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Abstract—In this paper, a numerical study has been made to
analyze the transient 2-D flows of a viscous incompressible fluid
through channels with forward or backward constriction. Problems
addressed include flow through sudden contraction and sudden
expansion channel geometries with rounded and increasingly sharp
reentrant corner. In both the cases, numerical results are presented for
the separation and reattachment points, streamlines, vorticity and
flow patterns. A fourth order accurate compact scheme has been
employed to efficiently capture steady state solutions of the
governing equations. It appears from our study that sharpness of the
throat in the channel is one of the important parameters to control the
strength and size of the separation zone without modifying the
general flow patterns. The comparison between the two cases shows
that the upstream geometry plays a significant role on vortex growth
dynamics.

Keywords—Forward and backward constriction, HOC scheme,
Incompressible viscous flows, Separation and reattachment points.

I. INTRODUCTION

N recent years, there has been considerable interest to study
the flow in presence of obstructions such as different types

of blocking or various constrictions like a valve, an orifice and
so on (which are widely used in a pipe line systems) as these
sites are prone to accumulate high shear stress and causes the
flow disturbances whose outcome could be important in
physiological studies. Further, a reduction in cross sectional
area caused by constriction brings about an increase in flow
resistance. The dependency of resistance on the flow rate is an
important factor for a design of pumping devices. The flow
phenomena associated with these problems could be
resembled with flow through a channel with forward and
backward constricted channel with re-entrant corner. This is a
classic problem which is important in both engineering and
biomechanics. The richness and complexity of the flow
patterns occur in both the cases even in a relatively simplest of
geometrical settings. Extensive studies have been performed
for flow through asymmetric and symmetric channel with
sudden expansion or contraction over the last two decades,
which include uniform, non-uniform and pseudospectral grids.
The backward facing step flow with right angled expansion
asymmetrical geometries possesses a large in number. Among
them we can cite Armaly et al. [1], Durst et al. [2], Tutty and
Peddly [3] whereas slope with 450 and right angled expansion
has been studied by Sobey [4].
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They made great contributions in the area of channel flow.
For the case of flow in a symmetric channel with right angle
as well as 450 expansion have been studied both
experimentally and numerically with different expansion ratio.
Among them Durst group [2], [5]-[7], Sobey [4], [8] were
prolific contributors. In their studies, the appearance of
asymmetric flow with increase in Reynolds number in a
symmetrical channel has been justified. This phenomenon is
explained by Coanda effect [9] and the causes of instability
have been analyzed in [8], [10], [11]. They made a significant
stride towards understanding the channel flow with expansion.
In the case of oscillatory flow, they have observed a train of
vortices in the downstream side of the corner. These flow
phenomena were absent in the study of Pedrizzetti [12] in
which he has used a circular conduit having smooth rounded
corner for the experimental results and numerical predictions.
Only when the expansion is sharp, the symmetric jet flow is
observed [8]. The study of flow in a channel with different
degree of constriction in a channel with forward and backward
constriction is limited [13], [14] which motivates to determine
the flow restrictive effects of the geometry having the
reentrant corner with different curvature to meet the purpose
of this paper.

In this paper, the flow through axisymmetric non-uniform
rigid channel having varying degree of constriction in a
forward constriction and backward constriction are discussed
numerically over a large range of Reynolds numbers. The
present paper is in conjunction with our previous work
focusing on the transient flow analysis and the robustness of
our proposed scheme [15]. The N-S equations in stream-
function vorticity form were solved using our proposed fully
implicit HOC scheme which is second or first order accurate
in time depending on a weighted average parameter and fourth
order accurate in space. For choice of the value 0.5 of the
weighted average parameter gives rise to a second order
Crank-Nicholson type scheme which we have used in our
computations. Detailed scheme can be found in [15].

The paper is organized in the following way: section 2
describes the numerical procedure, section 3 presents and
discusses the details numerical results, and Section 4, the
conclusion.

II. MATHEMATICAL FORMULATIONS

A. Governing Equations

The governing equations representing the 2-D unsteady
incompressible viscous flow of a fluid are the N-S equations
which, in non-dimensional primitive variable formulation can
be written as
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For non-dimensionalization, we have considered is
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= is called Reynolds number, where L

is the unperturbed channel width, 0u is the average velocity at

the entrance and υ is the kinematic viscosity. For
convenience, the asterisk sign has been removed from the
variables of equations (1)-(3).

Instead of pressure and velocity, the derived quantities such
as stream function ( )tyx ,,ψ and vorticity ( )tyx ,,ζ can be

defined in terms of vu, as
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With these, the stream function-vorticity ( )ζψ − form of the

N-S equations (1)-(3) can be written as
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The equations (6) and (7) are solved for the whole channel
width as well as for half width with a symmetry condition on
the centerline.

This stream function-vorticity formulation has major
advantages over the primitive variable form: firstly, it satisfies
the continuity equation automatically and secondly, it
decouples the pressure calculation from the velocity
calculation. In the process, it also eliminates two
computational difficulties, namely, finding (i) the correct
boundary condition for pressure, and (ii) an explicit pressure
equation satisfying the incompressibility constraint.

B. Flow Geometry and Mesh Structure

In this paper, the numerical study is presented for two test
cases. The first one is the forward constricted channel and the
second one is a backward constricted channel, formed in a
process of contraction and expansion respectively having
reentrant corner in both cases. The schematic flow diagrams
and corresponding boundary conditions are shown in
Figs. 1(a) and 1(b). To resolve the flow accurately at corners,
a more refined grid needs to be incorporated. One such mesh
structure is provided through a conformal transformation [13]

(a)

(b)
Fig. 1 (a) Forward (physical) (b) backward (physical) constricted

channel flow configuration with boundary conditions

that maps the actual nonuniform geometry (physical domain)
to a uniform rectangular geometry (computational domain) of
width (d) as follows:
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are the inlet and outlet radii of the channel and ¸ λ controls the
smoothness as well as degree of sharpness of the constriction
with increasing value of λ indicating a more sharp corner. In
the present computation, in the physical plane the inlet and the
outlet radii are taken as 0.1=ir

and 5.0=or
for forward

constricted (Fig. 1(a)) and 5.0=ir
and 0.1=or

for backward

constricted (Fig. 1(b)) channel whereas in the computational
plane the width ( )d of the channel is taken as λ The

corresponding mesh distributions in the physical plane has
been cited in Figs. 2(a) and 2(b) for forward and backward
constricted channel respectively whereas the varying shape of
the top boundary due to different choice of the degree of
sharpness of the constriction has been shown in Fig. 3. It is
seen that in the first case and second case, 6.0=λ makes
a smooth gradual contraction and expansion respectively
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(a)

(b)
Fig. 2 Mesh-geometry in the physical plane for (a) forward (b)

backward constricted channel

(a)

(b)
Fig. 3 Top boundary for different degree of constriction in (a)

forward (b) backward constricted channel

Whereas 0.1=λ produces a severe sharp corner by increasing
the height just immediate before and after the corner in
comparison to .9.0=λ The location of the corner in the
forward constricted channel is on the right of origin whereas
in the backward constricted channel it appears on the left of
origin. Further, in the case of forward and backward
constricted channel the sharp edge is in the inward direction of
the expanded region.

C.Boundary Conditions

The boundary conditions imposed on the flow domain are
as follows:

For whole channel, on the top and bottom wall in both the
cases a fixed rigid wall is considered and the usual no-slip
condition is imposed i.e.

.0== vu (11)

For half channel, symmetry conditions are upheld on the
centerline which translates the radial velocity component and
the shear stresses as

.0==
∂
∂

v
y

u
(12)

At the entrance, a parabolic velocity profile is prescribed:
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where 1c and 2c are constants.

At the outlet fully developed flow is considered. A fifth
order discrete formula of boundary conditions for ζψ ,,, vu

at the outlet and also for u along the centerline has been
employed. The formula is given as follows [16]:
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D.Numerical Procedure

A uniform rectangular mesh of steps h and k is constructed
on the computational plane along the ξ and η -directions

respectively (Fig. 4). Using central difference formula in the
discretization procedure and approximates the higher order
derivatives in the truncation error terms by using original
equations, together with Crank-Nicholson type scheme for
temporal part produces a higher order compact scheme which
is fourth order accurate in space and second order accurate in
time. This process produces a system of equations in both ψ
and .ζ
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Fig. 4 The 9-point HOC Stencil

The system of equations in ζψ , which are obtained after

discretization in the transformed plane, can be written in
matrix form as

,1 �
�
��

�
�=+ nnA �f� (14)

where the coefficient matrix A is an asymmetric sparse
matrix. This linear system is, with the present choice of
coordinates, made of nine diagonals and non symmetric. For a

grid of size ,nm × A has dimension ,mn and 1+n� and

�
�
��

�
� n�f are mn -component vectors. As the coefficient

matrix A is not generally diagonally dominant, conventional
iterative methods such as Gauss-Seidel cannot be used. On
uniform grids, some of the associated matrices are symmetric
and positive definite, which allows algorithms like conjugate-
gradient (CG) [17] to be used. As non-uniform grid invariably
leads to non-symmetric matrices, in order to solve these
systems the biconjugate gradient stabilized method
(BiCGStab) [17], [18], [19] is used here without
preconditioning. The convergence criterion for steady state
solution is that for all the grid points

,1max Tolnn <−+ �� (15)

where Tol is the tolerance limit for convergence. The
numerical algorithm is as follows:
1) Accuracy: In addition to grid step and the tolerance of the
iterative procedure, the positions of upstream and the
downstream boundaries affect the accuracy of the numerical
solution. We have numerically experimented and found that
the minimum inlet distance from the throat should be 8−≈x
and 10− for forward and backward constricted channel
respectively. In order to get a fully developed flow at the
outlet for Reynolds numbers up to 1000Re = (for 6.0=λ ),

750Re = (for 9.0=λ ) and 500Re = (for 0.1=λ ), we set

a distance for the outlet condition from the throat as 25≈x in
the case of forward constricted channel whereas for backward
constricted channel we set the distance as 45≈x for Reynolds
numbers up to 500Re = (for 6.0=λ ), and 30≈x up to

250Re = (for 0.1,9.0=λ ). However, these distances

depend on the parameters (Re and width of the channel).
Throughout the computation we have used step length

40

1
,

30

1
,

25

1
,

20

1=h along the horizontal and
40

1
,

30

1=k

along the vertical direction in the computational plane for the
corner flow geometry defined by 0.1,9.0,6.0=λ and time

step 001.0=Δt in all the cases.

III. RESULTS AND DISCUSSIONS

A. General Flow Behavior

Generally, flows in an axisymmetric constricted channel
develop closed separation bubbles (also called as recirculation
zones) immediate after the channel throat for relatively large
values of Re. In addition to the appearance of vortices, some
more complex flow phenomena are usually seen in the case of
transient flows, which is not the case for steady flows.
Locating the centers of such vortices is difficult from the
vorticity field since there is no unique relation between
vorticity contours and separated recirculating zones.

The strength of a vortex is defined by the difference
between the Max (ψ ) in the calculated region and ψ at the

wall, and its center is defined by the point at which ψ attains

its maximum value. Besides the formation of a strong vortex
there exists a large velocity gradient in the flow field, this
combination could cause several factors. Therefore, it is
important to study the strength and location of a vortex.

In the following two subsections, we have presented results
of numerical solutions of the N-S equations for an unsteady
flow in a non-uniform rigid channel with a forward
constriction and backward constriction having a smooth corner
with increasing sharpness. Extensive set of model cases have
been considered to study the numerical and physical aspects of
the flow.

TABLE I
GEOMETRIES OF FORWARD CONSTRICTED CHANNEL AND REYNOLDS

NUMBER RANGE STUDIES

B. Flow in a Channel with Forward Constriction

In this section, numerical study of flows in an axisymmetric
channel with forward constriction has been presented.
Numerical results are compared with that of Mancera et al.
[13], [14] and they are in excellent agreement. Three model
cases have been considered as given in Table I.

We have restricted our study up to .1000Re = The
channel geometries used in [13], [14] are closely
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approximated by our models given in Table I. It should be
mentioned that convergent solutions can be obtained for all the
models over a wide range of Reynolds numbers. Time
marching steady state results with zero initial condition have
been presented in the form of tables (Tables III and IV) as
well as in the form of figures (Figs. 5 - 9). A description of the
various possible steady state laminar flow patterns is perhaps
best rendered by a display of streamlines and vorticity
contours for different degrees of constrictions as well as flow
parameters.

It has been numerically experimented that no separation
zone is formed in the range of the Reynolds numbers studied
(given in Table I) for model M1 ( 6.0=λ ), whereas in model
M2 ( 9.0=λ ) separation starts to occur at approximately

168Re = and in the case of model M3 ( 0.1=λ ) separation is
seen for Reynolds number as low as 1. In the forward
constricted channel geometry, separation occurs when

.8.0≥λ

Fig. 5 In a forward constricted channel: The first column
corresponds to streamline contour for fixed � � ����with different
Re and the second column corresponds to streamline contour for

Re=500 with different��.

In Fig. 5, the first column illustrates the curves of constant
stream function for a fixed λ ( 8.0=λ ) with different Re
values and the second column represents the same for a fixed
Re with different degrees of constrictions. It is evident that
there is no separation zone even for 500Re = in the
geometry defined by 7.0,6.0=λ respectively whereas a

small recirculation zone develops in the case of 8.0=λ . It is
also seen that in the case of 8.0=λ , even for higher Res (e.g.

1000,700Re = ) the size of the recirculation region is small

compared to lower Re (e.g. 500Re = ) in the case of model
M2 ( 9.0=λ ) and M3 ( 0.1=λ ). The above facts conclude
that the corner sharpness is more important for the
development of corner vortex than velocity (or Re). In Fig. 6,
we have presented the corresponding vorticity contours for
Fig. 5. It shows the existence of several high gradient regions
in the downstream side of the throat. It can be emphasized that
changes in area around the throat of the channel due to
different degrees of sharpness could be the main reason for the
flow disturbance and the generation of different size of
vortices.

Fig. 6 In a forward constricted channel: The first column
corresponds to vorticity contour for fixed � � ���� with different Re
and the second column corresponds to vorticity contour for Re=500

with different��.

Separation and reattachment points for different Res are
presented in the Table II for 9.0=λ and 0.1=λ
respectively. For 250Re = in the case of 0.1=λ , we have
compared our results with [13] (given in Table II) and an
excellent agreement has been found. It is seen that the length
of the separation zone increases with the increase in Res for
both the model cases. In comparison to Table III, it is also
seen that in the case of model M2 ( 9.0=λ ), the separation
point occurs in the downstream side of the corner for Re as
large as 500 but for higher Re (say 750Re = ) separation
point occurs just immediate before the corner whereas in the
case of model M3 ( 0.1=λ ), the separation point starts to
occur at corner for .500Re250 ≤≤

TABLE II
SEPARATION AND REATTACHMENT POINTS IN THE FORWARD CONSTRICTED

CHANNEL FLOW FOR � � ���
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TABLE III

LOCATION OF THE CORNER 	
��
� ���
� IN THE FORWARD

CONSTRICTED CHANNEL FOR DIFFERENT �

TABLE IV
VORTEX CENTER OF THE FORWARD CONSTRICTED CHANNEL FLOW

FOR��� � ���� ���

In Table IV, the center of the vorticity and its strength have
been presented for different Res with different degrees of
constriction. It reveals that for a fixed Re the center of the
vortex shifts in the downstream with the increase in degree of
constriction and the same phenomena occurs for a fixed λ
with increase in Re.

Fig. 7 shows the variation of centerline velocity with axial
location for the model M2 ( 9.0=λ ) and M3 ( 0.1=λ ) for
different Res. It can be seen that the occurrence of peak
velocity slightly shifts towards the downstream from its
previous position with the increase of Res. Since there is no
reliable experimental method to determine wall shear-stress
near the recirculation zone, we try to get some information
about wall shear stress (wall-vorticity value) theoretically.

(a)

(b)
Fig. 7 In a forward constricted channel: Centerline axial velocity for

(a) � � ��� (b) � � ���

Fig. 8(a) shows the changes in wall vorticity along the x-
direction for different Res in the case of model M1( 6.0=λ ).
It can be mentioned that no separation region has been noticed
even for Re as large as 1000. As Re increases the peak shear
stress shifts slowly towards upstream. But in the case of model
M3 ( 0.1=λ ) (can be seen in Fig. 8(b)), the peak shear stress
occurs at the same point even with increase in Re. In addition
to this it is seen that the region of recirculation also increases
with increase in Re (which is evident from the negative values
of shear stress). That is a central jet, issued from the
constriction, creates a potential core bounded by a shear layer
which links up to the wall by a recirculation zone. The rapid
increase in wall vorticity with Re for the sharp constriction is
quite apparent.

Fig. 9 shows the vector plots of the flow field. A parabolic
flow was prescribed at the inlet. As soon as it reaches the
throat of the constriction, the flow profile is changed to a blunt
shaped non-parabolic profile with a negative flow zone near
the wall. Figure also reveals that the profile slowly regains the
parabolic shape as it moves along the downstream. The
negative velocity near the wall indicates the existence of
separation zone.
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(a)

(b)
Fig. 8 Wall vorticity for (a) � � ��� (b) � � ��� in a forward

constricted channel

(a)

(b)

(c)
Fig. 9 Velocity Profile for (a) � � ���, Re=1000 (b) � � ���,
Re=750 (c) � � ���, Re=500 in a forward constricted channel

C.Flow in a Channel with Backward Constriction

Numerical results for flow in a channel with backward
constriction have been presented in this section. The degree of
sharpness of the corner has been considered same as in the
case of forward constricted channel. Table V shows the range
of Reynolds numbers studied and the critical Res for flow
separation for different values of λ (called as model m1, m2,
m3).

TABLE V
GEOMETRIES OF BACKWARD CONSTRICTED CHANNEL AND REYNOLDS

NUMBER RANGE STUDIES

TABLE VI
VORTEX CENTER OF THE BACKWARD CONSTRICTED CHANNEL FLOW FOR

� � ���� ���� ���

Table VI shows the vortex center and the maximum value
of ψ for all three model cases. It is seen from this table that in

each model the center of the vortex moves towards
downstream with the increase in Re. For lower Re, degree of
constriction becomes responsible for shifting the vortex center
towards upstream whereas for higher Re, flow velocity
becomes more important than degree of constriction in
moving the center towards downstream which can also be
observed from Figs. 9 and 17.

TABLE VII
SEPARATION AND REATTACHMENT POINTS FOR THE BACKWARD

CONSTRICTED CHANNEL FLOW FOR � � ���
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In Table VII, we have presented the separation and
reattachment points for all the three model cases. It is seen that
for model m1 ( 6.0=λ ) and m2 ( 9.0=λ ), as Re increases the
separation point moves slightly towards the upstream and the
reattachment point moves towards downstream, whereas for
model m3 ( 0.1=λ ) the separation point almost remains
unchanged though the reattachment point moves towards
downstream, which can be observed from Figs. 10(a), 11(a)
and 12(a) respectively. As a result, the large amplitude vortex
develops in the downstream side of the corner in all the cases.
It is also seen that for model m1 ( 6.0=λ ) a large vortex
develops even for Re as small as 50. The increase in area just
after the constriction in the case of backward constricted
channel flow causes pressure loss which brings out a larger
size vortex.

(a)

(b)
Fig. 10 In a backward constricted channel: (a) Streamline-contours

and (b) corresponding vorticity contours for � � ���.

(a)

(b)
Fig. 11 In a backward constricted channel: (a) Streamline-contours

and (b) corresponding vorticity contours for � � ���.

Figs. 13 and 14 show a time-wise evolution of the
streamlines for 100Re = in the case of model m1 ( 6.0=λ )
and m2 ( 9.0=λ ) respectively. For the model m1 ( 6.0=λ ) at

,5.2=t there is a small separated region in the downstream
of the corner with a strong vortex at 1≈x (given in Fig. 13).
As time evolves the separated region becomes larger with a
weaker vortex at 2≈x , which can be seen from the Fig. 13.
At ,20=t the flow becomes nearly steady by forming a large
vortex. On the other hand for the model m2 ( 9.0=λ ), (given
in Fig. 14) intermediate flow features become more
complicated. The separation region increases gradually with
time. At ,5.2=t a small separation region evolves with a
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strong vortex at 0≈x . As time passes (say 5=t or 10 ), the
vortex grows and splits into a number of smaller vortices.
When flow approaches the steady state (say at 20=t ), these
small vortices coalesce and formed a larger separated region.
The centerline velocity data have been presented in Fig. 15 for
each model with different Res. It shows that for each model
the peak of the centerline velocity occurs just immediate after
the throat for lower Res and the peak shifts in the downstream
with the increase in Re. It is also noticed that in each model
for lower Res the centerline velocity decreases sharply up to
a small distance along the downstream just after reaching its
peak value and then it behaves asymptotically to attain a
constant value (for example, it is 1.5 for Re = 50) whereas for
higher Res, this decrease is linear from its peak value.

(a)

(b)
Fig. 12 In a backward constricted channel: (a) Streamline-contours

and (b) corresponding vorticity contours for � � ���.

Fig. 13 Time evolution for�� � ���, Re=100 at (a) t=2.5,
Max(�)=1.13756 (b) t=5.0, Max(�)=1.05486 (c) t=10.0,

Max(��)=1.05534 (d) t=20.0, Max(��)=1.05525 in a backward
constricted channel

In Fig. 16, we have presented the wall shear stress (wall
vorticity) values for each model. For model m1 ( 6.0=λ ) and
m2 ( 9.0=λ ) as Re increases the peak shear stress shifts
slightly to upstream and it occurs at the onset of the corner
whereas for model m3 ( 0.1=λ ) peak shear stress occurs at
the same point and it is very near to the corner (given in Fig.
13). It is also noticed that as the degree of constriction
increases the wall share stress changes sharply. In addition to
this, it is mentioned that the peak values of the wall shear
stress increases significantly with the degrees of constriction.
As in the case of forward constricted channel, the negative
vorticity values in Figs. 16(a), (b), (c) represent the regions of
flow separation.
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Fig. 14 Time evolution for�� � ���, Re=100 at (a) t=2.5,
Max(��)=1.13756 (b) t=5.0, Max(�)=1.05486 (c) t=10.0,

Max(��)=1.05534 (d) t=20.0, Max(��)=1.05525 in a backward
constricted channel

Fig. 17 shows the vector plots of the flow field. A parabolic
flow was prescribed at the inlet in this case also. It retains the
parabolic shape at the throat with a negative velocity zone in
the expansion region. As the profile moves along the
downstream, slowly the parabolic part is extended vertically
and it reduces the negative flow zone. Finally after some
distance negative zone disappears and there is a parabolic
velocity profile throughout the channel. In comparison of the
flow field in the backward constricted channel with the same
in the forward constricted channel, it is noticed that the area of
the negative velocity zone i.e separation zone in backward
constricted channel is greater than that in the forward
constricted channel. It is because of the fact that the flux at the
upstream in the backward constricted channel reduces at the
throat due to contraction and some amount of fluid flows in
the opposite direction but in the case of forward constricted
channel the flux at the upstream diffuses in an expanded
region after the throat which causes the pressure drop and
forms a large separation zone.

(a)

(b)

(c)
Fig. 15 In a backward constricted channel: Centerline axial velocity

for (a) � � ��� (b) � � ��� (c) � � ���

IV. CONCLUSION

The present work is to study the transient flows in an
axisymmetric channel with forward or backward constriction.
The governing equations have been solved using higher
(fourth) order compact (HOC) scheme. The axial symmetry in
the flow pattern has been noticed throughout the channel.
Some interesting flow features of this channel flow with
forward constriction or backward constriction have been
presented in this work. Sharpness of the throat in the channel
is one of the important parameters to control the strength and
size of the separation zone without modifying the general flow
patterns. Generally, flow separation takes place just after the
throat at higher values of λ or Re. It can be mentioned that
flow separation does not occur for 7.0≤λ even at higher Res
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(a)

(b)

(c)
Fig. 16 Wall shear-stress for (a) � � ��� (b) � � ��� (c) � � ��� in

a backward constricted channel

(say, 1000Re = ) whereas flow separation has been observed
at the throat for 500Re = when .8.0=λ

The size of the vortex developed in forward constricted
channel flow is small compared to that in backward
constricted channel flow. The development of a negative wall
shear stress region in the flow through a constricted channel is
a common feature. In the case of backward constricted
channel there is a sudden change in shear stress values from
positive to negative whereas in the case of forward constricted
channel this change is smooth. The parabolic flow profile
prescribed at the inlet of the forward constricted channel
becomes blunt near the throat whereas in the case of backward
constricted channel the shape of the inlet profile is maintained.

(a)

(b)

(c)
Fig. 17 Velocity profile for Re=250 (a) � � ��� (b) � � ��� (c)

� � ��� in a backward constricted channel.

Fig. 18 Point of separation and reattachment points in the backward
constricted channel geometry defined by � � ��� for (a) Re=100 (b)

Re=250 (c) Re=400.

Also in our study, we have shown the axisymmetrical flow
behavior in the whole channel for the plane Poiseuille flow
(through Fig. 18) which contradicts the some studies of Sobey,
Pedley, and Durst group in which they have shown the
presence of flow asymmetry in the right angled and 450 sloped
expansion channel for oscillatory flow with different
contraction ratio and supports the results obtained by
Pedrizzetti [12]. This difference in flow phenomena may be
due to the different flow geometry and inlet flow conditions.

It can be also pointed out that the generation of a series of
vortices has not been observed in this study because of
axisymmetric flow. The present study enriches various aspects
of channel flows and a good opportunity to encompass in
details of the flow patterns.
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