
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

604

A Reconfigurable Processing Element
Implementation for Matrix Inversion Using

Cholesky Decomposition

Aki Happonen, Adrian Burian, and Erwin Hemming

Abstract—Fixed-point simulation results are used for the
performance measure of inverting matrices using a reconfigurable
processing element. Matrices are inverted using the Cholesky
decomposition algorithm. The reconfigurable processing element is
capable of all required mathematical operations. The fixed-point
word length analysis is based on simulations of different condition
numbers and different matrix sizes.

Keywords—Cholesky Decomposition, Fixed-point, Matrix
inversion, Reconfigurable processing.

I. INTRODUCTION

THE VLSI implementations of digital signal processing
algorithms usually require fixed-point arithmetic for the

sake of chip area, operation speed, and power consumption.
The word-length and scale factor determination is important
for harvesting the benefits of fixed-point implementation.
Several researches have been conducted for optimizing the
used signal word-length, with the purpose of hardware
implementation costs minimization and optimization time
reduction [1]. At the same time progress of wireless
telecommunication technologies and several new emerging
applications have imposed flexibility requirements for
telecommunication equipment. Future wireless cellular base
stations should be able to adopt advanced receiver structures
like multiuser detection [2] and higher data rates with new
emerging multi-antenna systems [3].

These facts are posing more stringent requirements to
design processes and design tools, due to the fact that design
lead times will be limited by design and verification time.
Also design’s non-recurring engineering (NRE) cost roughly
doubles when moving from one silicon process to a new one,
with the major part of the NRE cost increase coming from
higher mask costs. The higher total development cost has
raised the desire for reconfigurable architectures [4].

During the past years, reconfigurability has raised a major

interest for both research and industry. Most of the
commercial coarse grain reconfigurable chips are capable of
typical arithmetic and logic operations, and they are having a
mesh or array architecture [5]. These reconfigurable chips do
not offer optimum solutions for algorithms requiring division
and square root operations, e.g. as needed for Cholesky
decomposition.

The focus of this paper is fixed-point implementation of
matrix inversion using Cholesky decomposition. We made our
first considerations over this problem in [16], where we have
shown that a fractional word length 16-bits is enough for
inverting small and medium size matrices with acceptable
errors. In [17] direct and iterative methods for matrix
inversion were considered. A coarse grain reconfigurable
processing element for future base stations equipment
implementation has been proposed in [18]. In the current
paper we combine our research work in a common
framework.

The paper is organized as follows: some related research
results and comments on the need for matrix inversion are
presented in Section II. The matrix inversion using Cholesky
decomposition is described in Section III. Section IV
introduces the used reconfigurable processing element
architecture and capabilities. In Section V we describe how
the system performances are being measured, and several
results are given. We conclude our work in Section VI. This
last section shortly presents our future research intentions in
this field.

II. RELATED RESEARCH

The need for matrix manipulation appears often in science
and engineering. Many well-known algorithms, arising in
signal processing, communications, parameter optimization,
include the problems of solving linear systems of equations
(LSE) or matrix inversion (MI). Because these two problems
are related, sometimes one is used to solve the other. We note
that this is not an efficient way to solve them. E.g., if we
assume that MI is computed using Gaussian elimination with
partial pivoting (GEPP), computing the solution as x=A-1b,
requires 2n3 flops, while by applying GEPP directly to the
original LSE system requires only 2n3/3. Furthermore, not
only that the inversion approach for solving LSE is 3 times
slower, but it is also much less stable. Most numerical analysts

Manuscript received November 4, 2004.
A. Happonen is with Nokia Technology Platforms, Elektroniikkatie 3,

Oulu, Finland. (e-mail: aki.p.happonen@nokia.com).
A. Burian is on leave from Tampere University of Technology, Finland. He

is now with Nokia Research Center, Hermia 5B4, Tampere, Finland. (e-mail:
adrian.burian@nokia.com).

E. Hemming is with Nokia Research Center, Meesmannstrasse 103,
Bochum, Germany. (e-mail: erwin.hemming@nokia.com).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

605

avoid the usage of matrix inversion [6]. This is because
inversion is usually more expensive, and less stable. However,
there exist practical situations when the computation of the
matrix inverse is needed. This happens for instance, for
Wiener and Kalman filtering. Also, all similarity
transformations use explicit inverses. Examples are in
statistics [7], some eigenvalue-related problems [8], or super-
conductivity computation.

There are a variety of methods for matrix inversion, usually
classified as direct and iterative. Direct methods are
distinguished by the fact that they find the correct solution in a
finite number of operations. Iterative methods are
characterized by an initial estimate of the solution, and
subsequent update of the estimate based on the previous
estimate and some error measure. In general, iterative
methods do not obtain an exact solution in finite time, but they
converge to a solution asymptotically. Iterative algorithms are
sometimes preferred, especially in problems of medium/large
size, due to smaller storage requirements and efficiency of
computational time.

Parallel algorithms for matrix inversion and related
problems (LSE, memory multiplication MM, determinant)
were initially parallel implementations of traditional serial
algorithms [9]. Later, the advances in the area of parallel
computation brought about the development of algorithms
with the purpose of better exploiting parallelism [10] [12]. In
practice, the most used algorithms for solving LSE are
Gaussian elimination with pivoting, block Gaussian
elimination, and their modifications. These are direct
algorithms; in finite number of arithmetic operations (flops)
they performed exactly, with no errors. Most of the used direct
algorithms for dense matrices fit the following pattern: there
are O(n) steps, each requiring O(n2) work, for a total work
estimate of O(n3).

We must mention that there exist direct algorithms that
solve LSE and related problems (MI, MM, determinant) in
less than O(n3) operations. Some progress has been made to
develop sequential matrix multiplication algorithms with time
complexity O(n), with 2< <3. Unfortunately, these
algorithms are impractical. The difficulties arise from two
different directions. Firstly, they require just too many
processors to be realistic. Secondly, these methods suffer from
numerical instability (e.g., large overhead constants hidden in
the big-O notation). Because of these reasons, these fast
algorithms had negligible impact on practical computations. In
fact, most of the existing literature on parallel algorithms,
considers only the standard sequential algorithm for deriving a
parallel one. A supplementary current reason is the fact that
the crossover values of n at which these fast algorithms start
to beat standard methods are exceedingly high.

To obtain efficient parallelization on distributed memory
systems, a more powerful communication mechanism is
required. Recently, fiber optical busses have emerged as
promising networks [15]. It was shown that for all 1 p n

with p being the number of processors on a linear array with a
reconfigurable pipelined bus system we need O(n /p + n2/p2/

log p) time. For O(n) processors we need O(log n) time.
The parallel variants of the sequential Gaussian elimination

algorithm for matrix inversion are using O(log2n) parallel
time and a very large but polynomial in n processor bound
[10] [12]. On a distributed memory machine the parallel
version of Gaussian elimination has the parallel run time and
the required number of processors of O(n). On a systolic array
with n(n+1)/2 cells, the execution time is 3n, while on a ring
with n/2 processors is 2n (is the required time for the
processors in the ring to communicate with each other) [11].

III. MATRIX INVERSION USING CHOLESKY
DECOMPOSITION

Given a factorization PA = LU, two ways to evaluate A–1

exist: as A–1
=U–1×L–1×P, and as the solution of UA–1=L–1×P.

These methods generally achieve different levels of efficiency
on high-performance computers, and they propagate the
rounding errors in different ways. The quality of an
approximation Y A–1 can be assessed by looking at the right
and left residuals, AY — I and YA — I, and the forward error,
Y – A-1.

In terms of the error bounds, there is little to choose among
different methods for inverting matrices [7]. Therefore, the
choice of the method can be based on other criteria, such as
performance and the use of working storage. This is why
Cholesky decomposition has been used to implement the
matrix inversion.

Any nonsingular matrix A(n n) that can be factored in the
form RTR is positive definite. The converse is also true. If A is
positive definite, then A can be factored in the form A = LTL,
where L is lower triangular. If, in addition, we require the
diagonal elements of L to be positive, the decomposition is
unique and is called the Cholesky decomposition or the
Cholesky factorization of A. The used algorithm, which uses
the same location of A for the result L, is given in Figure 1.

for j = 1:n,
 if j > 1;
 A(j:n, j)= A(j:n, j) - A(j:n, 1:j-1)*A(j, 1:j-1)';
 end;
 A(j:n, j)=A(j:n, j)/sqrt(A(j, j));
end;

Figure 1. Cholesky-factorization – Matlab Example.

Given the Cholesky decomposition of A, we solve the linear
system Ax = b by solving the two triangular systems

1. LTy = b and 2. Lx=y.
A triangular system requires ½n2 operations to solve, and

the two systems together require n2 operations. To the extent
that the operation counts reflect actual performance, we will
spend more time in the Cholesky algorithm when 1/6n3 > n2,
or when n > 6. For somewhat larger n, the time spent solving
the triangular systems is insignificant compared to the time
spent computing the Cholesky decomposition. In particular,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

606

having computed the Cholesky decomposition of a matrix of
moderate size, we can solve several systems having the same
matrix at practically no extra cost. At the beginning of the
Section II we have deprecated the practice of computing a
matrix inverse to solve a linear system. Now we can see why.

TABLE I.
PROCESSING ELEMENT EQUATIONS

Function
Mathematical equation in

used architecture
 Operation
Command

Square root C=2(log
2

(A)/2) 000
Square C=2(2*log

2
(A)) 001

Multiplication C=2(log
2

(A)+log
2

(B)) 010
Division C=2(log

2
(A)-log

2
(B)) 011

Add C=A+B 100
Subtract C=A-B 101

Conjugated square
root and division

C=2(log2(B)-log
2

(A)/2) 110

After the decomposition is done, computing the inverse of a
triangular matrix and multiplying it with its transpose can do
computing the inverse. The used algorithm computes the
columns of X=L-1 in reverse order and it is shown in Figure 2.

for j = n:-1:1,
 X(j,j) = 1/L(j, j);
 for k = j+1:n

A. Fixed point implementation for i = j+1:n
We created a simulation environment for the analysis of

word length effects over matrix inversion performances. The
base architecture of the reconfigurable processing element is
the same for all word lengths. The look-up tables (LUT)
contain two read only memories (ROM), scaled according to
the required accuracy. We have used the following ROM
sizes: 64x17 bits for Dec2Log, and 64x14 bits and Log2Dec.
The output of the reconfigurable processing element is
truncated to the reported number of bits.

 X(k, j) = X(k, j) + X(k, i)*L(i, j);
 end;
 end;
 for k = j+1:n
 X(k, j) = -X(j, j)*X(k, j);
 end;
end;

Figure 2.Inverse of a triangular matrix – Matlab example. For inverting a triangular matrix we have changed the
position of the zeros in order to increase the number of
effective bits. This scaling does not affect the used word
length. We have assumed that the proposed reconfigurable
processing architecture is a hardware accelerator (HWA) for
the main processor and main processor is able to scale down
result to right level. All the needed scaling has been
implemented using shifters.

IV. ARCHITECTURE OVERVIEW

In this section, we describe the used matrix inversion
engine. This engine is implemented using a reconfigurable
processing element plotted in

Figure 3. The complexity analysis for a 12 bits
implementation can be found in [18].

V. SIMULATION RESULTS

For reporting the results the residual Z = A*inv(A)-I has
been used (since our input matrices are positive definite, the
other residual is not needed). The computation has been
considered successful if the 2-norm of the residual is less than
a predefined error level. The used error levels have been k =
2-k, k = 0,1,…,5. Also the forward error has been computed
using the Matlab environment in order to show the differences
between fixed-point and floating-point solutions. The
maximum and mean values of forward errors are given.

LUT
Dec2Log

LUT
Log2Dec

+/-

S
hi

ft
S

hi
ft

S
hi

ft

A

C

Control
Operation

LUT
Dec2LogB

Si
gn

Si
gn

Si
gn

LUT
Dec2Log

LUT
Log2Dec

+/-+/-+/-

S
hi

ft
S

hi
ft

S
hi

ft

A

C

Control
Operation

LUT
Dec2LogB

Si
gn

Si
gn

Si
gn

The results from TABLE II represent the percentage of
successful inverse computations for 100 input matrices, versus
the specified error level. We conclude from these results that
the performance of matrix inversion engine decreases with the
condition number of the input matrices, as we expected. The
forward error values for condition numbers between 200-300
are shown in Figure 4, for the same test case presented in
TABLE II. We note that even if the forward error is relatively
small, the residual errors are significant.

Figure 3. Processing Element Architecture.

The architecture has fixed latency for following
mathematical operations: addition, subtraction, multiplication,
division and square root. In addition to these operations,
conjugated equations, e.g. C= A/(B1/2), can be executed every
clock cycle with 3 clock cycles latency.

TABLE I shows the supported arithmetic operations, their
implementation, and the operation command having A and B
as inputs and C as the output of the processing element. By
using the logarithmic arithmetic for multiply and division, the
implementation uses only adders. Similarly implementations
for square and square root are derived using shifters.

We have also analyzed the effect of word length for matrix
computing engine performance. TABLE III shows the results of
different word lengths for 16x16 matrices having condition
number less than 200. The simulation results are percentages
of successful inverse computations for 100 randomly

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

607

REFERENCESgenerated input matrices versus the specified error level.

[1] Ki-Il Kum and Wonyong Sung, “Combined word-length optimization
and high-level synthesis of digital signal processing systems”, IEEE

Tran. On Computer-Aided Design of Integrated Circuits and Systems,
vol. 20, no. 8, Aug. 2001, pp. 921-930.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, a fixed-point implementation of matrix
inversion using reconfigurable HW processing element to
perform Cholesky decomposition has been presented.
Experiments using several fixed-point word lengths have been
realized. By using our reconfigurable processing element with
a 16-bits word length, the obtained errors are acceptable for
small size matrices with low condition numbers. Higher word
length is needed to invert larger matrices or higher condition
numbers.

[2] M. J. Juntti, “Performance analysis of linear multisensor multiuser
receivers for CDMA in fading channels”, IEEE Journal on Selected

Areas in Communications, vol. 18 , no. 7 , July 2000, pp. 1221 – 1229.
[3] G. J. Foschini and M. J. Gans, "On limits of wireless communications

in a fading environment when using multiple antennas", Wireless

Personal Communications, vol. 6, no.3, 1998
[4] R. Baines and D. Pulley, ”A Total Cost Approach to Evaluating

Different Reconfigurable Architectures for Baseband Processing in
Wireless Receivers”, IEEE Communication Magazine, January 20003,
Page(s): 105-113

[5] R. Hartenstein, ”A decade of reconfigurable computing: a visionary
retrospective”, Design, Automation and Test in Europe, 2001.
Conference and Exhibition 2001. Proceedings, 13-16 March 2001,
Page(s): 642 –649

In the future, we are planning to use the proposed
reconfigurable processing element in selected wireless
applications. One target for our future research is to study the
matrix inversion performances as part of a wireless receiver,
and to establish the word length requirements based on the
characteristics of matrices to be inverted in this receiver.

[6] N.J. Higham, Accuracy and Stability of Numerical Algorithms,
SIAM, Philadelphia, 1996.

[7] P. McCullagh and J.A. Nelder, Generalized Linear Models,
Chapmann and Hall, London, 1989.

[8] R. Byers, ”Solving the algebraic Riccati equation with matrix sign
function”, Linear Algebra Applications, vol. 85, 1987, pp. 267-279.TABLE II

[9] G.W. Stewart, Afternotes on Numerical Analysis, SIAM,
Philadelphia, 1996.

16 BITS IMPLEMENTATION RESIDUALS FOR 8X8 MATRICES WITH DIFFERENT

CONDITION NUMBERS.

Condition Numbers
Error 0-50 50-100 100-200 200-300

0 100 100 85 40

1 100 82 60 12

2 82 33 9 0

3 14 0 0 0

4 0 0 0 0

[10] M. Cosnard and D. Trystram, Parallel Algorithms and

Architectures, Blackwell North America, Inc., 1995.
[11] A. El-Amawy, “A Systolic Architecture for Fast Dense Matrix

Inversion”, IEEE Trans. Computers, 38, no. 3, pp. 449-455, 1989.
[12] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to

Parallel Computing. Design and Analysis of Algorithms, The
Benjamin/Cummings Publishing Company, Inc., 1994.

[13] E. Dekel, D. Nassimi, and S. Sahni, “Parallel Matrix and Graph
Algorithms”, SIAM J. Computing, vol. 10, pp. 657-673, 1981.

[14] H. Park, H.J. Kim, and V.K. Prasanna, “An O(1) time optimal
algorithm for multiplying matrices on reconfigurable mesh”,
Information Processing Letters, vol. 47, pp. 109-113, 1993.

[15] K. Li and Y. Pan, “Parallel Matrix Multiplication on a Linear Array
with a Reconfigurable Pipelined Bus System”, IEEE Trans. Computing,
vol. 50, no. 5, pp. 519-525, 2001.

[16] A. Burian, J. Takala, and M. Ylinen, “A fixed-point implementation
of matrix inversion using Cholesky decomposition”, The 46th
International Midwest Symposium On Circuits and Systems, MWSCAS,
December 27-30, 2003, Cairo, Egypt.

[17] M. Ylinen, A. Burian, and J. Takala, “Direct versus iterative
methods for fixed-point implementation of matrix inversion”, Circuits
and Systems, 2004. ISCAS '04. Proceedings of the 2004 International
Symposium on , Volume: 3 , 23-26 May 2004, Pages:III - 225-8 Vol.3.

[18] A. Happonen, E. Hemming, and M.J. Juntti, “A novel coarse grain
reconfigurable processing element architecture”, The 46th International
Midwest Symposium On Circuits and Systems, MWSCAS, December
27-30, 2003, Cairo, Egypt.

Figure 4. Forward Error and Condition Numbers.

TABLE III
RESIDUALS FOR 16X16 MATRICES WITH DIFFERENT WORD LENGTHS.

Error 16 bits 20 bits 24 bits

0 79 99 100

1 65 85 97

2 28 22 80

3 1 0 25

4 0 0 1

5 0 0 0

