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Some properties of b-weakly compact operators on
Banach lattice

Na Cheng and Zi-li Chen

Abstract—We investigate the sufficient condition under which
each positive b-weakly compact operator is Dunford-Pettis. We also
investigate the necessary condition on which each positive b-weakly
compact operator is Dunford-Pettis. Necessary condition on which
each positive b-weakly compact operator is weakly compact is also
considered. We give the operator that is semi-compact, but it is not b-
weakly. We present a necessary and sufficient condition under which
each positive semi-compact operator is b-weakly compact.
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I. INTRODUCTION

RECALL that a subset A of a Riesz space E is called b-
order bounded in E if it is order bounded in (E∼)∼.

A Riesz space is said to have property (b) if A ⊂ E is
order bounded whenever A is order bounded in (E∼)∼. Note
that every perfect Riesz space and therefore every order dual
has property (b). Every reflexive Banach lattice has property
(b). Every KB space has property (b) and if (E∼)∼ is
retractable on E then E has property (b). On the other hand,
by considering A = {en} in c0, we see that c0 does not have
property (b). An operator T : E → X , mapping each b-
order bounded subset of Banach lattice E into a relatively
weakly compact subset of Banach space X is called a b-
weakly compact operator. The collection of b-weakly compact
operators will be denoted by Wb(E,F ). Then Wb(E,F )
is a closed subspace of L(E,F ), the vector space of all
continuous operators from E into F . Operators mapping order
intervals into relatively weakly compact sets are called o-
weakly operators and denoted by Wo(E,F ). The collection
of weakly compact operators will be denoted by W (E,F ).
Then W (E,F ) ⊆Wb(E,F ) ⊆Wo(E,F ), [9] gave examples
to show that these inclusions may be proper.

An operator is said to be a Dunford-Pettis operator if it
carries relatively weakly compact subsets onto norm totally
bounded subsets. An operator T from a Banach lattice E into
a Banach lattice F is said to be M-weakly compact if each dis-
joint bounded sequence (xn) of E, we have limn‖T (xn)‖ = 0.
And an operator T from a Banach lattice E into a Banach
lattice F is called L-weakly compact if for each disjoint
bounded sequence (yn), in the solid hull of T (BE), we have
limn‖yn‖ = 0 where BE is the closed unit ball of E.

In 2003, S.Alpay and B.Altin [9] studied the property (b).
They proved that Banach lattice E is a KB-space if and only
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if it has order continuous norm and property (b) [9, Theorem
2.1]. They also gave the definition of b-weakly compact oper-
ator. They characterized that T : E → X is b-weakly compact
operator if and only if for each b-order bounded A ⊂ E
and disjoint sequence (xn) in A satisfies limn ‖T (xn)‖=0 [9,
Theorem 2.8]. In 2006, S.Alpay and B.Altin [10] investigate
Riesz spaces and Banach lattices enjoying property (b). They
proved that if Banach F is Dedekind complete, then the
space of order bounded operators from Banach E into F has
property (b) if and only if F has property (b) [10, Theorem
2]. Every order closed Riesz subspace of a Dedekind complete
Riesz space E with property (b) has property (b) [10, Theorem
2]. In 2007, S.Alpay and B.Altin [11] characterized the b-
weak compactness of T in terms of its mapping properties
[11, Theorem 1, Theorem 2, Theorem 4]. In 2007, B.Altin [13]
investigated the order structure of b-weakly compact operator.
In 2009, S.Alpay and B.Altin [12] gave characterized of KB-
spaces in terms of b-weakly compact operators. A Banach
lattice F is KB-space if and only if for each Banach lattice
E and positive disjointness preserving operator T : E → F is
b-weakly compact. In 2009, B. Aqzzouz and A. Elbou, and J.
Hmichane [14] establish necessary and sufficient conditions
under which b-weakly compact operators between Banach
lattices have b-weakly compact adjoint or operators with b-
weakly compact adjoint are themselves b-weakly compact.
T : E → F between Banach lattices is a b-weakly compact
operator, then its adjoint T ′ : F ′ → E′ is b-weakly compact if
and only if F ′ or E′ is a KB-space. Each operator T : E → F
is b-weakly compact whenever its adjoint T ′ : F ′ → E′ is b-
weakly compact if and only if E or F is a KB-space.

To state our results, we need to fix some notation and
recall some definitions. A Banach lattice is an AM-space
if and only if the norm is additive on the positive cone
of the dual. An element e > 0 in a Riesz space is said
to be an order unit whenever for each x there exists some
λ > 0 with |x| ≤ λe. Now if a Banach lattice E has
an order unit e > 0, then Ae = E holds, and the norm
‖x‖∞ = inf{λ > 0 : |x| ≤ λe} is equivalent to the original
norm of E. In other words, if a Banach lattice E has an
order unit e, then E can be renormed in such a way that it
becomes an AM-space having [−e, e] as its closed unit ball. A
Banach lattice has order continuous norm if and only if every
order bounded disjoint sequence id norm convergent to zero.
A Banach lattice E is said to be a KB-space, whenever every
increasing norm bounded sequence of E+ is norm convergent.
For example, each reflexive Banach lattice is KB-space. Also,
each KB-space has an order continuous norm, but a Banach
lattice with an order continuous norm is not necessary a KB-
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space. In fact, the Banach lattice c0 has an order continuous
norm but it is not a KB-space. However, if E is a Banach
lattice, the topological dual E′ is a KB-space if and only if
its norm is order continuous. The Banach lattice E has the
positive Schur property if each weakly null sequence with
positive sequence in E converges to zero in norm. A Banach
lattice E is said to have weakly sequentially continuous lattice
operations whenever xn

w→ 0 in E implies |xn| w→ 0 in E.
In an AM-space the lattice operations are weakly sequentially
continuous. Also, every Banach lattice with the Schur property
(i.e., xn

w→ 0 implies ‖xn‖ → 0) has weakly sequentially
continuous lattice operations. Thus, for example, the Banach
lattice C[0, 1], l1, l1 ⊕ C[0, 1] all have weakly sequentially
continuous lattice operations.

The goal of this paper is to investigate the sufficient condi-
tion under which each positive b-weakly compact operator is
Dunford-Pettis. We also investigate the necessary condition on
which each positive b-weakly compact operator is Dunford-
Pettis. Necessary condition on which each positive b-weakly
compact operator is weakly compact is also considered. We
give the operator that is semi-compact, but it is not b-weakly.
We present a necessary and sufficient condition under which
each positive semi-compact operator is b-weakly compact.

All notions concerning Banach lattices and not explained
here are can find in [1] and [2].

II. PROPERTIES OF B-WEAKLY COMPACT OPERATORS

Theorem 1: For Banach lattice F , each positive b-weakly
compact operator from AM-space into F is Dunford-Pettis.

Proof: Let ρ(x) = ‖Tx‖ for every x ∈ E, then ρ is a
continuous lattice seminorm on E. Suppose T : E → F is
not a Dunford-Pettis operator, since AM-space has weakly se-
quentially continuous lattice operators, there exists a sequence
{xn} ⊂ E+ with xn

w→ 0, and ‖Txn‖ ≥ 1.
Corollary 2.3.5 of [2] shows that for every 0 < c < 1, there

exists a subsequence (k(n))∞n=1 ⊂ N and a disjoint sequence
{yn}⊂ E+ such that

yn ≤ xk(n), ‖Tyn‖ ≥ c
for all n ∈ N . Since yn ≤ xk(n) and xn

w→ 0, the uniform
boundness theorem implies that the sequence yn is bounded.

Observing that (y1 + · · · + yn)∞1 is a monotone norm
bounded sequence, there exists x′′ ∈ E′′

+ such that

0 ≤ y1 + · · ·+ yn ≤ x′′

together with the fact that T is b-weakly compact, it follows
that

‖Tyn‖ → 0(n→∞)

This gives a contradiction. �
Theorem 2: Let E and F be two Banach lattices, if every

positive b-weakly compact operator T : E → F is Dunford-
Pettis, then the norm of F is order continuous or the lattice
operations of E are weakly sequentially continuous.

Proof: If the norm of F is not order continuous and the
lattice operations of E are not weakly sequentially continuous,
A.W.Wickstead constructed in the proof of Theorem 2 of [4]
two positive operators S, T : E → F such that 0 ≤ S ≤ T and

T is compact and hence it is b-weakly compact, Proposition
2.2 of [6] implies S is b-weakly compact, but it is not Dunford-
Pettis. �

Theorem 3: Let E and F be two Banach lattices, if every
positive b-weakly compact operator T : E → F is weakly
compact, then one of the following statements is valid:

(a) The norm of the topological dual E′ is order continuous.
(b)F is reflexive.
Proof: Suppose that neither the norm of E′ is order

continuous nor F is reflexive, then there exist a sublattice
H of E which is isomorphic to l1 and a positive projection
P : E → l1.

On the other hand, since the closed unit ball BF of F is
not weakly compact, there exists a sequence (en) in BF which
does not have any weakly convergent subsequence.

Consider the operator S : l1 → F defined by

S(xn) = Σ∞
n=1xnen

It is easy to see that S · P is o-weakly compact, since l1
is a KB-space, it is b-weakly compact, but it is not weakly
compact. �

Theorem 4: Let E and F be two Banach lattices, if each
positive o-weakly compact operator T : E → F is L-weakly
compact, then one of the following conditions holds.

(a) F are KB-spaces.
(b) E′ has the positive Schur property.
Proof: Suppose F is not a KB-space, Theorem 2.4.12 of

[4] implies that F contains a sublattice isomorphism to c0.
Applying Theorem 3.1 of [3] it suffices to show each disjoint
weak null sequence (x′n)∞1 ⊂ E′

+ is norm convergent to 0.
For each x ∈ E define T : E → c0 by

Tx = (x′n(x))∞1

Theorem 17.5 of [1] implies T is a weakly compact oper-
ator, hence it is o-weakly compact, it is L-weakly compact.
Theorem 18.13 of [1] implies

T ′ : l1 → E′

is M-weakly compact. As

T ′(en) = x′n

for all n ∈ N , where en is the sequence with n’th entry equals
to 1 and all others are zero, we conclude that

‖x′n‖ → 0(n→∞)

�
Recall that A continuous operator T : E → F is said

to be semi-compact if for each ε > 0, there exists some
u ∈ F+ such that T (U) ⊂ [−u, u] + εV where U , V
denote the closed unit balls of E and F , respectively. Each
compact operator, M-weakly compact (L-weakly compact)
operator between Banach lattice is semi-compact. However, a
semi-compact operator need not be compact, weakly compact,
M-weakly compact (L-weakly compact). For instance, the
identity operator I : �∞ → �∞ is semi-compact, but it does not
have any one of the above mentioned compactness properties.
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Theorem 5: Let E and F be nonzero Banach lattices such
that F is σ-Dedekind complete. Then the following statements
are equivalent.

1) Each positive semi-compact operator T : E → F is
b-weakly compact.

2) At least one of the following conditions holds:
a) The norm of E is order continuous.
b) The norm of F is order continuous.
Proof: 2)− a)⇒ 1) Suppose that E has order continuous

norm and T : E → F is a positive semi-compact operator.
Theorem 12.9 of [1] implies that each order interval of Banach
lattice E is weakly compact, together with the fact that T is
a positive semi-compact operator, it follows that T is weakly
compact. Hence, T is b-weakly compact.

2) − b) ⇒ 1) Suppose that F has order continuous norm
and T : E → F is a positive semi-compact operator. For each
ε > 0 there exists some u ∈ F+ such that

T (U) ⊆ [−u, u] + εV

U and V denote the closed unit balls of E and F , respectively.
Theorem 12.9 of [1] implies that the order interval [−u, u] in
F is weakly compact, combined with Theorem 10.17 of [1]
show that T (U) is relatively weakly compact, it follows that
T is weakly compact. Hence, T is b-weakly compact.

1)⇒ 2) Assume by way of contradiction that neither E nor
F has an order continuous norm. To finish the proof, we have
to construct a positive semi-compact operator T : E → F
which is not b-weakly compact.

Since the norm on E is not order continuous, applying
Theorem 12.13 of [1] that there exists some x ∈ E+ and
a sequence (xn) ⊂ [0, y] which does not converge to zero in
norm. We may assume that ‖xn‖ = 1 for all n.

Hence, by lemma 2.1 of [15] there exists a positive disjoint
sequence (gn) of E′ with ‖gn‖ ≤ 1 such that
gn(xn) = 1 for all n and gn(xm) = 0 for n �= m.
For all x ∈ E, define the positive operator R : E → �∞ by

R(x) = (g1(x), g2(x), · · ·)
Note that R(BE) ⊂ B�∞ .

On the other hand, as the norm on F is not order continuous,
applying Theorem 12.13 of [1] that there exists some y ∈ F+

and a sequence (yn) ⊂ [0, y] which does not converge to zero
in norm. We may assume that ‖yn‖ = 1 for all n.

Since
n∑

i=1

yi ≤ y holds for all n, and F is σ-Dedekind

complete, for all (α1, α2, · · ·) ∈ �∞, define the positive
operator S : �∞ → F by

S(α1, α2, · · ·) = lim
n∑

i=1

αiyi

Defines a lattice isomorphism from �∞ into F where

lim
n∑

i=1

αiyi denotes the order limit of the partial sum
n∑

i=1

αiyi.

Since the sequence (yn) is order bounded and disjoint, for
each (α1, α2, · · ·) ∈ B�∞ , we see that

|S(α1, α2, · · ·)| = lim
n∑

i=1

|αi|yi ≤ (sup |αi|) · y ≤ y

Hence S(α1, α2, · · ·) ∈ [−y, y], and we have S(B�∞) ⊂
[−y, y].

Now consider the operator T = S ◦R : E → F by

T (x) = lim
n∑

i=1

gi(x)yi

it is positive, and we have

T (BE) = S(R(BE)) ⊂ S(B�∞) ⊂ [−y, y]
It is clear that T is semi-compact.
On the other hand, for all n, we have

T (xn) = lim
n∑

i=1

gi(xn)yi = yn

It follows that ‖T (xn)‖ = ‖un‖ = 1. As the sequence (xn) is
order bounded and disjoint in E, it is clear that T is not order
weakly compact. Hence, T is not b-weakly compact. �

Theorem 6: Let E and F be nonzero Banach lattices. Then
the following statements are equivalent.

1) Each positive semi-compact operator T ′ : F ′ → E′ is
b-weakly compact.

2) At least one of the following conditions holds:
a) The norm of E′ is order continuous.
b) The norm of F ′ is order continuous.
Proof:1)⇒ 2) Assume by way of contradiction that neither

E′ nor F ′ has an order continuous norm. To finish the proof,
we have to construct a positive semi-compact operator T ′ :
F ′ → E′ which is not b-weakly compact.

Since the norm on E′ is not order continuous, applying
Theorem 2.6 of [15] that there exists a disjoint sequence
{xn} ⊂ E+ with ‖xn‖ ≤ 1 for all n and there exists some
0 ≤ x′ ∈ E′ with x′(xn) = 1 for all n. Moreover, the
components x′n of x′, in the carrier Cxn from an order bounded
disjoint sequence in (E′)+ such that
x′n(xn) = x′(xn) = 1 for all n and x′n(xm) = 0 for n �= m.
Note that 0 ≤ x′n ≤ x′ holds for all n.
For all x ∈ E, define the positive operator R : E → �1 by

R(x) = (x′n(x))∞n=1

Since
∞∑

i=1

|x′n(x)| ≤
∞∑

i=1

x′n(|x|) ≤ x′(|x|) holds for each x ∈
E, the operator R is well defined.

On the other hand, as the norm on F ′ is not order contin-
uous, applying Theorem 12.13 of [1] that there exists some
f ′ ∈ F ′

+ and a disjoint sequence (f ′n) ⊂ [0, f ′] which does
not converge to zero in norm. We may assume that ‖f ′n‖ = 1
for all n. Hence, for each n, we can choose fn ∈ F+ with
‖fn‖ = 1 and f ′n(fn) ≥ 1

2‖fn‖ = 1
2 .

For all (λn) ∈ �∞ consider the positive operator S : �∞ →
F defined by

S(λn) =
∞∑

n=1

λnfn

Since (λn) ∈ �∞ and
∞∑

n=1
‖λnfn‖ =

∞∑
n=1
|λn|, it follows that

S is well defined.
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Now, for all x ∈ E, consider the operator T = S ◦R : E →
F defined by

T (x) =
∞∑

n=1

x′n(x)fn

Its adjoint T ′ : F ′ → E′ defined by

T ′(g′) =
∞∑

n=1

g′n(fn)x′n

for all g′ ∈ F ′. Since �∞ is an AM-space with unit, it follows
that R′ is semi-compact, hence T ′ is semi-compact.

On the other hand, note that the sequence f ′n is order
bounded and disjoint, and

‖T ′(f ′n)‖ = ‖
∞∑

i=1

‖f ′n(fn)x′i‖

≥ ‖f ′n(fn)x′n‖ ≥
1
2
‖x′n‖

≥ 1
2
x′n(xn) ≥ 1

2
Hence, T ′ is not o-weakly compact, it is not b-weakly com-
pact. �

III. CONCLUSIONS

In this paper, we investigate the sufficient condition under
which each positive b-weakly compact operator is Dunford-
Pettis. We also investigate the necessary condition on which
each positive b-weakly compact operator is Dunford-Pettis.
Necessary condition on which each positive b-weakly compact
operator is weakly compact is also considered. We give the
operator that is semi-compact, but it is not b-weakly. We
present a necessary and sufficient condition under which each
positive semi-compact operator is b-weakly compact.
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