]. An extensive study of these problems and their variants
is made by Gutierrez and Gonzalez [1]. They also proved that
the decision version of MLC problem, along with some of its
restricted versions and variants, are NP-complete. To do this,
they reduced the planar 3-SAT problem to TRA-MLC and
TRA-MLC-R problems. From these two problems they found
polynomial reductions to other variants of MLC. In the next
section of this paper, we attempt to give an alternative proof of
NP-completeness of the TRA-MLC problem. The proof which
we are going to present is shorter and it uses popularly known
graph theoretic concepts. Considering the reductions given in
[1] , we can say that the varients of MLC and TRA-MLC
are NP-Complete. We find the polynomial reduction in the
following way.
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Connected vertex cover in 2-connected planar graph with
maximum degree 4

↓
Top-Right Access Point Minimum Length Corridor (

TRA-MLC)

Garey and Johnson proved that the problem of finding
connected vertex cover in planar graphs with maximum degree
4 ( CVC ) is NP-complete [4]. As a first step, we attempted
to prove in [5] that a restricted version : connected vertex
cover in 2-connected planar graphs with maximum degree
4 (hereafter referred to as CVC-2) is also NP-complete by
finding polynomial reduction from CVC to CVC-2. Now, in
this paper, we find a polynomial reduction from CVC-2 to
TRA-MLC thereby proving TRA-MLC is NP-complete.

To prove that any problem P to be NP-complete we need
to show that

1. P ∈ NP : x is a yes instance of P if and only if there
exists a concise certificate c(x), and it is verifiable by a
polynomial time algorithm.

2. Some known NP-complete problem P ′ is polynomially
reducible to P : For any given instance x of P ′ , we
should be able to construct an instance y of P within
polynomial in |x| time, such that x is a yes instance of
P ′ if and only if y is a yes instance of P .

For more explanation on NP-completeness, reader is re-
ferred to [6, 7].

II. THE PROOF

Theorem:TRA-MLC is NP-complete.

Proof: It can be understood, from [1], that TRA-MLC ∈
NP. Now, we construct an instance of TRA-MLC, from the
given instance of the problem of connected vertex cover in
2-connected planar graph with maximum degree 4 . Let an
instance of CVC-2 be given by a 2-connected planar graph
G1 and an integer K. Assume that G1 has n vertices with
maximum degree 4 and m edges and K is the upper bound
on the size of the vertex cover.

Our construction begins with finding a planar representaion
G′ of G1 [8]. Let us consider a vertex x on the external face
of G′ and let the degree of x be d. We will now replace x
with an edge (u, v) in the following way. We know that d will
be equal to 2,3,or 4. If d is 2, we add one edge to each of u, v
and the degrees of u&v will be 2. If d is 3, then u, v will be
of degree 2 and 3 respectively as we add one incident edge
to u, and two remaining consecutive edges in clockwise order
around x to v. In the case of d being 4, we add frist two edges
in clockwise order around x to u, and the remaining 2 edges
to v making the degrees of u, v to be equal to 3. Let us call
the new graph as G having n + 1 vertices and m + 1 edges
and clearly this graph is also a 2-connected planar graph with
maximum degree 4. Fig. 2(a), 2(b) show the example of G′,
G.

Fig 2(a): Graph G1

Fig 2(b): Graph G
( After replacing vertex X with edge (u, v) )

Now, we find the weak visibility representation [9] of G by
selecting the edge (u, v) for st-numbering by taking s = u
and t = v ( All the vertices of G will be distinctly numbered
from 1 to n + 1 making u = v1 and v = vn+1 (we refer
to u as v1 and v as vn+1 from now onwards). Then find the
orthogonal representation for G followed by a grid embedding,
as described in [10], on a discrete grid of squares with all
points of the form (6i, 6j) where i, j are integers. Let pi denote
the point in the grid corresponding to a vertex vi in G and all
these points will have coordinates of the form (6i, 6j). It is
easy to find out the coordinates of the corners of the smallest
rectangle which encloses the grid embedding and let us call
the four corners, in clockwise order starting from bottom-left,
as (x1, y1), (x1, y2), (x2, y2) and (x2, y1). Fig. 3 shows the
grid embeding of the graph G.

After obtaining the grid embedding, we add some more line
segments to it to get an instance of TRA-MLC as follows.
Refer to fig. 4, which is an instance R of TRA-MLC for the
construction. Let h = y2 − y1 ( height of the rectangle ) and
let d = 6n2 − h − 6 ( as the area of the rectangle is O(n2)
[12], d will be non-negative ). Now, we draw a rectangle with
A = (x1−6, y1−d), B = (x1−6, y2+6), C = (x2+6, y2+6)
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and B = (x2+6, y1−d) as corners in clockwise order starting
from bottom-left corner. This rectangle ABCD completely
encloses the grid embedding. The degrees of v1, vn+1 in G
are not more than 3, and hence by the way the transformations
are done in [10], the points p1 and pn+1 would not have edges
at the bottom and on top respectively. Now, we shall draw
vertical lines joining pn+1 to the horizontal line B̄C and p1

to the horizontal line ĀD and let us call the intersection points
as E and F respectively.

Fig 3: Grid (6 × 6) embedding of Graph G

For all the line segments (pi, pj) where 1 ≤ i, j ≤ (n + 1)
corresponding to the edges in G, we draw unit squares on
both the sides ( top and bottom for the horizontal component,
left and right for the vertical component ), as shown in fig. 4,
leaving a line segment of length 2 units at both the end points
pi and pj . For the line segment (pn+1, E) draw unit squares
on either sides leaving two units at pn+1. Let us call a point
on the line (pn+1, E), which is at a distance of 3 units from
pn+1 as H . For the line segment ĒC, we draw unit squares
at the bottom of the line. The resultant rectangle, (ABCD)
is a retangular grid, say R, divided into rectilinear partitions
and this forms the instance of TRA-MLC.

For any point pi corresponding to a vertex vi in G, there
will be di ( degree of vi ) line segments having one end at
pi, and let us call parts of these line segments, each of 3 units
of length from pi, together with pi as pi’s region. For any
line segment (pi, pj), corresponding to the edge (vi, vj) in
G, remove the line segments in pi & pj’s regions and let us
call the remaining line segment as edge component of (vi, vj)
( This line segment is sufficient to cover all the squares as
it touches the corner points of the two squares in pi and pj

regions ). Fig. 5 shows a line segment corresponding to an
edge in G.

Fig 4: Instance R of TRA-MLC
(Constructed from G)

Fig 5: A line segment in R representing an edge in G

Now find the lengths of all the (m+1) edge components and
let this total length be l. Add length of C̄E and length of ĒH
to l. Now let us consider the integer L = l + 3(m + K + 2).
We prove that the given 2-connected planar graph G1 with
maximum degree 4 will have a connected vertex cover of size
C1 ≤ K if and only if the instance R of TRA-MLC will have
a corridor RLT , in which top right access point is included,
and with a length C ′ ≤ L.

First assume that V1 is a connected vertex cover of G1

and with size C1 ≤ K. If the vertex x in G1 belongs to
V1 then we take V = {v1, vn+1} U (V1 − {x}) which is a
subset of the vertices of graph G. If x /∈ V1 then we take
V = {vn+1} U V1. Now V forms a connected vertex cover
of size C1+1 which is less than or equal to K +1 for the new
graph G. The vertex vn+1 will always be present in the vertex
cover V . Find a tree T induced by V in G with C1 edges. In
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the rectangular grid R corresponding to G, any corridor should
include atleast all the edge components inorder to cover the
unit squares drawn on both the sides of these edge components.
Also, any corridor must include the line segments C̄E and
ĒH to cover the squares incident on them. Let us construct a
rectilinear tree ( a corridor ) RLT starting with all these edge
components along with the line segments C̄E and ĒH . For the
line segment corresponding to any edge (vi, vj), belonging to
the tree T , add length 3 line segments, in both pi, pj regions,
on the line (pi, pj) along with pi, pj to RLT . For any edge
(vk, vh), which is not in T , either vk or vh or both must be
present in V and without loss of generality let us assume that
vk ∈ V . Now, add length 3 line segment on the line (pk, ph),
in pk’sregion along with pk, to RLT . Finally, add length 3 line
segment (pn+1, H) to RLT . This line segment will be along
the borders of the two rectilinear partitions formed by the
sides of the outer rectangle ĀB and C̄D. For any rectilinear
region corresponding to the face of the graph G, there will
be atleast one point pi ∈ RLT which corresponds to a vertex
covering the edge incident on it and which is on the border
of the face. Now RLT will be a rectilinear tree along the
sides of the rectilinear partitions and the outer rectangle. It
includes the top right access point C and has a length C ′ =
l + 3 + 3(m + 1) + 3C1 which is less than or equal to L. So
RLT becomes the required corridor.

Conversely, suppose the instance R of TRA-MLC has a
corridor RLT including the top right access point C, and
it is of length C ′ ≤ L. As mentioned above, RLT should
include all the edge components to cover all the unit squares
drawn along the line segments representing edges in G. Also
it should include the lines CE and EH to cover the squares
drawn along these lines. So the length of these line segments
together is l and this should be a part of C ′. The length of
the remaining line segments in the corridor RLT will be at
the most ( 3(m + k + 2) ) as C ′ ≤ L. The line segments

¯Hpn+1, Ēp1 and (C, p1) connect the outer rectangle to the
inner grid embedding of G. Among these, RLT cannot include
Ēp1 and (C, p1) because, by way of construction of R, each
of their lengths will be greater than 6n2 and hence it is greater
than 3(m + K + 2). So RLT must include the line segment
(H, pn+1) to connect the rectangular boundary to the inner
rectilinear partitions and hence the length of the remaining
part of RLT will be at the most 3(m + 1) + 3K. There are
m + 1 edge components corresponding to the edges in G
and inorder to connect them together into a tree, atleast one
length 3 line segment connecting the edge component to one
of its incident points should be present in RLT . These line
segments together will have a length of 3(m + 1) and the
remaining line segments in RLT will have length at the most
3K. This extra length comes from the length 3 line segments
on the other side of some of the edge components which are
included in RLT ie. For a maximum of K edge components
the length 3 line segments joining to both the incident points
are present in RLT . Now let us consider a subset V of the
vertices of G, containing all the vertices corresponding to the
points for which atleast one length 3 line segment in their
region is included in RLT . The set V will obviously cover all
the (m+1) edges in G. If we consider the edges corresponding

to the edge components for which the length 3 line segments
on both the sides along with both the incident points are in
RLT , they will be at the most K. As these line segments are
part of a tree RLT in R, we can say that the corresponding K
edges in G form a tree connecting vertices of V and hence |V |
is at the most K + 1. To find a corresponding vertex cover in
the original graph G1 let us take a subset V1 of the vertices of
G1, with the vertices in the set (V −{v1, vn+1}). If P1 ∈ RLT
then corresponding v1 will also be in V , and hence we add x
to V1. The size of V1 will be at the most K and it forms a
connected vertex cover for G1. Hence the proof.

III. CONCLUSIONS

The proof given in this paper is shorter and it uses the most
commonly known concepts of graph theory. The restricted
version TRA-MLC-R, imposes a constraint on TRA-MLC
that all the rectilinear partitions should be rectangles. We are
hopeful that, in future, a shorter proof of the complexity of
this problem can also be given.
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