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Abstract—This article concerns the presentation of an integrated 

method for detection of steganographic content embedded by new 
unknown programs. The method is based on data mining and 
aggregated hypothesis testing. The article contains the theoretical 
basics used to deploy the proposed detection system and the 
description of improvement proposed for the basic system idea. 
Further main results of experiments and implementation details are 
collected and described. Finally example results of the tests are 
presented. 
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I. INTRODUCTION 
TEGANOGRAPHY is the art of hiding data in another data. 
The problem described in the article concerns the 

question: “Is it possible to detect any steganographic content 
in digital images with a reliable detection level in the case, 
when we don’t know the algorithms of steganographic 
programs which can be potentially used for data embedding?”. 
The answer is YES, when we define the field of the problem 
and make several helpful assumptions. 

II.  THEORETICAL BASICS 

A.   Basic Assumptions and Problem Field Constraints 
In short it can be asserted that the experiments are 

constrained to the following situation: 
1) We have a set of digital images created with any digital 
camera and before the experiments they haven’t been 
processed by any program. 
2) We have a fixed set of steganographic programs, which can 
be run in the tests, but we don’t know how they work in 
details. 
3) We learn the system to detect data embedded by programs 
with the defined already set.  
4) We develop the proper detection system and learn it with 
the use of Bayesian criterion customized for steganalysis. 
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B.   The Bayesian Criterion for Object Classification 
Book [1] contains the theory of Bayessian criterion used for 

signal detection.  This theory can be easily applied for the 
detection of steganographic data in digital objects. 

In the simplest binary system of signaling there are two 
hypotheses: 0-hypothesis denoted as H0 and 1-hypothesis 
denoted as H1. The probability of the 0-hypothesis is denoted 
as 0( )P H  and for the 1-hypothesis as 1( )P H . The threshold 
used for Bayesian classification should fulfill the following 
condition: 

0 1

0 2

( )
1 ( )th

P H c
P H c

λ =
−

,                   (1) 

where c1 and c2 refer to the costs of the errors of the first and 
the second type, respectively.  The ratio (1) refers to the value 
x0, which is the classification threshold. 

The Fig. 1 represents two probability density functions 
referring to each of the hypotheses. 

 
Fig. 1 The probability density functions and classification errors 
 
The gray spaces marked in the figure represent the 

classification errors of the first and the second type. The error 
of the first type takes place when we make decision D1 while 
the hypothesis H0 is true and vice versa. 

The cost of all possible errors in generalized multi 
hypothesis case is defined in (2): 
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C.   Applying of Bayesian Classificator for Steganalysis 
In the filed of steganalysis the 1-hypothesis is combined 

with the situation, that a given object contains embedded data. 
The 0-hypothesis refers to the clean object. 

The error of the first type refers to the situation that we miss 
an object infected by steganographic content. By analogy – 
the error of the second type is the false alarm error. 

 
D.   The Set of Representative Tests 
In steganalysis there are many various tests used for feature 

extraction and statistics measures. In [2-10] there are 
described main popular steganalytic tests used in worldwide 
university experiments. 

The tests can be grouped to the following families: 
1) Histogram distortion tests, 
2) Correlation and prediction tests, 
3) Binary and pattern similarity tests, 
4) Data format compatibility tests, 
5) Noise and entropy level measures, 
6) Pseudo-randomness tests, 
7) Image and Audio quality measures. 

In this article I concentrate on a given subset of correlation 
tests. Apart form that I present two additional groups of 
developed tests: signature tests and file structure anomaly 
tests.  

As we see later, grouping of tests is useful in applying the 
aggregation of hypothesis testing. 

III. THE PROPOSED IMPROVEMENTS 
In this chapter I will present several improvements added to 

the main conception of the Bayesian based steganalytic 
system. These are listed as follows: 

- Grouping tests into families according to their 
simplicity and detection level, 

- Adding new tests for better detection of fingerprints 
left by specific programs, 

- Proposing a heuristics in choosing next tests in the 
testing loop, 

- Adding “post-testing” phase to refine the value of the 
classification threshold even in the testing phase. 

A.   Selection and Grouping of Representative Tests 
In this article I consider three classes of tests: 
- fingerprint tests, 
- local structure anomaly tests, 
- binary correlation tests. 
The first type of testing concerns checking, if a given 

region of a digital object is equal to a given static or dynamic 
flexible pattern defined by a given syntax rule, for example: 

[101[0|1]3111]. 
Tests of the second type check more generalized situations, 

where a region of data with odd exists or abnormal random 
density function.  

Expression (3) contains an interesting generalization of 
correlation tests. From this definition we can conclude many 
kinds of filters and smoothness tests. 
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where O is a given tested object, N is the number of units 
(e.g. pixels) in the object and  (4) defines several 
mathematical conditions and operations taken to the 
consideration: 

{ , , , , , , , , , }•∈ < > ≤ ≥ = + − ⊕ ⊗ � .       (4) 
Expressions (5-8) present the mathematical description of 

basic tests used in the experiments: 
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The Table I contains the description of the given 

smoothness tests. 
 

TABLE I 
MOST REPRESENTATIVE CORRELATION TESTS 

No Ref (n) Description 

1 
2 
3 
4 
5 

(5) 
(6) 
(7) 
(8) 
(9) 

Smoothness of a vector 
Smoothness of a matrix 
Horizontal neighbors contrast 
Vertical neighbors contrast 
Horizontal and Vertical  neighbors contrast 

 
B.   Developing New Tests 
As mentioned earlier, two additional classes of tested were 

introduced. First – fingerprint tests and the second – local 
structure anomaly tests. 

The threshold values have form dependent on the class of 
tests: 

- static string, e.g. [10101010], 
- description of a pattern, e.g. [10[1 | 0] [1 | 0]01], 
- the pair of min and max threshold value, e.g. (1.26, 

1.32). 
Similarly the testing conditions have different types of 

expressions.  

C.   Refining Bayes Classificator 
The quality of a given test depends on the cost and the 

probability of the first and the second type of errors. The error 
of the first type can be estimated according the following 
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formula (10): 

0

01 0 1 1( ) ( | ) ( )
R

P E P D H P x dx= = ∫          (10) 

and similarly for the false alarm error: 

   
1

10 1 0 0( ) ( | ) ( )
R

P E P D H P x dx= = ∫ .            (11) 

In theory and in practice the smoothness tests can be 
optimized by 3-dim integration. The false negative error is 
much less than in case of 1-dim for every color independently. 
This is because no information is ignored in the case of 3-dim 
integration. Expressions (12-13) show the mathematical 
formula for this approach. 
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The Table II lists the values of errors of the all of 4 types. 

From the results we can observe, that for three-dimensional 
integration the errors become not significant. 

 
TABLE II 

ERROR LEVELS FOR 1, 2 AND 3 DIMENSIONAL TESTS 
 10P  00P  11P  01P  

1smT  0.4812  0.5187  0.7812  0.2188

2smT  0.3750  0.6250  0.8000  0.2000

3smT  0.3750  0.6250  0.8187  0.1813

1( ),P X X R∈

 

4smT  0.3562  0.6437  0.8562  0.1438

1smT  0.2438  0.7562 0.9500  0.0500

2smT  0.0125  0.9875  0.9937  0.0063

3smT  0.0313  0.9687  1.0000  0 

2( ),P X X R∈
uur uuruur uur

 

4smT  0.0063  0.9937  1.0000  0 

1smT  0.2937  0.7062  0.8312  0.1687

2smT  0.0313  0.9687 0.9937  0.0063

4smT  0.0500 0.9500  1.0000  0 

3( ),P X X R∈
uur uuruur uuruur uur

 

1smT  0.0375  0.9625  1.0000  0 
 

D.   Adding Heuristics 
As mentioned earlier, grouping of tests can be helpful for 

choosing proper heuristics for choosing the order of tests 
while performing general test. 

 
1( )

( )
( ) err

P H
Ord t P

O t
� .            (14) 

The priority of choosing a given test in each test family is 
proportional to the frequency of data embedding with a given 
steganographic program related to the test and the detection 

level estimated for the test. The groups of test are sequenced 
accordingly to the complexity of the algorithm of a given test 
family. 

E.   Adding Post Training Phase 
Performing the post-training updates of knowledge base is 

possible if the following condition is fulfilled: 
10 10 01 01 10 01: , 1 1eP P P whereδ δ δ δ<= ∧ <= << ∧ <<  (15) 

 
The probability of the 1 and 0- hypothesis is updated 

accordingly to the result of the recent test. 
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where D0 corresponds to the 0-decision and D1 - to the 1-
decision. The symbol N denotes the number of already tested 
objects and it is also updated: 

' 1N N= + . 
Then we can calculate the current probability of errors of 

the first and the second type denoted as Perr. It is dependent on 
the current decision threshold λthr and the probability density 
function Pdist accordingly to (10) and (11). The decision 
threshold depends on the costs of errors Cerr and the 
probability of hypotheses and is calculated from (1). The 
pseudo-code is shown in the Listing 1. 
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Listing 1 A single iteration of the post-training phase 
 
The sense of applying the post training phase comes from 

the observation that in every new test, when condition (15) is 
fulfilled, the probabilities of errors of both types tend to 
lower. 

IV. THE IDEA OF THE SYSTEM 
The system consists of the learning part and the testing part. 

In the learning part the knowledge base is filled with valid 
threshold values. Each value corresponds to a given 
steganographic program.  

In the testing part each of new-tested objects has its features 
extracted and compared with the appropriate threshold values. 
The object is classified either as “infected” or “clean with high 
level of probability”. 

In the developed version of the system the decision 
parameters are updated also during the testing part.  
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More about the basics of the conception of the system and 
specific tests can be read in my earlier papers [11-12]. 

 
A.   The Learning Part 
In the learning part we have two sets of training objects: 

provable clean objects and objects containing data embedded 
with a fixed steganographic program. Several tests are 
performed on them and then the initial decision values are 
estimated and saved in the knowledge base.  
 

B.   Knowledge Base 
The knowledge base consists of the test descriptors. Table 

III depicts the construction of the structure describing each 
test. Example descriptors are presented in the subchapter 
concerning the final results of the experiments. 
 

TABLE III 
TEST DESCRIPTOR 

No Structure field Description 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Class 
Name (program name) 
Description 
Decision value 
Threshold value 
Condition description 
Implementation (Matlab) 

1 0 1 1 0 0 0 1{ , , , }P P P P P=  
( ( ) )O f n  

 

The class a given test belongs to 
The program to which the test refers 
The region of image which is tested 
The value which is tested in the test 
The threshold for classification 
The condition defining the test 
Implementation of the test 
The detection quality of the test 
Estimated complexity of  the test 

 
C.   The Testing Part 
All tests are treated as objects of a given class. The tests 

belonging to one class have similar structure, testing 
conditions and algorithms. The tests from one class differ 
from each other only in parameters such as decision values 
and threshold values.  

In the testing part the tested object is checked with 
sequence of tests from each test class. Test classes with lower 
complexity are taken first. In each family the order of tests is 
dependent on the frequency of the positive decisions. If any 
test returns positive decision, the process is stopped. 
 

D.   Aggregation of Hypotheses 
The Fig. 2 depicts the idea of hypotheses tests aggregation. 

 

Class c

Yes

Test M

No

..............
...

Test 1

 
Fig. 2 The idea of test aggregation 

The aggregation of hypotheses is defined in the expression 
(17). The sum of probabilities of the positive hypotheses in 
one class is equal to the probability of the positive hypothesis 
assigned to the class to which these tests belong. 

( )

1
( ) ( )

Nt cl
cl cl

t
t

P H P H
=

= ∑ .           (17) 

where given test t belongs to a fixed class cl. Nt is the number 
of tests belonging to the class. It works if we can make an 
assumption that every embedding process removes the results 
of the previous data embedding. In conclusion we can write:  

0
1

( ) ( ) 1
Nc

cl

cl
P H P H

=

+ =∑         (18) 

 This works in ideal model of steganalytic system, but in 
practice in many cases we can observe an interference of 
effects caused by data embedding. This means we can obtain 
positive results from more than one test. 

V.   IMPLEMENTATION AND RESULTS 
In this subchapter I present some implementation details 

and example descriptors of single tests one from each class. 
Every test is defined and has its quality estimated. 

I take into consideration three classes: 
- signature test, 
- local structure anomaly test, 
- smoothness tests. 
We can observe that the descriptors of the tests from the 

same class, group, and family look similar. This grouping 
helps to organize and manage the set of all of the tests. It also 
makes possible to better optimize the testing process. 

A.   Signature Tests 
The descriptor of an example signature test is presented in 

the Table IV.  
 

TABLE IV 
SIGNATURE TEST DESCRIPTOR 

Signatures 
Courier 1.0 
Finds a fixed string in the second row of the image 
lsb(m)=bitand(1,m(2,:,c)),c 1..3=  

*
1sgn [10]=  

1, ( ) , { , , }

0,
lsb(m(2,x,c)==

1,x width m c r g b

x nP
x P∈< > ∈

∈⎧
∀ ⎨ ∈⎩

 

s1(c)=sum(lsb(2,1:2:Y,c)==0);
s2(c)=sum(lsb(2,2:2:Y,c)==1);
test(c)=(abs(s1+s2-Y)<=2);

 

{0,1,1,0}P ≅  

( ( ))O width image  

 

B.   Structure Anomaly Tests 
The descriptor of an example anomaly test is presented in 

the Table V. 
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TABLE V 
STRUCTURE ANOMALY TEST DESCRIPTOR 

Anomalies 
WbStego 4.2 
Finds a string of blank characters in the end of lines. 
d=dataLoad(filename);L=length(d);d(L-7:L)  

<0,32>  

, ( )
0, 32

x s x length line
s

∈<
∃ ∀ ∈< >  

thr=[0,32];
s=sum(d(L-7:L)>=thr(1) & d(L-7:L)<=thr(2))
test=(s==8)

 

10 1..

32 1( ) ( 0,32 ) ( )
256 8

n
n

ii n
P n P b

=

⎛ ⎞= ∀ ∈< > = ≅⎜ ⎟
⎝ ⎠

 

( )O n  

 
 

C.   Correlation and Smoothness Tests 
The descriptor of an example smoothness tests is presented 

in the Table VI. 
 

 
TABLE VI 

SMOOTHNESS TEST DESCRIPTOR 
Smoothness / correlation tests 

a) Cloak 0.5 
Performs smoothness tests and compares with the threshold value. 
{sm3,sm4}  

λ  

{sm3,sm4}  

1

2

3

4

sm =m(2:x,2:y)-m(1:x-1,1:y-1);

sm =2*m(2:x-1,2:y-1)-m(1:x-2,2:y-1)-m(3:x,2:y-1);
sm =2*m(2:x-1,2:y-1)-m(2:x-1,1:y-2)-m(2:x-1,3:y);
sm =4*m(2:x-1,2:y-1)-m(1:x-2,2:y-1)-m(3:x,2:y-1)-m(2:x-1,1:y-2)-m(2:x-1,3:y);
 

2

3

4

 ={0.0313,0.9687,0.9937,0.0063}

{0.0500,0.9500,1.0000 ,0}                

{0.0375 ,0.9625,1.0000,0}

sm

sm

sm

T

T

T

P

P

P

=

=

 

2( )O n  

 

D.   Implementation 
The Table VII includes the Matlab implementation of the 

basic formulas given above in this paper. 
 
 
 
 
 
 
 
 

TABLE VII 
IMPLEMENTATION OF CALCULATIONS 

Formal description Matlab Implementaion 
( )P x  ( ) / ( );i i ih hist X length X=

ur uur uur

 

0 1
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x X
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VI. CONCLUSION 
The proposed system is restrained to the content of the 

knowledge base.  It is important to notice that the system 
should work as kind of antiviral software. To make it usable 
one should be monitoring continuously the Internet and the 
steganographic software. 

In the age of information and international terrorism we can 
only imagine how important is not to ignore the space of 
possibilities, which gives steganography both for good and 
evil goals. I emphasis that covert channels really exist even if 
they are not visible and even if it is impossible to prove they 
exist. 
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