
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1654

An Enhanced Tool for Implementing Dialogue Forms
in Conversational Applications

Ilias Spais and George Bafas

Abstract—Natural Language Understanding Systems (NLU) will
not be widely deployed unless they are technically mature and cost
effective to develop. Cost effective development hinges on the
availability of tools and techniques enabling the rapid production of
NLU applications through minimal human resources. Further, these
tools and techniques should allow quick development of applications
in a user friendly way and should be easy to upgrade in order to
continuously follow the evolving technologies and standards. This
paper presents a visual tool for the structuring and editing of dialog
forms, the key element of driving conversation in NLU applications
based on IBM technology. The main focus is given on the basic
component used to describe Human – Machine interactions of that
kind, the Dialogue Manager. In essence, the description of a tool that
enables the visual representation of the Dialogue Manager mainly
during the implementation phase is illustrated.

Keywords—Conversational Applications, Forms Dialogue
Manager (FDM), Natural Language Processing, Natural Language
Understanding.

I. INTRODUCTION

ATURAL language Understanding (NLU) holds a big
promise towards achieving a new model of human

machine interaction. NLU systems are expected to give rise to
a new wave of conversational applications where simple
spoken command interfaces to interactions resembling talking
to a human operator.

Conversational natural language understanding is a way of
interacting with a machine (e.g. computer), based on Speech
Recognition and Text To Speech theory. NLU gives the user
the opportunity to have a conversation with the machine, in
which spoken commands are given, and in response the user
hears either the answer to his query, or a request for
disambiguation and clarification. The machine understands the
task the user tries to accomplish, and uses a dialog to help him
reach his goal quickly and accurately.

Based on NLU approach, several conversational NLU
applications (e.g. telephony applications) can be or already
have been, implemented. The overall objective of such an
application is to understand requests, translate them into
actions and provide an appropriate response (in the telephony
context for example, the responses are audio prompts).
Besides this, it allows the user to take initiative or control over
the dialog as and when desired, to speak in a natural way and
to let the dialog flow in a prescribed manner. The
implementation is not rule based unlike the directed dialog

systems. It is statistics based and is data driven.
Taking into account the above hints, we can assume that

NLU systems could potentially allow the development of
conversational applications for complex and specialized tasks
that today require specialized operator personnel.

The latter direction hinges on developing new tools,
techniques and frameworks supporting conversational
application development. This paper describes the design of a
visual tool (called NLUForms GUI) enabling rapid
development of form documents driving NLU dialogs. This
particular design is tailored to IBM’s NLU systems, and takes
into account their operation and specification. Having as basic
feature its authoring and managing capabilities this tool can be
used by NLU systems in order to implement and deploy
applications in various applications domains (e.g., finance,
travel, information access (portals)) and multiple languages
(e.g., English, German, Spanish, Greek, Finish).

The major motivation behind providing this design was to
alleviate the complexity of NLU application development. A
crucial component of the NLU architecture is the Forms
Dialog Manager, which coordinates dialog interactions. The
operation of this component is based on FDM files that are
represented in a particular file format. Authoring and
managing such files is a tedious task for NLU developers. The
authoring part described in this paper aims to the development
of FDM files and the target of the managing part is to import
FDM files that are already have been developed. These two
features of the tool provide the developer the power to create
FDM files from scratch and combine them with existing ones
in order to develop complemented applications. Having this
kind of a tool that eases the structuring and development of
FDM forms is certainly a contribution to the faster
development of conversational NLU applications for various
domains, with lesser human resources and as a result with
lower cost.

The paper has the following structure: Section 2 presents
the architecture of IBM’s NLU systems. This architecture is
presented not only for completeness reasons but mainly to
facilitate the understanding of the design concepts presented in
this contribution. Section 3 concentrates on basic design and
functionality concepts of this visual tool, while section 4 deals
with the implementation of this environment based on a
WinIntel platform. Finally, Section 5 concludes the paper and
lists ideas for extending this work.

N

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1655

II. ARCHITECTURE OF THE CONVERSATIONAL NLU SYSTEM

A. System overview

Fig.1 gives the overall picture of a natural language
understanding system, operating in the scope of a telephony
application [9].

Fig.1. System Architecture

The user of the system submits his/her requests by using the
telephone network. In order to perform its objectives the
system consists of the following major components: Voice
Server, NLU System and NLU Application. The Voice Server

component performs all tasks related to Telephony - the
interface with the telephone network, Speech Recognition - the
translation of spoken requests into text, and Prompt

Generation – the process of converting textual prompts into
audio. The NLU System performs the task of understanding
user requests, extracting their meaning, translating them into
actions (or action requests) and providing an appropriate
response. It does this in conjunction with application code/data
and backend logic. The NLU System consists of the following
run-time components: NLU Control Center, Parser Engine,
Attribute-Value (AV) Extractor, Canonicalizer and Dialog
Manager. The NLU Application component of the
Conversational System consists of the Classer and Parser
Models, the Forms and the Code, which is the connection with
the backend (i.e. TCL Code). In addition, the Grammars are
also a part of the application. Most of the work in building the
Conversational System concerns developing and fine-tuning
these components.

B. NLU System - Dialog Manager

The most important component of NLU System is the
Dialog Manager. The Dialog Manager or the Forms Dialog
Manager (FDM) as it sometimes called, takes the actions and
parameters that were deciphered from the user request by the
classer, parser, Canonicalizer and AVExtractor and decides on
the task to be performed. It typically performs one or more of
the following three tasks:

Return a prompt to be played to the user
Request information from the user
Make a request to the backend, typically to: a)
Disambiguate a user specified value, b) Perform some
action, c) Ask the backend for some information

Thus the Dialog Manager plays a very significant role in the
overall Conversational System.

C. NLU Application - Dialog Manager’s Forms

The Dialog Manager performs its tasks using a set of
application specific code called Forms. The application
specific actions that are to be performed in response to user
requests are defined in the Forms. Typically there is a form
file for each major transaction in the system. Forms are written
using form-specific syntax (FDM script) and each form makes
calls to functions, which can directly connect to the backend
and execute user’s request.

Forms consist of "Slots" and "Messages". Slots are fields
for parameters or classes that define the action to be
performed, while Messages are function-statements that are
called to perform one of the three Dialog Manager tasks listed
above. In order to determine which form gets the focus, the
FDM takes as input attribute-value pairs from the parser, fills
the slots, calls the application to see if the slot values are valid,
and applies extensive rules to help it determine which form to
set the focus to. In order to "submit" the form to the back end,
the FDM works on filling slots until it can effectively submit
the information (i.e. all mandatory information elements have
been supplied). When the FDM has enough slots filled, the
FDM "submits" to the back end by firing an event called a
backend message "BEMsg". Firing this event causes backend
business logic to execute. As an example, let’s consider a
user’s request ‘What is my balance in blue chip growth’ (Fig.
2). The basic form would have a slot for the fund-name and
several messages: a) a message for disambiguating the fund-
name, b) a message seeking clarification/information from the
user and c) a message to get the actual balance in the fund
from the backend and return it to the user [9]. When there is
more than one suitable form, Dialog Manager decides which
form to use (as basic form), taking into account how many
slots each form has filled with the appropriate parameters.

Finally, there are 2 main types of messages: a) The backend

message, which executes logic and determines which form or
slot to set focus to and which message to fire next and b) The
prompt message, which causes the FDM to wait for user input
(wait for new attribute-value pairs from the parser).

D. Form’s Specific Syntax (FDM Script)

FDM scripts are flexibly designed to include the
information elements required to implement the fully fledged
functionality of the Dialog Manager. Specifically, FDM
scripts consist of three basic components (Fig. 3). First and
foremost, there is the begin{form} line which defines the first
form included in this file (there may be more than one form)
and the name of the form. Besides this, this block specifies the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1656

relationships (as a result of inheritance) that this form has. The
end of the form is determined by the end{form}. Secondly,
there is the slot block which contains the slots and their
properties. The lines of the block are determined by the
keywords \begin{slots} and \end{slots}, which are its
boundaries. The basic properties of this block are the
Matchedby and the Inherit. The first one determines when the
specific slot will be fulfilled and the second one shows its
relationships with the other slots.

Fig.2. Schematic of NLU Runtime Processing

Note that users often supply ambiguous information. This
could happen because either they do not know how "truth" is
represented in the database (application) or because they do
not know what choices they have. Clarifying the ambiguity
highly depends on what is in the database, as well as on the
user profile – both of which can change rapidly. The final
authority on what is ambiguous and what is not is the
application itself. Calls for backend consultation are
happening when filling some slots (called abstract slots). A
slot requires backend consultation if the forms file has a slot-
level backend message in the description of the slot (Fig. 3).
Note however that some slots - such as dates, times, money
amounts - can be filled without backend consultation
(concrete slots). Furthermore, the slot-level disambiguation
message is the only message to the backend at the slot-level. It
is really no different from any backend message in terms of
protocol and of how the FDM reacts to the return codes from
the backend.

Last but not least, is the message block (Form Level
Messages) which contains form level messages and their
properties. The boundaries of the messages are determined by
the lines \begin{messages} and \end{messages}. The basic
properties of the block are shown in the Fig. 3 (words in bold).

As soon as enough slots have been filled out, the form reaches
status ‘OK’ and constructs the backend message. This message
consists of calls to functions (actually written in the TCL
code). These functions retrieve the replies from the backend
along with a list of possible answers for the user depending on
the answer from the backend. The list is being confirmed by
the keywords begin{rclist} and end{rclist}. Supposing that a
non empty set of results is retrieved the system presents the
answer to the user and waits for the next request.

\begin{form} FORM-NAME ^Inherit: ……..
#--------------------------------Slots-------------------------------------

 \begin{slots}

 \slot SLOT-NAME MatchedBy:…………….
 \slot SLOT-NAME ^MatchedBy:…………
 ^Inherit:……
 \begin{messages}

 \msg Prompt:……………;

 \msg BEMsg:

 \end{messages}

 \end{slots}

#---
#------------------------- Form Level Messages----------------------
 \begin{messages}

 \msg BEMsg: required=“………….”
 # (id,required,inhibited,freshness)

TCL-code string $Slot-name
 \begin{rclist}

 \rc……… OK……...\msg Prompt:………;

 \end{rclist}

 \msg HelpMsg:…………………………………….
 \end{messages}

#---
\end{form}

Fig.3. FDM File Format

E. Backend

The backend refers to the system’s module where the actual
transactions and information requests are carried out. The
backend could be as simple as a database or it could be a
complex system with an interface for the Conversational front
end. The backend system is usually outside of the
Conversational system.

III. DESIGNING NLUFORMS GUI

A. Functional Overview

Based on the NLU/FDM architecture and operation, the
NLUForms tool enables visual development of FDM scripts
for use by Dialog Manager of Natural Language
Understanding NLU systems. The framework of this tool
allows editing of FDM data components, through an
appropriate Graphical User Interface (GUI). Furthermore, it
supports visual creation of FDM scripts (from scratch), while
providing commands for editing and processing FDM scripts.
In addition to, it saves an application in the form of a
workspace, so that application developers can work on it at
any time instant. Besides this, the environment allows the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1657

developers to import and work with forms that were not
originally created by this tool, provided however that they
comply with the FDM specification. Thus, users can create
sets of NUL application forms either by importing existing
forms, or even by creating new forms. It is also feasible that
the import and create capabilities of the environment are
combined. Finally, NLUForms GUI incorporates a host of
utilities easing the manipulation of FDM data elements and
components. This is accomplished through an appropriate set
of menu commands, dialog boxes and screens used for
inputting data. Even though the environment provides a user
friendly interface, potential users must have a basic
understanding of the NLU/FDM architecture, component and
component types.

B. Workspaces Support - Workspace Configuration

The notion of a complete authoring environment, as an
NLU developer, is expressed through support for workspaces.
Within a workspace the user/author can edit multiple NLU
Form objects. The rationale for providing such functionality
becomes apparent since:
1. The vast majority of NLU applications consist of more than

one Form and corresponding FDM scripts.
2. The forms of an NLU application present relationships

(e.g., inheritance) affecting FDM generation.
3. FDM authors may need to share information pertaining to

all the forms of the NLU applications. This common
information relates both to information entities (e.g.,
Classer Parser keywords, Functions available at the
message template editor facility) and editing options (e.g.,
FDM generation preferences).
Each instance of a particular workspace is associated with

several options governing the process of Form’s authoring and
FDM generation. Characteristic examples of such options
include the number of Form objects that can be edited in the
scope of the workspace, the directory where FDM scripts
should be placed during batch generation of FDM scripts and
the path to an executable file corresponding to an
editor/viewer for FDM text [4].

Thus, the process of saving the authoring work concerning a
particular NLU application, involves storing the above options
as well. Specifically, when a user elects to save the workspace,
Form objects and their components (i.e., Slot & Message
objects and their encapsulated information entities) are
serialized in a file along with the workspace options.
Therefore, the file that stores all this information is
characterized as a workspace file.

C. Import Functionality

Import is one of the basic functionalities that NLUForms
GUI can offer to any NLU developer. This ability comprises
commands for importing existing FDM forms that were not
generated by the environment and consequently do not belong
to any workspace. Thus, the author can also use the GUI to
create NLU applications by only importing forms. He can also

create forms on his own and then fill in his application by
using import functionality. The GUI has also the ability to
import more than one form, which may be included in the
same physical file.

Forms must be at a specific format as it was described
above. The form must contain specific keywords (bold words
– Fig. 3). Keywords are used by the program, in order to
define the name of the form, the names of the slots, the names
of the messages, the inherited forms and all the properties of
the form. Furthermore, the form must have the slot level and
the message level blocks of the file separated explicitly. As the
import functionality is being carried out, the program is
reading the file (form file – FDM script) and finds out the
position of the keywords. In this way it manages to figure out
the basic pattern of the form and then it defines the properties
of the form. As someone can easily imagine, knowing the file
format is something extremely important at this specific stage.
Finally, the imported form is being added at the end of the
application which is being transformed by the user of the GUI.
This last form has the focus just after the import functionality
has succeeded, in order to give the user the opportunity to
check its Slot and Message Objects.

D. Graphical User Interface Design

As far as the user interface design is concerned, it is centred
on a conventional (main) application window, which is split
into four different panes (Fig. 4). Each of the four panes
constitutes a different display area that serves a distinct
purpose.

Fig.4. Overall view of the main application window

Specifically:
The top left pane, displays a set of Form Objects
(corresponding to FDM scripts being edited), based on a
Tree layout. On this layout one script (denoting the active
one) is highlighted. The tree layout is used towards
depicting form inheritance.
The top right pane is devoted to displaying Slot objects

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1658

(i.e. NLU slots) belonging to the active (if any) FDM
script. Slots are designed to be displayed as a list.
The bottom right pane acts as a display panel for Form
Level Message Objects. Like in the case of the slots pane
Form level messages are displayed as a list.
The bottom left pane depicts Message objects (i.e.
message templates) belonging either to the active (if any)
slots (disambiguation/confirmation messages) or to the
active form level message (function statements and
function calls). Basically, this pane displays messages
based on which other pane is active at the moment. In this
pane messages are displayed based on a Tree layout.

The environment’s commands are designed to be available
through menus. There are two types of menus: these
accessible from the menu bar, and context sensitive menus.

Finally, the environment comprises a rich set of Dialog
Boxes. These Dialog Boxes are user interface elements
enabling data input, editing of object properties, user
interaction. Dialog boxes pop up as a result of menu
commands, or commands issued by pressing/clicking buttons
on other dialog boxes.

IV. IMPLEMENTATION

So far we have described the basic theoretical parts of
NLUForms GUI, what it can do and how. Following the
functional description and basic design structure of the
authoring environment, we provide some details about its
software implementation. This implementation was carried out
using MS Visual C++ and relying in the MFC libraries. SDI
(Single Document Interface) architecture was selected for
implementation. Single Document Interface is a document –
centric application, at the heart of the MFC framework that
can only work with one document at a time, and can only
work with one type of document [7].

Fig.5. The SDI architecture.

There are four classes that make an SDI application work
(Fig.5):

CWinApp-derived class. This class: a) creates all the
components of the application, b) receives all the event

messages and c) passes the messages to the CFrameView

and CView classes.
CFrameView-derived class. This class is the window
frame. It holds the menu, toolbar, scrollbars, and any
other visible object which is attached to the frame. This
class determines the visible part of the document at any
time.
CDocument-derived class. This class houses a document
and manipulates the data that makes it up. It also receives
input from the CView class and passes display
information to the CView class. Finally, it is responsible
for saving and retrieving the document data from files.
CView-derived class. This class displays the visual
representation of the document for the user. It also passes
input information to the CDocument class and receives
display information from the CDocument class.

As far as our project is concerned CNLUFormsGUIDoc is
the class that acts like the CDocument class that we described
above. To be more specific, this class processes the data of
each form at a time. Furthermore, it calls CNLUForm,
CNLUSlot and CNLUMsg classes. These classes manipulate
for each application forms, slots and messages respectively.

Fig.6. Import Functionality.

All the classes with the extension View extend the CView

class. For example CFormTreeView displays the tree-like
visual representation of the active form and CSlotListView

displays the list-like visual representation of slots.
Finally CMainFrame is responsible for creating the four

panes of the main application window. As an example of how
classes cooperate, Fig. 6 presents the implementation of
import functionality based on SDI architecture.

V. CONCLUSIONS – FUTURE WORK

In this paper we have presented significant design and
implementation aspects of a visual tool supporting the
development of NLU forms. The framework of this tool
supports the notion of a Forms workspace. In the scope of
such a workspace the NLU developer can create and edit

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1659

multiple FDM scripts. NLUForms GUI allows users to
develop FDM forms from scratch, but also to import and edit
(pre)existing FDM scripts that may have been manually
developed. It is also important that the environment provides a
host of other operations that facilitate the development of
FDM scripts. Note that all operations are visual and supported
by a user-friendly graphical user interface.

As the Dialog Manager is among the most important
components of the Conversational Natural Language
Understanding System, the benefits from using this
environment are straightforward. In particular, using this
environment NLU developers are alleviated from the tedious
task of manually writing FDM scripts. Manual authoring is
slower, less intuitive, more error-prone and overall less
productive.

It is beyond any doubt that FDM is form-based because
each task that can be performed is associated with a form. To
perform the above, the FDM decides which form any
particular user utterance is referring to. Relevant information
needed to specify the task is the data fields, which we refer to
as slots of that form. One may think of FDM as aiding the user
in picking out a form and filling the appropriate slots. The
actual execution of tasks is performed by a separate
component of the system called the backend.

The presented effort is very closely related to a number of
other tools and frameworks supporting NLU development. It
is a subject of future work to revise the implementation so that
this GUI could become part of a wider NLU development
toolkit.

REFERENCES

[1] M. Epstein, ‘Statistical Source Channel Models for Natural Language
Understanding’, Phd Thesis, NYU University, Department of Computer
Science, 1996.

[2] T. Ward, S.Roukos, C. Neti et. al. ‘Towards Speech Understanding
across Multiple Languages’ in the Proc. of the 5th International
Language Processing, ICSLP 1998, Sydney Australia.

[3] K. A. Papineni, S. Roukos, and R. T. Ward, ‘Free-Flow Dialog
Management Using Forms’. Eurospeech 99, Budapest, Hungary, 1999.

[4] John Soldatos, Valia Demesticha ‘Visual FDM Builder Version 1.0
User’s Manual’, May 2002

[5] Marion Mast, Thomas Ross, Henrik Schulz, Heli Harrikari, Vasiliki
Demesticha, Lazaros Polymenakos, Yannis Vamvakoulas, Jan
Stadermann: ‘A Conversational Natural Language Understanding
Information System for Multiple Languages’ in the Proc. of the 6th

International Workshop on Applications of Natural Language for
Information Systems Conference, Madrin Spain, June28-29, 2001,
pp.177-186

[6] CATCH-2004 "Converse in Athens, Cologne and Helsinki", Annex I
"Description of Work", IST Programme - Key Action III, Proposal
number IST-1999-11103.

[7] Jeff Prosise, ‘Programming Windows with MFC’, Microsoft Press 2nd

Edition, May, 1999, ISBN: 1572316950.
[8] VoiceXML 2.0, W3C, http://www.w3.org/TR/2001/WD-voicexml20-

20011023, Working Draft.
[9] IBM, ViaVoice, http://www-3.ibm.com/software/speech/

