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Abstract—Fixed-point simulation results are used for the 
performance measure of inverting matrices using a reconfigurable 
processing element. Matrices are inverted using the Cholesky
decomposition algorithm. The reconfigurable processing element is
capable of all required mathematical operations. The fixed-point
word length analysis is based on simulations of different condition 
numbers and different matrix sizes. 
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I. INTRODUCTION 

THE VLSI implementations of digital signal processing
algorithms usually require fixed-point arithmetic for the

sake of chip area, operation speed, and power consumption.
The word-length and scale factor determination is important
for harvesting the benefits of fixed-point implementation.
Several researches have been conducted for optimizing the
used signal word-length, with the purpose of hardware
implementation costs minimization and optimization time
reduction [1]. At the same time progress of wireless
telecommunication technologies and several new emerging
applications have imposed flexibility requirements for
telecommunication equipment. Future wireless cellular base
stations should be able to adopt advanced receiver structures 
like multiuser detection [2] and higher data rates with new
emerging multi-antenna systems [3].

These facts are posing more stringent requirements to
design processes and design tools, due to the fact that design
lead times will be limited by design and verification time.
Also design’s non-recurring engineering (NRE) cost roughly
doubles when moving from one silicon process to a new one,
with the major part of the NRE cost increase coming from
higher mask costs. The higher total development cost has 
raised the desire for reconfigurable architectures [4]. 

During the past years, reconfigurability has raised a major

interest for both research and industry. Most of the
commercial coarse grain reconfigurable chips are capable of 
typical   arithmetic and logic operations, and they are having a 
mesh or array architecture [5]. These reconfigurable chips do 
not offer optimum solutions for algorithms requiring division
and square root operations, e.g. as needed for Cholesky
decomposition.

The focus of this paper is fixed-point implementation of 
matrix inversion using Cholesky decomposition. We made our
first considerations over this problem in [16], where we have 
shown that a fractional word length 16-bits is enough for 
inverting small and medium size matrices with acceptable
errors. In [17] direct and iterative methods for matrix
inversion were considered. A coarse grain reconfigurable
processing element for future base stations equipment
implementation has been proposed in [18]. In the current
paper we combine our research work in a common
framework.

The paper is organized as follows: some related research
results and comments on the need for matrix inversion are 
presented in Section II. The matrix inversion using Cholesky
decomposition is described in Section III. Section IV 
introduces the used reconfigurable processing element
architecture and capabilities. In Section V we describe how
the system performances are being measured, and several 
results are given. We conclude our work in Section VI. This
last section shortly presents our future research intentions in
this field.

II. RELATED RESEARCH

The need for matrix manipulation appears often in science
and engineering.  Many well-known algorithms, arising in
signal processing, communications, parameter optimization,
include the problems of solving linear systems of equations
(LSE) or matrix inversion (MI). Because these two problems
are related, sometimes one is used to solve the other. We note
that this is not an efficient way to solve them.  E.g., if we 
assume that MI is computed using Gaussian elimination with
partial pivoting (GEPP), computing the solution as x=A-1b,
requires 2n3 flops, while by applying GEPP directly to the
original LSE system requires only 2n3/3. Furthermore, not
only that the inversion approach for solving LSE is 3 times
slower, but it is also much less stable. Most numerical analysts
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avoid the usage of matrix inversion [6]. This is because
inversion is usually more expensive, and less stable. However,
there exist practical situations when the computation of the 
matrix inverse is needed. This happens for instance, for 
Wiener and Kalman filtering.  Also, all similarity
transformations use explicit inverses. Examples are in 
statistics [7], some eigenvalue-related problems [8], or super-
conductivity computation.

There are a variety of methods for matrix inversion, usually
classified as direct and iterative. Direct methods are
distinguished by the fact that they find the correct solution in a
finite number of operations. Iterative methods are 
characterized by an initial estimate of the solution, and
subsequent update of the estimate based on the previous
estimate and some error measure.  In general, iterative
methods do not obtain an exact solution in finite time, but they
converge to a solution asymptotically. Iterative algorithms are
sometimes preferred, especially in problems of medium/large
size, due to smaller storage requirements and efficiency of 
computational time.

Parallel algorithms for matrix inversion and related
problems (LSE, memory multiplication MM, determinant)
were initially parallel implementations of traditional serial
algorithms [9]. Later, the advances in the area of parallel
computation brought about the development of algorithms
with the purpose of better exploiting parallelism [10] [12]. In
practice, the most used algorithms for solving LSE are 
Gaussian elimination with pivoting, block Gaussian
elimination, and their modifications. These are direct 
algorithms; in finite number of arithmetic operations (flops)
they performed exactly, with no errors. Most of the used direct 
algorithms for dense matrices fit the following pattern: there
are O(n) steps, each requiring O(n2) work, for a total work 
estimate of O(n3).

We must mention that there exist direct algorithms that
solve LSE and related problems (MI, MM, determinant) in
less than O(n3) operations. Some progress has been made to
develop sequential matrix multiplication algorithms with time
complexity O(n ), with 2< <3. Unfortunately, these
algorithms are impractical. The difficulties arise from two
different directions. Firstly, they require just too many
processors to be realistic. Secondly, these methods suffer from
numerical instability (e.g., large overhead constants hidden in
the big-O notation). Because of these reasons, these fast 
algorithms had negligible impact on practical computations. In 
fact, most of the existing literature on parallel algorithms,
considers only the standard sequential algorithm for deriving a 
parallel one. A supplementary current reason is the fact that
the crossover values of n at which these fast algorithms start 
to beat standard methods are exceedingly high.

To obtain efficient parallelization on distributed memory
systems, a more powerful communication mechanism is
required. Recently, fiber optical busses have emerged as 
promising networks [15]. It was shown that for all 1 p n

with p being the number of processors on a linear array with a
reconfigurable pipelined bus system we need O(n /p + n2/p2/

log p) time. For O(n ) processors we need O(log n) time.
The parallel variants of the sequential Gaussian elimination

algorithm for matrix inversion are using O(log2n) parallel
time and a very large but polynomial in n processor bound 
[10] [12]. On a distributed memory machine the parallel
version of Gaussian elimination has the parallel run time and
the required number of processors of O(n). On a systolic array
with n(n+1)/2 cells, the execution time is 3n, while on a ring
with n/2 processors is 2n  (  is the required time for the
processors in the ring to communicate with each other) [11]. 

III. MATRIX INVERSION USING CHOLESKY 
DECOMPOSITION

Given a factorization PA = LU, two ways to evaluate A–1

exist: as A–1
=U–1×L–1×P, and as the solution of UA–1=L–1×P.

These methods generally achieve different levels of efficiency
on high-performance computers, and they propagate the
rounding errors in different ways. The quality of an 
approximation Y  A–1 can be assessed by looking at the right
and left residuals, AY — I and YA — I, and the forward error, 
Y – A-1.

In terms of the error bounds, there is little to choose among
different methods for inverting matrices [7]. Therefore, the
choice of the method can be based on other criteria, such as
performance and the use of working storage. This is why
Cholesky decomposition has been used to implement the
matrix inversion.

Any nonsingular matrix A(n n) that can be factored in the 
form RTR is positive definite. The converse is also true. If A is 
positive definite, then A can be factored in the form A = LTL,
where L is lower triangular. If, in addition, we require the
diagonal elements of L to be positive, the decomposition is 
unique and is called the Cholesky decomposition or the
Cholesky factorization of A. The used algorithm, which uses
the same location of A for the result L, is given in Figure 1. 

for j = 1:n, 
   if j > 1; 
      A(j:n, j)= A(j:n, j) - A(j:n, 1:j-1)*A(j, 1:j-1)';
   end; 
   A(j:n, j)=A(j:n, j)/sqrt(A(j, j));
end;

Figure 1. Cholesky-factorization – Matlab Example.

Given the Cholesky decomposition of A, we solve the linear
system Ax = b by solving the two triangular systems

1. LTy = b   and 2. Lx=y.
A triangular system requires ½n2 operations to solve, and

the two systems together require n2 operations. To the extent
that the operation counts reflect actual performance, we will 
spend more time in the Cholesky algorithm when 1/6n3 > n2,
or when n > 6. For somewhat larger n, the time spent solving
the triangular systems is insignificant compared to the time
spent computing the Cholesky decomposition. In particular,
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having computed the Cholesky decomposition of a matrix of 
moderate size, we can solve several systems having the same
matrix at practically no extra cost. At the beginning of the
Section II we have deprecated the practice of computing a
matrix inverse to solve a linear system. Now we can see why.

TABLE I.
PROCESSING ELEMENT EQUATIONS

Function
Mathematical equation in 

used architecture 
 Operation 
Command

Square root C=2(log
2

(A)/2) 000
Square C=2(2*log

2
(A)) 001

Multiplication C=2(log
2

(A)+log
2

(B)) 010
Division C=2(log

2
(A)-log

2
(B)) 011

Add C=A+B 100
Subtract C=A-B 101

Conjugated square
root and division 

C=2(log2(B)-log
2

(A)/2) 110

After the decomposition is done, computing the inverse of a 
triangular matrix and multiplying it with its transpose can do
computing the inverse. The used algorithm computes the
columns of X=L-1 in reverse order and it is shown in Figure 2. 

for j = n:-1:1, 
    X(j,j) = 1/L(j, j);
    for k = j+1:n

A. Fixed point implementation        for i = j+1:n 
We created a simulation environment for the analysis of 

word length effects over matrix inversion performances. The
base architecture of the reconfigurable processing element is 
the same for all word lengths. The look-up tables (LUT)
contain two read only memories (ROM), scaled according to 
the required accuracy. We have used the following ROM 
sizes: 64x17 bits for Dec2Log, and 64x14 bits and Log2Dec. 
The output of the reconfigurable processing element is
truncated to the reported number of bits.

            X(k, j) = X(k, j) + X(k, i)*L(i, j); 
        end; 
    end; 
    for k = j+1:n
        X(k, j) = -X(j, j)*X(k, j); 
    end; 
end;

Figure 2.Inverse of a triangular matrix – Matlab example. For inverting a triangular matrix we have changed the
position of the zeros in order to increase the number of
effective bits. This scaling does not affect the used word 
length. We have assumed that the proposed reconfigurable
processing architecture is a hardware accelerator (HWA) for
the main processor and main processor is able to scale down 
result to right level. All the needed scaling has been
implemented using shifters.

IV. ARCHITECTURE OVERVIEW

In this section, we describe the used matrix inversion
engine. This engine is implemented using a reconfigurable
processing element plotted in

Figure 3. The complexity analysis for a 12 bits
implementation can be found in [18].

V. SIMULATION RESULTS

For reporting the results the residual Z = A*inv(A)-I has 
been used (since our input matrices are positive definite, the 
other residual is not needed). The computation has been
considered successful if the 2-norm of the residual is less than
a predefined error level. The used error levels have been k = 
2-k, k = 0,1,…,5. Also the forward error has been computed
using the Matlab environment in order to show the differences
between fixed-point and floating-point solutions. The 
maximum and mean values of forward errors  are given.

LUT
Dec2Log

LUT
Log2Dec

+/-

S
hi

ft
S

hi
ft

S
hi

ft

A

C

Control
Operation

LUT
Dec2LogB

Si
gn

Si
gn

Si
gn

LUT
Dec2Log

LUT
Log2Dec

+/-+/-+/-

S
hi

ft
S

hi
ft

S
hi

ft

A

C

Control
Operation

LUT
Dec2LogB

Si
gn

Si
gn

Si
gn

The results from TABLE II represent the percentage of 
successful inverse computations for 100 input matrices, versus
the specified error level. We conclude from these results that
the performance of matrix inversion engine decreases with the 
condition number of the input matrices, as we expected. The 
forward error values for condition numbers between 200-300
are shown in Figure 4, for the same test case presented in
TABLE II. We note that even if the forward error is relatively
small, the residual errors are significant. 

Figure 3. Processing Element Architecture. 

The architecture has fixed latency for following
mathematical operations: addition, subtraction, multiplication,
division and square root. In addition to these operations,
conjugated equations, e.g. C= A/(B1/2), can be executed every 
clock cycle with 3 clock cycles latency. 

TABLE I shows the supported arithmetic operations, their
implementation, and the operation command having A and B
as inputs and C as the output of the processing element. By
using the logarithmic arithmetic for multiply and division, the
implementation uses only adders. Similarly implementations
for square and square root are derived using shifters.

We have also analyzed the effect of word length for matrix
computing engine performance. TABLE III shows the results of 
different word lengths for 16x16 matrices having condition 
number less than 200. The simulation results are percentages
of successful inverse computations for 100 randomly
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TABLE III 
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