
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1415

Hierarchical Clustering Analysis with SOM
Networks

Diego Ordóñez, Carlos Dafonte, Minia Manteiga, Bernardino Arcay

Abstract—This work presents a neural network model for the
clustering analysis of data based on Self Organizing Maps (SOM).
The model evolves during the training stage towards a hierarchical
structure according to the input requirements. The hierarchical struc-
ture symbolizes a specialization tool that provides refinements of the
classification process. The structure behaves like a single map with
different resolutions depending on the region to analyze. The benefits
and performance of the algorithm are discussed in application to the
Iris dataset, a classical example for pattern recognition.

Keywords—Neural networks, Self-organizing feature maps, Hier-
archical systems, Pattern clustering methods.

I. INTRODUCTION

THE input of one SOM([9], [8]) can be taken from the
output of another. The input can also be formed by

several output vectors from many SOMs. This kind of structure
is referred to as a hierarchical SOM. The topmost SOM in
the structure clusters the outputs and provides a means of
monitoring the operations of the underlying SOMs. As the
SOM hierarchy is followed upwards, the information becomes
increasingly abstract.

The classical idea of a hierarchical structure for self-
organizing maps is generally based on the connectivity of
several self-organizing layers that form a larger network. Each
layer or map of this structure represents a higher level of
abstraction with regard to preceding layers in the hierarchy
([2], [5], [3], [1]). The usual structure of hierarchical SOM
networks contains two layers ([2], [1]). In this sense, [4]
proposes a structure for the self-organized map that starts with
a single SOM network; the map is labeled using training data
and nodes that do not produce a single output are replaced
with a submap, resulting in a map with irregular connections.

More recent works suggest a structure of self-organizing
maps arranged in a tree ([6]): these structures allow us to adapt
the topology of each hierarchy layer to the characteristics of
the training set. The training of this type of structure occurs
in two stages: the first stage consists in the construction of
the hierarchical structure of self-organizing maps, the second
stage provides information about the classes at each level
of the tree. The present paper proposes a new technique
to train this type of structure, a criterion for stopping the
expansion of the tree, the combination of classes provided by
the unsupervised training algorithm, and quality criteria of the
obtained classifications.

Diego Ordóñez, Carlos Dafonte, Bernardino Arcay are with the Depart-
ment of Information and Comunications Technologies, Faculty of Computer
Science, University of A Coruña, 15071, A Coruña, Spain

Minia Manteiga is with the Department of Navigation and Earth Sciences,
University of A Coruña, 15011, A Coruña, Spain, e-mail: manteiga@udc.es

Fig. 1. Models represented by each of the neurons. Each signal represents
what was stored by a neuron from an input determined by the weights of the
process elements at the network input for the example of Iris dataset.

Self Organizing Maps (SOM) are an effective tool to visu-
alize data with large dimensions. They transform the data that
belong to the inputs space by means of an information com-
pression process that preserves the most important topological
relationships of the data and results in the abstraction of the
inputs. The relationships between the input data are established
through the topological bounds stored in the connections at
the network output, which represents models of subsets of the
input patterns (see Figure 1).

After the learning process, we must analise the training
result of the SOM to apply it to a concrete domain. This
task depends on the application domain and focuses in many
cases on detecting regions in an output map. These regions
form object groupings that represent a taxonomy of the input
vectors. The process elements of the map represent models
of subsets or samples of the inputs ([8]), and through the
neighbourhood relationships the map relates similar models
that represent the same categorisation or subcategories.

Two input data belonging to the same object class activate
process elements in a SOM that are nearby in the topological
disposition of the map. This idea intuitively lead us towards
an initial analysis that considers the division of the map
in regions that could represent subcategories in the input
domain. This analysis could be recursively applied resulting
in a hireachical structure. A common problem consists in
discerning the frontiers between the different taxonomies and
doing so automatically.

There are usually no abrupt transitions among the regions



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1416

that represent the categories in the map, but there are process
elements that represent something intermediate between two
or more object classes, i.c. transition elements, which lead us
to apply some type of fuzzy technique to fuzzify the borders.
This problem can be solved by segmenting the SOM with a
fuzzy logic technique applied to the weights of the connections
with the output elements, the Fuzzy C-Means technique (FCM)
([11],[12]). The Dunn-Bezdeck algorithm provides us with the
framework to define the membership levels of the process
elements to the clusters and to identify the process elements
that represent some of the object categories of the problem as
well as those that are intermediate between various different
types of the taxonomy.

Once trained, the network generates a series of models that
try to represent the input vectors. Each model is characterized,
through the weights of the output neurons, by the inputs.
Figure 1 shows an example of these models. We can analyse
the output of the network by taking the input models as points
of reference, and applying a clustering technique to them. This
process allows us to find out which categories can be obtained
in the map (map analysis). In the course of a SOM analysis, we
find areas with process elements that clearly represent some of
the categories recognised for a particular problem. However,
certain process elements will correspond to transition regions,
areas in the map that are intermediate representations between
different categories. In general, these regions fill up the voids
left by other areas that do represent specific categories. The
technique used to explore their nature consists in refining the
represented models with the neurons of those map areas, as
will be described in Section IV. This approach will also be
used to deal with the case that arises when a model represents
a combination of different types of categories of objects.

The following sections provide a detailed description of the
algorithm, opportunities, and application examples. Sections II
and III separately present the tools that were used to develop
the algorithm, i.c. the SOMs and the FCM algorithm. Sections
IV and V represent the steps to construct the information
structure that supports the algorithm:

• Section IV: automatic generation of the hierarchical struc-
ture

• Section V: segmentation knowledge extraction by means
of a labelling process

Section VI describes how to quantify the quality of the I
accept the terms of the following Honor Code and Plagiarism
Statement for Paper Submission, and that the paper is original
research contribution with the references properly cited in the
manuscript. I accept the terms of the following Copyright
Agreement, and on submitting the full text paper for possible
publication to World Academy of Science, Engineering and
Technology; I confirm, acknowledge and agree expressly to
the terms and conditions of this copyright agreement. This
copyright agreement prevails and is binding to the contributing
author(s). classification by evaluating the membership function
with regard to each of the nodes followed during the classifica-
tion process. Section VII presents an example of application,
as well as the obtained results. Finally, Section VIII comments
upon the most relevant features of this work.

Fig. 2. Hierarchical decomposition of the classification in more detailed
maps

II. ARCHITECTURE

The proposed architecture uses a tree structure in which
each node represents a SOM network. The hierarchical dispo-
sition of the nodes indicates different levels of finetuning in
the classification (see Figure 2), going from general models
to specific models, increasing the detail level as we descend
through the hierarchy. The hierarchical structure of the SOMs
is a problem that was tackled in certain studies ([13], [14]).
As mentioned above, this work focuses on the problem from a
perspective that combines the hierarchical structure and fuzzy
logic techniques ([15], [11]). Fuzzy logic is the support tool
that allows us to descend in the hierarchical structure that is
built around the SOMs.

Figure 2 shows a graphic simplification of the structure.
We dispose of a map of a higher hierarchical level (rootlevel)
where the neurons represent general models. After identifying
the map areas with the analysis of the neuron connections, we
segment the general map and finetune the models so as to give
space to the metamodels of the inferior level. This process is
applied recursively and represents a selective increase of the
resolution in certain areas of the map. For this task we rely on
a fuzzy logic algorithm that allow us to automatically identify
the areas of interest of the map, as shall be shown in Section
III.

III. SELF-ORGANIZED MAPS AND DUNN-BEZDECK
ALGORITHM

In order to carry out the automatic analysis of the map, we
need a technique that allows us to classify, in an unsupervised
way, the models that were obtained during the network train-
ing. Section II mentioned the fact that there will be regions in
the map that represent categories of the problems taxonomy,
as well as groups of neurons that represent intermediate
(transitional) categories. In such a scenario, it would be highly



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1417

Fig. 3. Metamodel intersections. There are several zones on the map where
cluster action radious overlaps. U stands for all models

interesting to know the category to which a certain process
element of the network belongs as well as its membership
level. For this analysis task we rely on the FCM technique.

This technique consists in a clustering method that makes
it possible for an input example to belong to more than one
grouping. The model was developed by Dunn in 1973 ([12])
and improved by Bezdek in 1981 ([11]), and is frequently used
for pattern recognition. It is based on the minimisation of the
following objective function:

Jm =
N∑
i=1

C∑
j=1

Umij ‖xi − cj‖2 (1)

where m is any real number above 1, Uij is the membership
level of xi to the cluster j, xi is the ith example of the patterns
that must be grouped, cj is the centre of the cluster of class
j, and ‖ ∗ ‖ is any norm function that expresses the similarity
between the observed data and a cluster center.

The fuzzy partition is carried out with an iterative optimisa-
tion of the objective function shown in 1, through the update
of the membership function Uij , and the cluster centers.

Consequently, the FCM evaluates the membership level to
each category of every network model generated during the
training stage. These categories do not correspond 1 : 1
to those of the problem in question, since we are working
with unsupervised techniques. Section V will comment upon
the mapping of the unsupervised categories to those of the
problem in the course of a post-processing phase.

When applying this technique, the transition elements are
those that do not have an acceptable membership level for
any of the clusters. The criterion for the membership of a
model to a cluster is based on a threshold (λ). The choice
of an adequate threshold makes the algorithm more efficient
because, as will be seen in the example of Section VII, less
finetuning is required to reach the envisaged result.

Figure 3 shows one of the problems that appear during
thresholding: some areas on the map cannot be assigned
with certainty to one of the groups, because the membership
is distributed among two or more groups. In this case, the

proposed solution consists in generating new metamodels that
surge from the combination of others; so if we configurated
the FCM algorithm with 3 clusters, we would have clusters
C1, C2, and C3; but also, depending on the situation, we
would have combinations of two clusters (C1,C2), (C1,C3),
(C2,C3), and even the combination of all of them (C1,C2,C3).
Therefore, the finetuning process of a hierarchical node could,
potentially, generate 2n−1 nodes in the following level of the
hierarchical structure; the more restrictive the threshold, the
more nodes will be generated.

IV. CONSTRUCTION OF THE HIERARCHICAL STRUCTURE

Previous sections separately presented the tools that will
be used to developed the algorithm: the SOMs and the FCM
algorithm. This section describes the automatic generation of
the structure.

Starting from the representation of a dataset that belongs
to a specific domain P = x1, x2, . . . , xn, where each xi
belongs to �n, we train a SOM network with the Kohonen
algorithm ([10]). The training of this initial network results in
the representative models of the input in the shape of weights
vectors. These weights vectors (models) will serve as an input
for the FCM clustering algorithm that will build the so-called
metamodels. That information is used to segment the set of
input vectors by trying to identify the metamodel that best
represents each vector. Once the segmentation is terminated, a
new SOM network is generated for each subset of the inputs,
and the training is carried out. On the basis of the set of
vectors in P , we generate the sets P1, P2,. . .Pm, so that P1

intersection P2 is the empty set.
This is an iterative process in which each level represents

a finetuning stage of the classification. This approach has two
consequences:

• In each node, the neural networks are reduced in size
(considering complex problems that require a map with
many nodes), which means that the search of the winning
element is faster in each level of the tree. The search time
of a winner increases exponentially with the size of the
map.

• By gradually specializing the training, there will be less
and less transition process elements that represent no
subset of vectors at the input.

The more levels the structure has, the more detail we obtain;
the question is to know how many levels we need for a specific
problem. The proposed halting criterion considers the fact that
the specialization that takes place in the models when they
descend the hierarchical levels makes those models become
increasingly similar, and as a consequence the variance be-
comes smaller. By calculating the variance in each dimension
of the input, we have a measure of how much the input
vectors resemble each other in each dimension. When one
of the iterative finetunings generates a node for which the
classified patterns generate a vector of variancies, and none
of the dimensions has a significant variability (the patterns
are practically identical), continuing the expansion of the tree
will not entail any benefit whatsoever. This halting criterion
requires the definition of a set of threshold values while



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1418

Fig. 4. Hirearchy, nodes and labels

considering the dimensions of the problem that allows us to
take the decision. This value will determine the detail level
that we wish to achieve.

Section III described one of the problems that arise during
thresholding: there will be examples for which none of the
clusters has a fuzzy value above that threshold. In that case,
we opt for adding new nodes that represent combinations of
clusters. Naturally, the maximum value will always be reached
by the combination of all the clusters, but what really interests
us is to find the minimal set of clusters that exceeds the
threshold.

V. LABELING

Since both the generated structure and the SOMs are un-
supervised, we have to train the network and subsequently
analyse it to extract the knowledge of the segmentation.
Once the structure is built according to the steps that were
traced in Section IV, it would be interesting to know what is
represented by each group (nodes of the hierarchical structure
or metamodels) and map the unsupervised categories to those
of the problem. Domain knowledge can be added to the
structure by means of a labeling process. Labeling consists in
classifying a known set of objects with the generated structure
and assigning the labels associated to each object to the groups
that classify it through the different tree levels, from the roots
to the leaves.

It is preferable for a labeling algorithm to maintain a
structural coherence of the labels. A father node must contain
the labels of all its descendents down to the leaves, so that
each descendent node represents some type of specialization
of the father node. This way, we provide not only a single
classification but also a process that discards object types level
after level until it reaches the leaves.

We may find a situation in which one leaf has more than
one label: this would mean that there exist two types of objects
that are so similar that they cannot be distinguished. This
type of classification minimizes the false positives, because
it only provides discriminating information when the objects
are significantly different.

The labeling algorithm is based on a set of input vectors for
which the classification is known in advance. This set can be

the same as the one used for the training of SOM networks
or a different one. Each example follows a series of steps:

1) Start from the root node.
2) Determine the winning node with the SOM network

associated to the current node. Add the label associated
to the input to the labels set of the current node.

3) Select the metamodel associated to this process element
while taking into account the fuzzy values associated to
that neuron through the U matrix of the FCM algorithm.

4) Transit to the node indicated by the metamodel.
5) Iterate steps 2 to 4 until the selected node is a leaf node.
The consequence of this process is that each root node

contains all the possible labels and that the classification
gradually pinpoints nodes until it reaches the leaf nodes that
represent the concrete classifications.

VI. QUALITY OF THE CLASSIFICATION AND GENERATION
OF THE MOST RELIABLE SOLUTION

Section III described the fuzzy algorithm for model classi-
fication. As mentioned above, the models are linked to each
cluster by means of a membership function that represents
the fuzzy behaviour of the algorithm. Implementing this
behaviour requires us to build an appropriate fuzzy matrix
called U (using the FCM algorithm) and represent the level
of membership to each of the cluster centers. As a result, if
a neuron (model) possesses a membership level close to 1,
it provides us with the knowledge that it is clearly different
from the other cluster centers. This means that if we follow a
node route in the hierarchical structure, where in each node the
example has a high level of membership to the cluster in which
it was classified, we will consider the classification to be more
reliable, whereas if we follow a node route through a sequence
of nodes with low membership level, the classification is less
reliable.

The advantage of this procedure is that it provides not only a
classification but also a quality criterion for the classification,
indicating its level of reliability.

Since each node generates a fuzzy value, we need a way
to combine them and provide a final membership value. The
fuzzy operator of the intersection is minimal ([15]), because
two nodes whose sequence represents a path of the tree repre-
sent the fact that we have determined the example to belong
simultaneously to both fuzzy sets, which is the definition of
the intersection. So if n1, n2, . . . , nk represents the nodes
sequency and f1, f2, fk are the fuzzy values provided in each
node, the confidence criterion in the classification is minimal
(f1,f2,. . . , fk).

The classification is obtained by searching in each level for
the node that exceeds the search threshold. We must find a way
to make sure that that value is the highest among the clusters
combinations of all the paths that start from the root node.
The resulting fuzzy membership value is maximal. Indeed,
if we did not work with clusters combinations, and λ were
the membership treshold selected for the algorithm, each node
would have a (specifically) associated path from the root node
where the accumulated fuzzy value is the smallest of the fuzzy
values in each ancestral node and the present value. For λ >



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1419

0.5 and the fuzzy values belong to the [0, 1] interval, we find
that by selecting the path of the highest probability and always
following the highest value cluster that exceeds the threshold:

1) We reach the end of the nodes sequence and the mini-
mum will never return a value below the threshold, i.e.
we always obtain a value above λ;

2) If all the fuzzy values of the individual clusters add up to
1 and λ > 0.5, the sum of all the other values separately
gives a value below the threshold.

3) Taking into account that the minimal function is applied
to the path, and the results of points 1 and 2, no other
individual node path will exceed the threshold.

We therefore observe that the returned value is the highest of
all the path combinations from the root node until the leaves.

This result was obtained under the supposition that there
are no clusters combinations, but that could not be the case
in a real situation. Apart from obtaining the maximum fuzzy
value, we are interested in minimizing the number of com-
bined clusters in order to reach a solution in each level. We
are obliged to combine clusters because no other node that
represents an individual cluster reaches the threshold value.
This is why the demonstration is the same in both cases: when
the path that starts from the node has the highest fuzzy value
without considering clusters combination of a higher order,
and when the nodes represent individual clusters.

VII. APPLICATION EXAMPLE: THE IRIS DATASET

In literature, the Iris dataset is probably the best known
dataset for pattern recognition. The article by Fisher ([16]) is
a classic in the field and references to his work are frequent
([17]). This dataset contains 3 classes of 50 examples each,
each class referring to a type of Iris plant. The Setosa class can
be separated linearly from the other two (Virgina, Versicolor),
which, in turn, cannot.

The attributes that describe each example are represented
by four parameters:

1) Sepal length in cm
2) Sepal width in cm
3) Petal length in cm
4) Petal width in cm
The measurements are extracted from each example and

used as input vectors for the algorithm to compose the patterns
set. Starting from this set of a total of 50x3 = 150 examples,
we arbitrarily separate 10 examples from each class and keep
3x10 = 30 patterns that will be used to validate the algorithm
and 120 patterns to build the structure and train the SOM
networks.

The configuration of the algorithm in each node of the
hierarchical structure is carried out with SOM networks of
5x5 (25) process elements disposed in a rectangular map. This
will provide us, during the application of the FCM algorithm
to the resulting models, with a matrix of 25xN fuzzy values,
in which each row of N values adds op to 1. The number
N is determined by the number of clusters with which the
FCM algorithm was configured. The threshold that was defined
to determine the membership of a model to a cluster in the
algorithm is λ = 0.7, a value that was chosen empirically after

Fig. 5. Membership values for each process element of the root node and
each cluster used to configure the Fuzzy C-Means algorithm for the case in
which three clusters are considered.

Fig. 6. Activation frequencies for each process element of the root node for
each plant type of the Iris set.

various tests and is able to generate efficient structures for
this example with regard to the number of nodes and the tree
levels. More restriction for this parameter would make most
examples group into clusters combinations; less restriction
would increase the probability of grouping object types of a
different nature into one and the same cluster.

The SOM networks used to configure each node were
trained with a hextop topology ([18]); the number of training
stages was 200, an amount that is sufficient for the present ex-
ample because the training shows stabilisation before reaching
that number. If the root node is considered to be level 1 of
the tree, and the tree has 3 levels, we only have to descend a
maximum of 2 levels to obtain the classification.

The following section shows various aspects of the algo-
rithm and its usefulness in solving classification problems
and checking the influence of some parameters on the global
functioning and output. Table I shows the complexity of the
tree and the efficiency of the global algorithm, depending on
the number of clusters that configure the FCM algorithm that
classifies the models. We can observe that the most efficient
configuration with regard to the number of nodes is that of
three groups, which coincides also with the number of different
object types of Iris plants. Figures 5 and 6 show that the
Fuzzy C-Means algorithm forms metamodels that resemble
the projection made by the learning algorithm of the SOM for
the different object types.

Another relevant aspect is that the number of groups formed
by the Fuzzy C-Means does not affect (for this example) the
success rate of the algorithm, which is 100% in all cases.
Even though the configuration with two clusters provides for
all cases one single correct label, the number of levels of
the generated tree makes the structure very inefficient during
classification.

Table I shows the success rate and the complexity of the tree
according to the number of clusters (columns in the table) with
which we configure the FCM algorithm after having labeled
the structure. The % of single label successes represents the
number of times the algorithm provides a single classification



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1420

TABLE I
ANALYSIS OF THE SUCCESS RATES AND THE COMPLEXITY OF THE TREE

ACCORDING TO THE NUMBER OF CLUSTERS (N.C.).

N.C. = 2 N.C. = 3 N.C. = 4
N. nodes 130 78 106
N. leaf 87 67 99
N. levels 20 5 4
% accuracy one class 100 100 100
% accuracy two classes - 100 100
% accuracy global 100 100 100
% single class 100 90 93
% double class 0 10 7

Fig. 7. Effect of the variance threshold in the number of nodes and the
classification into one class

for a given input vector; the % of double label successes is the
number of times the algorithm provides two different labels
for an input example and one of them is correct.

The results of Table I were obtained by cutting the ex-
pansion of the tree when the variance of the input patterns
assigned to a node does not reach the threshold variancies,
which in this case are V = (0.01, 0.01, 0.01, 0.01). These low
values give us an idea of the algorithm s capacities when taken
to a limit, i.e. when taken to expand until the patterns repre-
sented by a given node are partically identical. A more detailed
analysis of this threshold will allow us to check how it affects
the results and the configuration of the algorithm architecture.
We show what happens when the variance threshold is made
increasingly restrictive. The considered variance thresholds are
the following:

1) V 1 = (0.05, 0.05, 0.05, 0.05)
2) V 2 = (0.1, 0.1, 0.1, 0.1)
3) V 3 = (0.2, 0.2, 0.2, 0.2)
4) V 4 = (1.0, 1.0, 1.0, 1.0)

Figure 7 shows the effect of the variance threshold, with
great similarities between the successrate for a class and the
number of nodes. The number of tree levels for each case also
tends to descend (5, 5, 3, 2).

A graphic example of this problem in the case of the Iris
dataset can be seen in Figure 8: we see each of the training
patterns with its two first dimensions (sepal length and sepal

Fig. 8. SOM Topology distribution in over two dimensions of the input
dataset (sepal length and sepal width)

width) and the disposition and topology of the SOM process
elements in the same space. Figure 8 was splited in four parts,
the upper left figure shows the network of the root element,
this network try to cover the whole input space. The upper
right and lower left show networks of the next level, wich
specializes in different pap areas. Finally, the lower right
Figure shows the network that is specialized in those input
patterns for which the membership level to clusters 1 and 2
has not reached the threshold.

VIII. CONCLUSIONS

This work presents a methodology for the SOM-based
classification. The analysis of the topological disposition of
the models represented by the weight vectors allows us to
segment and isolate iteratively the different object types. We
subsequently label the clusters, adding supervised character-
istics to the algorithm (concrete object types hidden by each
group).

As a result, the algorithm gradually specializes with the
levels of the tree structure that represents it. More depth is
generated in the structure as more detail is needed to divide
the patterns set. The complexity of the information structure on
which the algorithm relies is controlled by various threshold
values: the threshold variancies, the minimal level of group
membership, and the number of groups formed by the FCM
algorithm. The adequate selection of these parameters depends
on the domain that is to be treated, the separation between the
different object classes, and the number of examples of each
class. The variancies and the membership threshold control
the depth of the tree; less restrictions in this aspect imply less
depth and less computational cost for the execution of the
algorithm.

The number of clusters of the FCM algorithm has its impact
on both the depth of the tree and the width of each level,
increasing exponentially the global number of nodes with each
new level. The number of SOM networks of the structure
is not equal to the number of total nodes, since only one
SOM is required for each node that expands. Table I shows
that statistically most nodes of the structure are leaves, which
means that the number of networks will be largely inferior
to the number of nodes of the structure. The network is



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1421

necessary for the expansion of a node. The maximal number of
steps needed to classify an object coincides with the maximal
number of tree levels minus one. For the example with 4
clusters (Table I), a total of 106 nodes and 4 levels, classifying
an object only requires computing the corresponding model
of 3 levels of 5x5 = 25 process elements in intermediate
nodes and checking the membership levels in each level of
the fuzzy matrix. In a network with a rectangular map of
NxN process elements, the complexity of the search of the
winning element, using the Big-O notation, will be O(m∗N2),
which means that the complexity grows quadratically with
the map size. If the problem is sufficiently complex, the
computational complexity grows quadratically according to the
growing number of process elements in the output. In terms
of complexity, it is therefore more efficient to chain smaller
maps to reduce the number of floating point operations needed
to carry out the classification.

The structure is generated on the basis of a static model
of neural network or SOM, but thanks to the iterative way of
proceeding neither the initial size of the map nor the number of
clusters of the fuzzy algorithm are decisive in obtaining good
classification. The example shows how different choices in the
number of clusters generate a more or less efficient structure
in terms of memory and computational cost, but yielding good
results in all cases.

The strategy proposed by this algorithm is very conser-
vatory, because it only generates selective classifications for
examples represented by models that are sufficiently different
from each other. In any other case, the response of the
algorithm will be the set of labels associated to input vectors
that are sufficiently similar to be considered one single group.
This criterion is selected by the user through the vector of
threshold variancies.

Assuming a certain cost to maintain the entire structure in
the memory, HSC is a robust algorithm that minimizes the
error rates and, for a given classification, provides criteria to
judge the reliability of the classification. It also provides hier-
archic information on how the clusters and similarity measures
between them are decomposed by means of specialization and
generalization processes of the object groups. Labeling is a
process that equips the algorithm with supervised clustering
capacities, even though the SOM networks were not originally
designed to that effect.

The Iris example VII shows that the applications of this
algorithm can be of all kinds. It was specifically designed to
provide information in cases with discriminating information
that distinguishes one object from another, based on the
information that is available in the training set, reducing to
residual values the number of erroneous classifications. These
statements depend on the presence of a domain-representative
training set.

ACKNOWLEDGMENT

Spanish MEC project ESP2006-13855-CO2-02

REFERENCES

[1] M. Endo, M. Ueno, T. Tanabe, “A Clustering Method Using Hierarchical
Self-Organizing Maps”, Journal of VLSI Signal Processing, vol. 32, pp.
105-118, 2002.

[2] J. Lampinen, E. Oja, “Clustering Properties of Hierarchical Self-
Organizing Maps”, Journal of Mathematical Imaging and vision, vol 2,
pp 261-272, 1992.

[3] P.N. Suganthan, “Pattern Classification Using Multiple Hierarchical Over-
lapped Self-Organising Maps”, Pattern Recognition, vol. 34, pp. 2173-
2179, 2001.

[4] S.B. Cho, “Neural Network Classifiers for Recognising Totally Uncon-
strained Handwritten Numerals”, IEEE Trans. Neural Networks, vol. 8(1),
pp. 43-53, 1997.

[5] S.P. Luttrell, “Image Compression Using a Multilayer Neural Network”,
Pattern Recognition Letters. vol. 10, pp. 1-7, 1989.

[6] A. Forti, G.L. Foresti, “Growing Hierarchical Tree SOM: An Unsuper-
vised Neural Network with Dynamic Topology”, vol. 19, pp 1568-1580,
2006.

[7] T. Kohonen, E. Oja, O. Simula, A. Visa and J. Kangas, “Engineering
applications of the self-organizing map”, Proceedings of the IEEE, vol.
84(10), pp. 1358-84, October 1996.

[8] T. Kohonen, “Self-organization and associative memory”, Springer-Verlag
New York, Inc, New York, 1989.

[9] T. Kohonen, “Analysis of a simple self-organizing process”, Biological
Cybernetics, vol. 44, pp. 135-140, July 1982.

[10] T. Kohonen, “Self Organizing Maps”, Springer, Berlin, 1995 (Third,
Extended Edition 2001).

[11] J.C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Al-
gorithms”, Kluwer Academic Publishers, Norwell, MA, USA 1981.

[12] J.C. Dunn, “A Fuzzy Relative of the ISODATA Process and Its Use in
Detecting Compact Well-Separated Clusters”, Cybernetics and Systems.
vol. 3, pp. 32-57, 1973.

[13] P. Koikkalainen and E. Oja, “Self-organizing hierarchical feature maps”,
International Joint Conference on Neural Networks, vol. II, pp. 279-285,
Piscataway, NJ 1990.

[14] P. Koikkalainen, “Progress with the tree-structured self-organizing map”.
Proceedings of ECAI’94, 11th European Conference on Artificial Intelli-
gence, pp. 211-215, New York 1994

[15] L.A. Zadeh, “Fuzzy Sets”, Information and Control, vol. 8, pp. 338-353,
1965.

[16] R.A. Fisher, “The use of multiple measurements in taxonomic prob-
lems”, Annual Eugenics, vol. 7, pp. 179-188, 1936.

[17] R.O. Duda and P.E. Hart, “Pattern Classification and Scene Analysis”,
John Wiley and Sons, 1973.

[18] H. Demuth and M. Beale, “Neural Network Toolbox: For use with
MATLAB: User’s Guide”, The Mathworks, 1993.


