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Abstract—Microarray experiments are information rich; however, 

extensive data mining is required to identify the patterns that 

characterize the underlying mechanisms of action. For biologists, a 

key aim when analyzing microarray data is to group genes based on 

the temporal patterns of their expression levels.  In this paper, we used 

an iterative clustering method to find temporal patterns of gene 

expression. We evaluated the performance of this method by applying 

it to real sporulation data and simulated data. The patterns obtained 

using the iterative clustering were found to be superior to those 

obtained using existing clustering algorithms.  

Keywords—Clustering, microarray experiment, temporal 

pattern of gene expression data.

I. INTRODUCTION

HE rapid development of microarray technologies has 

made it possible to monitor the expression levels of 

thousands of genes simultaneously [1]. These technologies 

have proved a boon in the biological and medical sciences, 

where they have assisted researchers in tackling such broad 

problems as tumor classification. Microarray experiments 

provide a wealth of information; however, extensive data 

mining is required to identify the patterns that characterize the 

underlying mechanisms of action. For biologists, a key aim 

when analyzing microarray data is to group genes based on the 

temporal patterns of their expression levels, which may provide 

insights into genetic capacities and their interactions. Indeed, 

microarray experiments in cellular contexts have shown that 

genes with similar functions often evince similar temporal 

patterns of co-regulation [2], [3]. Due to the large number of 

genes involved in these experiments and the complexity of 

biological processes in general, an effective clustering 

algorithm for grouping genes is crucial to such studies.  

Clustering analysis is faced with two problems: how to 

determine the number of true clusters and how to evaluate the 
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samples assigned to those clusters. Since the results of 

clustering analysis rely heavily on limited biological and 

medical information (i.e. tumor classification), they are not 

only sensitive to noise but they can also be prone to over-fitting, 

which is a major concern in the clustering analysis of gene 

expression data. Previous studies on the analysis of gene 

expression data have extensively explored the use of 

unsupervised clustering analysis to find temporal patterns 

[4]-[10]. Recently, resampling and cross-validation methods 

have been shown to be effective for evaluating the stability of 

clusters [11]-[14]. In particular, Monti et al. [15] proposed a 

consensus clustering method for class discovery based on a 

resampling method. Kim et al. [16] devised an extension of 

consensus clustering [15] that exploits a mixed clustering 

algorithm based on a mixed distance measure.  

The iterative clustering procedures of Monti et al. [15] and 

Kim et al. [16] have been applied to the problem of discovering 

taxonomy, or distinct and non-overlapping sub-populations 

within a larger population in gene expression data analysis. We 

applied iterative clustering procedures to the problem of 

identifying temporal patterns of gene expression in time course 

microarray data spanning a small set of times.  

Here, we introduce a new clustering method based on an 

iterative algorithm that measures the relative stabilities of 

clusters from cross-validation criteria. The performance of the 

proposed approach is compared with those of the more 

commonly used agglomerative and divisive hierarchical 

clustering methods. One important property of temporal gene 

expression data is that the data for a given gene at different 

times may be correlated. Furthermore, gene expression levels 

may vary markedly over time [8]. To reflect such time 

dependencies in observed data, we compare the stability and 

consistency of the results produced by deleting one set of 

temporal observations at a time. In addition, we compare the 

average expression patterns in each group with the model 

profiles obtained using our iterative algorithm and existing 

clustering algorithms.  

II. ITERATIVE CLUSTERING ALGORITHM

A.  Review of previous studies 

The consensus clustering method is a type of 

resampling-based method [15]. In consensus clustering, the 

original data set is perturbed by subsampling iteratively, and 

then existing clustering methods are iteratively applied to the 

perturbed data set to construct a distance measure. The data are 
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represented as a matrix, ][
igtxX , where 

igtx  denotes the 

expression of the g th gene at time iT , ti1 . First, a data 

resampling scheme and an initial clustering algorithm must be 

chosen. Then a similarity matrix is used to assign genes to the 

proper clusters obtained by applying the algorithm to the 

various perturbed data sets. The similarity matrix is defined as 

follows: 
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where N is the number of genes and Mh is the matrix 

corresponding to the results obtained by applying the initially 

selected clustering algorithm to the hth perturbed data set. 

),( jiM h  equals 1 if observations i and j belong to the same 

cluster, and 0 otherwise. In (1), I represents the indicator matrix 

such that ),( jiI h  equals 1 if observations i and j are in the h th 

perturbed data set, and 0 otherwise. The similarity matrix is 

symmetric, and hence 10 S . When all the entries of S are 

close to 1 or 0, we can infer that the results have been well 

clustered. Here, the matrix SI  represents a distance matrix.  

When the consensus clustering method is applied to gene 

expression data to identify temporal patterns, the results 

obtained depend on the choice of the initial clustering method. 

To improve the consensus clustering, we propose mixing two 

similarity matrices, 1S and 2S , for clustering gene expression 

data based on temporal patterns. Specifically, we take the 

mixed similarity matrix to be the average of two similarity 

matrices, i.e., ),( 21 SSaverageSm .

B. Iterative clustering algorithm 

We apply S  and mS  as similarity matrices in clustering  

stages to find temporal patterns. The iterative clustering 

algorithm is as follows.  

Do k=1 to K.  

Initialize matrices M and I.

      Do h=1 to H 

        Resample Dh , Construct  Ih

       Execute initial clustering algorithm  

             Construct Mh

Let M be the union of M and Mh

Let I be the union of I and Ih

End h

    Compute similarity matrix S from M and I

  Compute mixed similarity matrix Sm (if the matrix is used) 

End k 

Determine optimal k 

Classify X into final optimal clusters based on Sk or Sm
k.

III. SYSTEMS AND METHODS

A. Initial clustering algorithm 

Clustering is an exploratory tool for examining associations 

among gene expression data. Hierarchical clustering 

dendrograms allow us to visualize such data. The information 

provided by these methods can be used as the basis for 

hypotheses regarding the relationships between genes and 

classes.  

Agglomerative hierarchical clustering: This algorithm 

initially takes each gene as a single cluster and then constructs 

progressively bigger clusters by grouping similar genes 

together until the entire data is contained in one final cluster. 

This algorithm is computationally simpler, and more available 

than non hierarchical method. It is more representative of the 

original data structure at the bottom levels than top levels of the 

dendrogram. This algorithm should be considered for use in 

problems requiring the identification of small clusters or many 

clusters.  

Divisive hierarchical clustering: Divisive clustering first 

places all genes into a single cluster and then progressively 

splits this initial cluster into smaller and smaller subsets until 

each subset contains only a single gene. This algorithm retains 

the overall data structure, i.e., the upper levels of the 

dendrogram are very representative of the original data 

structure. Divisive clustering should be considered when 

searching for large clusters or a small number of clusters. The 

divisive algorithm is thus well suited to gene expression data 

clustering. 

B.    Assessing clusters 

Two measures were used to assess and compare the 

performance of various clustering methods. The idea behind 

the validation method used is that an algorithm should be 

rewarded for consistency. We considered that expression data 

are observed over all the genes at t time points, say tTTT ,,, 21 .

For all time points, iterate the clustering algorithms for each of 

the t  data sets obtained by deleting the observations at time iT

from the original data set.   

The average proportion of non-overlap measure computes 

the average proportion of genes that are not placed in the same 

cluster by the clustering method under consideration on the 

basis of the entire data set and the data sets obtained by deleting 

the expression levels at one time point at a time [10]. 
N
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where igC ,  denotes the cluster containing gene g in the 

clustering based on the data set from which the observations at 

time iT  have been deleted, and 0,gC  denotes the original 

cluster containing gene g in the clustering based on the entire 

data set. A good algorithm is expected to yield a small value of  

VM1 (K).

The average of the adjusted rand index computes the average 

degree of agreement between two partitions. Given a set of N 

observations },,{ 21 NoooD , suppose },,,{ 21 RuuuU  and 

},,,{ 21 CvvvV  represent two different partitions of the 

observations in D . Here, for Rii '1  and Cjj '1  , 

Dvu j
C
ji

R
i 11  and ijN  is the number of observations 

that are in both classes iu  and jv , and .iN  and jN.  are the 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:4, 2007

217

numbers of observations in classes iu  and jv  respectively. The 

adjusted rand index is as follows [17], [18]: 
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We calculate the adjusted rand index in (3) for the clustering 

results of the entire data set and the clustering results based on 

the data set after deleting the observations at time iT , and then 

we calculate t adjusted rand indices by deleting the 

observations at time iT  for all i. The average adjusted rand 

index for all time points is as follows: For a good clustering 

algorithm, we would expect these values to be high. 
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IV. IMPLEMENTATION AND RESULTS

We used the agglomerative clustering method UPGMA 

(Unweighted Pair Group Method with Arithmetric Mean) [10] 

and the divisive clustering method Diana [10] as initial 

clustering algorithms, and additionally applied iterative 

clustering with UPGMA (ITU), iterative clustering with Diana 

(ITD), and iterative mixed clustering with UPGMA and Diana 

(ITM). The clustering performance was tested on a real data set 

and a simulated data set. For each cluster we ran 20 resampling 

iterations. At each iteration, the perturbed dataset was obtained 

by sampling, without replacement, 80% of the observations in 

the original data set. 

A. Results for gene expression data 

We used the publicly available [19] gene expression data set 

on yeast sporulation obtained experimentally in [5]. The data 

set consists of expression levels of 6118 genes in the yeast 

genome measured at seven time points during the sporulation 

process (i.e., 0, 0.5, 2, 5, 7, 9 and 11.5 hours).  

Fig. 1. The average proportion of non-overlap measures and 

the average of the adjusted rand index for the sporulation data. 

For the five clustering algorithms under consideration, we 

computed the two cluster-assessment measures, VM1(K) and 

VM2(K), over a range of cluster numbers around 7, specifically, 

K = 4–12. The average proportion of non-overlap measure gave 

similar results for the five algorithms, although UPGMA and 

ITU appeared to be the best as judged by this measure (left of 

Fig. 1). The results for the average of the adjusted rand index 

(right of Fig. 1), on the other hand, indicated that ITU and ITM 

gave the best performance. A somewhat surprising finding is 

that the performance of Diana appears to be the worst as judged 

by the two measures. To classify yeast genes based on their 

expression levels, Chu et al. [5] hand picked seven small 

subsets of representative genes using their knowledge of the 

yeast genome. We used the same subsets to construct our model 

temporal profiles by averaging the log-expression ratio of all 

genes in each subset. Taking the model profiles obtained by [5] 

as a benchmark, inspection of the plots for the various 

algorithms suggests that the ITM plots are closest to the model 

profiles (Fig. 2) to the model profiles (Fig. 2).  

B. Results for simulated data 

We generated a simulated data set with the same distinct 

temporal patterns over 10 time points according to the method 

described in [20] and [10]. Independent random variables were 

added to these mean expression-ratio values so as to generate 

50 genes around each of the nine patterns. Half of the total 

genes were generated from a normal distribution with mean 0 

and standard deviation 1, and the remaining half were 

generated from an exponential distribution with location -0.2 

and scale 0.2. The model profile is displayed in the plot in the 

bottom right hand corner of Fig. 4. Fig 3 shows the results 

obtained using the two clustering-assessment measures. 

According to both measures, ITU and ITM give the best 

performance. Comparison of the profiles generated using the 

five algorithms and the model profiles indicates that the 

profiles generated by ITM and ITD methods are perhaps the 

closest to the model profiles (Fig. 4). 
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Fig. 2. Average temporal profiles of seven groups obtained 

using five clustering algorithms and the model profiles for the 

sporulation data. 

Fig. 3. The average proportion of non-overlap measures and 

the average of the adjusted rand index for the sporulation data. 

Fig. 4. Average temporal profiles of nine groups obtained 

using five clustering algorithms and the model profiles for the 

simulated data. 

V. CONCLUSION AND DISCUSSION

We have compared the performance of 3 iterative clustering 

algorithms and 2 existing algorithms using temporal gene 

expression data and simulated data. The iterative algorithms 

were found to be more accurate and consistent than existing 

methods. Furthermore, the mixed iterative algorithm gave 

superior results to the other iterative algorithms tested. The 

present findings suggest that the mixed iterative algorithm 

overcomes the demerits of the agglomerative and divisive 

hierarchical clustering algorithms.  

ACKNOWLEDGMENT

This work was supported by grant R08-2003-000-10572-0 from the Basic 

Research Program of the Korea Science & Engineering Foundation. JW Lee 

was also supported by grant R14-2003-002-0102-0 from the Korea Science and 

Engineering Foundation. 

REFERENCES

[1] P.O. Brown, and D. Botstein, “Exploring the new world of the genome 

with DNA microarrays”, The chipping forecast, vol. 21, 1999. pp. 33-37. 

[2] M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein, “Cluster 

analysis and display of genome-wide expression patterns”, Proceeding of 

the National Academy of Sciences, vol. 95, 1998, pp. 14863-14868. 

[3] P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. 

Eisen, P.O. Brown, D. Botstein, and B. Futcher, “Comprehensive 

identification of cell cycle-regulated genes of the yest Saccharomyces 

cerevisiae by microarray hydridization”, Mol. Biol. Cell, vol. 9, pp. 

3273-3279.  

[4] J.L. DeRisi, V.R. Iyer, and P.O. Brown, “Exploring the metabolic and 

genetic control of gene expression on a genomic scale”, Science, vol. 278, 

1997, pp. 680-686. 

[5] S. Chu, and J.L. DeRisi et al., “The transcriptional program of sporulation 

in budding yeast”, Science, vol. 282, 1998, pp. 699-705 

[6] R.J. Cho, et al., “A genome-wide transcriptional analysis of the mitotic 

cell cycle”, Mol. Cell., vol. 2, 1998, pp. 65-73. 

[7] M.J.L. De Hoon, S. Imoto, and S. Miyano, “Statistical analysis of a small 

set of time-ordered gene expresion data using linear splines”, 

Bioinformatics, vol. 18, 2002, pp. 1477-1485. 

[8] Y. Luan, and H. Li, “Clustering of time-course gene expression data using 

a mixed-effects model with B-splines”, Bioinformatics, vol. 19, 2003, pp. 

474-482. 

[9] S.D. Peddada, E.K. Lobenhofer, L. Li, et al., “Gene selection and 

clustering for time-course and dose-response microarray experiments 

using order-restricted inference”, Bioinformatics, vol. 19, 2003. pp. 

834-841. 

[10] S. Datta, and S. Datta, “Comparisons and validation of statistical 

clustering techniques for microarray gene expression data”, 

Bioinformatics, vol. 19, 2003, pp. 459-466. 

[11] A. Bhattacharjee, W.G. Richards, and J. Staunton, J. et al.,  “Classification 

of human lung carcinomas by mRNA expression profiling reveals  distinct 

adenocarcinomas sub-class”, Proceeding of the National Academy of 

Sciences, vol. 98, 2001, pp. 13790-13795 

[12] S. Dudoit, J. Fridlyand, “A prediction-based resampling method for 

estimating the number of clusters in a dataset”, Genome Biology, vol. 3, 

2002, research0036.1-0036.21. 

[13] A.K. Jain, and J. Moreau, “Bootstrap techniques in cluster analysis”, 

Pattern Recognition, vol. 20, 1988, pp. 547-568. 

[14] E. Levine, and E. Domany, “Resampling method for unsupervised 

estimation of cluster validity”, Neural Computation, vol. 13, 2001, pp. 

2573-2593. 

[15] S. Monti, P. Tamayo, J. Mesirov, and T. Golub, “Consensus Clustering: A 

resampling based method for class discovery and visualization of gene 

expression microarray data”, Kluwer Academic Publishers, 2003.

[16] S.Y. Kim, J.W. Lee, and T.M. Choi, “Ensemble clustering method based 

on the resampling similarity measure for gene expression data”, 2004, 

Submitted. 

[17] L. Huber, and P. Arabie, “Comparing partitions”, Journal of 

Classification, vol. 2, 1985, pp. 193-218. 

[18] K.Y. Yeung, and W.L. Ruzzo, “An empirical study on principal 

component analysis for clustering gene expression data”, Technical 

Report 2000 UW-CSE-00-11-01, Department of Computer Science and 

Engineering, University of Washington.
[19] http://smgm.stanford.edu/pbrown/sporulation. 

[20] J. Quackenbush, “Computional analysis of microarray expression data.”, 

Bioinformatics, vol. 18, 2001, pp. 1-10.


