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Abstract—Large volumes of fingerprints are collected and stored 

every day in a wide range of applications, including forensics, access 
control etc. It is evident from the database of Federal Bureau of 
Investigation (FBI) which contains more than 70 million finger 
prints. Compression of this database is very important because of this 
high Volume. The performance of existing image coding standards 
generally degrades at low bit-rates because of the underlying block 
based Discrete Cosine Transform (DCT) scheme. Over the past 
decade, the success of wavelets in solving many different problems 
has contributed to its unprecedented popularity. Due to 
implementation constraints scalar wavelets do not posses all the 
properties which are needed for better performance in compression. 
New class of wavelets called ‘Multiwavelets’ which posses more 
than one scaling filters overcomes this problem. The objective of this 
paper is to develop an efficient compression scheme and to obtain 
better quality and higher compression ratio through multiwavelet 
transform and embedded coding of multiwavelet coefficients through 
Set Partitioning In Hierarchical Trees algorithm (SPIHT) algorithm. 
A comparison of the best known multiwavelets is made to the best 
known scalar wavelets. Both quantitative and qualitative measures of 
performance are examined for Fingerprints. 

 
Keywords—Mutiwavelet, Modified SPIHT Algorithm, SPIHT, 

Wavelet.  

I. INTRODUCTION 

INGERPRINTS are the ridge and furrow patterns on the 
tip of the finger and are used for personal identification of 

the people [1]. An automatic recognition of people based on 
fingerprints requires that the input fingerprint be matched with 
a large number of finger prints. Due to large volume of data in 
a database consumes more amount of memory. Hence an 
effective method should be adopted to utilize the memory 
effectively by storing the Finger prints in a compressed 
format. Data compression algorithms are used in the standards 
such as JPEG and MPEG, to reduce the number of bits 
required for representing an image or a video sequence, i.e., 
compression is  
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necessary and essential method for creating image files with 
manageable and transmittable sizes. Image compression is 
now essential for applications such as transmission and 
storage in data bases. For still image compression, the `Joint 
Photographic Experts Group' or JPEG [1] standard has been 
established by International Standards Organization (ISO) and 
International Electro-Technical Commission (IEC). The 
performance of these coders generally degrades at low bit-
rates mainly because of the underlying block-based Discrete 
Cosine Transform (DCT) [2] scheme. More recently, the 
wavelet transform has emerged as a cutting edge technology, 
within the field of image compression. Wavelet-based coding 
provides substantial improvements in picture quality at higher 
compression ratios. Over the past few years, a variety of 
powerful and sophisticated wavelet-based schemes [3],[4] for 
image compression, have been developed and implemented.. 
For better performance in compression, filters used in wavelet 
transforms should have the property of orthogonality, 
symmetry, short support and higher approximation order. Due 
to implementation constraints scalar wavelets do not satisfy all 
these properties simultaneously [5],[6]. New class of wavelets 
called ‘Multiwavelets’ which posses more than one scaling 
filters [7] overcomes this problem. Thus multiwavelets offer 
the possibility of superior performance and high degree of 
freedom for image processing applications, compared with 
scalar wavelets. Multiwavelets can achieve better level of 
performance than scalar wavelets with similar computational 
complexity.  

This paper is organized as follows: Section II highlights 
some key points on Multiwavelets. Section III provides the 
Motivation for going into Multiwavelets for Image 
Compression. Section IV presents the Filter Bank Approach 
for Multiwavelets. Section V discusses the Coding of Multi 
wavelet Coefficients using Modified SPIHT Results and 
discussions are presented in section VI and finally conclusions 
are drawn in the section VII. 

II. MULTIWAVELETS 
Multiwavelets are defined using several wavelets with 

several scaling functions [7]. Multiwavelets have several 
advantages in comparison with scalar wavelet [8]. The 
features such as compact support, Orthogonality, symmetry, 
and high order approximation are known to be important in 
signal processing. A scalar wavelet can not possess all these 
properties at the same time [9]. On the other hand, a 
multiwavelet system can simultaneously provide perfect 
reconstruction while preserving length (Orthogonality), good 
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performance at the boundaries (via linear-phase symmetry), 
and a high order of approximation (vanishing moments) [10]. 
Thus multiwavelets offer the possibility of superior 
performance and high degree of freedom for image processing 
applications, compared with scalar wavelets. 

The study of multiwavelets was initiated by Goodman, Lee 
and Tang. Then Goodman and Lee discovered the 
characterization of scaling functions wavelets. Jia constructed 
a class of continuous orthogonal double wavelets with 
symmetry, short support, and Orthogonality. The special case 
of Multiwavelets with multiplicity 2 and support (0, 2), was 
studied by Chui and Lian. When a multiresolution analysis is 
generated using multiple scaling functions and wavelet 
functions, it gives rise to the notion of multiwavelets [5]. A 
multiwavelet with r scaling functions and r wavelet functions 
is said to have multiplicity r. When r = 1, one scaling function 
and one wavelet function, the multiwavelet system reduces to 
the scalar wavelet system. Multiwavelets have two or more 
scaling functions and wavelet functions. For notational 
difference the set of scaling functions can be written using the 

vector notation 1 2( ) [ ( ) ( ) . . . . ( )]T
rt t t tΦ = Φ Φ Φ , where 

( )tΦ  is called the multi-scaling function. Likewise the 
multiwavelet function is defined from the set of wavelet 

function 1 2( ) [ ( ) ( ) . . . . ( )]T
rt t t tψ ψ ψ ψ= . When r=1 

( )tψ is called a scalar wavelet or simply called wavelet. 
Multiwavelets differ from scalar wavelet systems in requiring 
two or more input streams to the multiwavelet filter bank. 
Multiwavelets are an extension of the scalar wavelet to the 
vector case. As in the scalar wavelet case, the theory of 
multiwavelets is based on the idea of multiresolution analysis 
(MRA). The difference is that multiwavelets have several 
scaling functions. For multiwavelets, the notion of MRA is the 
same except that now a basis for V0   and V1  is generated by 
translates of N scaling functions Φ1(t - k), Φ2(t - k), . . . , 
ΦN(t - k). The multi scaling function and the multiwavelet 
function will satisfy matrix dilation equations (1) 

( ) 2 (2 )

( ) 2 (2 )

kk

kk

t H t k

t G t kψ

∞

= −∞

∞

= −∞

Φ = Φ −

= Φ −

∑
∑    (1) 

    
The filter coefficients Hk and Gk are N by N matrices 

instead of scalar. 
Corresponding to each multiwavelet system, there is a 

matrix-valued multi-rate filter bank [5]. A multiwavelet filter 
bank has “taps” that are N × N matrices. The 4-coefficient 
symmetric multiwavelet filter bank whose low pass filter is 
given by the four N × N matrices named C. Unlike a scalar 2-
band Para unitary filter bank, the corresponding high pass 
filter specified by the four N × N matrices named D, cannot be 
obtained simply as an “alternating flip” of the low pass filter; 

the wavelet filters D must be designed. The resulting N-
channel, N × N matrix filter bank operates on N input data 
streams, filtering them into 2N output streams, each of which 
is down sampled by a factor of 2. This is shown in Fig. 1 
Multi-rate Filter bank 

Each row of the multi-filter is a combination of N ordinary 
filters, each operating on the separate data stream. 
 
  

 
Fig. 1 Multi-rate Filter bank 

III. MOTIVATION FOR MULTIWAVELETS 
Algorithms based on scalar wavelets have been shown to 

work quite well in image and video compression. 
Consequently there must be some justification to use 
multiwavelets in place of scalar wavelets. Some reasons for 
potentially choosing multiwavelets are summarized below. 

First, the extra degrees of freedom inherent in 
multiwavelets can be used to reduce restrictions on the filter 
properties. For example, it is well known that a scalar wavelet 
cannot simultaneously have both Orthogonality and 
symmetric property. Symmetric filters are necessary for 
symmetric signal extension, while Orthogonality makes the 
transform easier to design and implement. Also, the support 
length and vanishing moments are directly linked to the filter 
length for scalar wavelets. This means longer filter lengths are 
required to achieve higher order of approximation at the 
expense of increasing the wavelet’s interval of support. A 
higher order of approximation is desired for better coding 
gain, but shorter support is generally preferred to achieve a 
better localized approximation of the input function. In 
contrast to the limitations of scalar wavelets, multiwavelets 
are able to possess the best of all these properties 
simultaneously.  

Second, one desirable feature of any transform used in 
image compression is the amount of energy compaction 
achieved. A filter with good energy compaction properties can 
decorrelate a fairly uniform input signal into a small number 
of scaling coefficients containing most of the energy and a 
large number of sparse wavelet coefficients. This becomes 
important during the quantization since the wavelet 
coefficients are represented with significantly fewer bits on 
average than the scaling coefficients. Therefore better 
performance is obtained when the wavelet coefficients have 
values clustered about zero with little variance, to avoid as 
much quantization noise as possible Thus multiwavelets have 
the potential to offer better reconstructive quality at the same 
bit rate. Finally, multiwavelets can achieve better level of 
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performance than scalar wavelets with similar computational 
complexity. 

IV. FILTER BANK APPROACH FOR MULTIWAVELETS 

A. One-Dimensional Signal Processing Using Multiwavelet 
Filterbanks 
The low pass filter C and high pass filter D in Fig. 1, 

consist of coefficients corresponding to the dilation equation 
and wavelet equation. But in the multiwavelet setting these 
coefficients are n by n matrices, and during the convolution 
step they must multiply vectors (instead of scalars). This 
means that multifilter banks need n input rows [11]. Separate 
odd and even samples. 

B. Over sampled Scheme 
The most obvious way to get two input rows from a given 

signal is to repeat the signal. Two identical rows go into the 
multifilter bank. This procedure, which is called as “repeated 
row,” is shown in Fig. 2. It introduces over sampling of the 
data by a factor of two. over sampled representations have 
proven useful in feature extraction; however, they require 
more calculation than critically-sampled representations. 
Furthermore, in data compression applications, one is seeking 
to remove redundancy, not to increase it. In the case of one-
dimensional signals the “repeated row” scheme is convenient 
to implement. 

C. Critically Sampled scheme 
 A different way to get input rows for the multiwavelet 

filter bank is to preprocess the given scalar signal. For data 
compression, where one is trying to find compact transform 
representations for a dataset, it is imperative to find critically 
sampled multiwavelet transform schemes. This scheme 
maintains a critically sampled representation. The multifilter 
processes two N/2-point data streams using an approximation 
method suggested by Geronimo and described in [12]. This 
scheme in the context of Geronimo-Hardin-Massopust 
multiwavelets is developed; however, it works equally well 
for the Chui-Lian multiwavelets with minor modifications. It 
follows the underlying wavelet decomposition and its 
sampling/interpolation theory. Multiwavelet filtering of 
images needs two dimensional algorithms [13], [10]. 

 

Fig. 2 Multiwavelet Filter banks with “repeated input” 

 
One class of such algorithms is derived simply by taking 

tensor products of the 1-D methods described in the previous 

section. Another class of algorithms stems from using the 
matrix filters of the multiwavelet system for fundamentally 2-
D processing. These alternatives are discussed now. 

D. Two-Dimensional Signal Processing Using Separable 
scheme 
Two different ways to decompose a one-dimensional signal 

using multiwavelets are described in section A and B. Each of 
these can be turned into a two-dimensional algorithm by 
taking a tensor product, i.e., by performing the 1-D algorithm 
in each dimension separately. 

Suppose our 2-D data is represented as an N by N matrix. 
The first step is to preprocess all the rows and store the result 
as a square array L1 such that the first half of each row 
contains coefficients corresponding to the first scaling 
function and the second half contains coefficients 
corresponding to the second scaling function. The next 
operation is preprocessing of the columns of the array L1 to 
produce an output matrix L2, such that the first half of each 
column of L2 contains coefficients corresponding to the first 
scaling function and the second half of each column 
corresponds to the second scaling function. Then the 
multiwavelet cascade starts: it consists of iterative low and 
high pass filtering of the scaling coefficients in horizontal and 
vertical directions. The result after one cascade step can be 
realized as shown in the Figure 3. Here a typical block H2L1 
contains low-pass coefficients corresponding to the first 
scaling function in the horizontal direction and high-pass 
coefficients corresponding to the second wavelet in the 
vertical direction. The next step of the cascade will 
decompose the “low-low-pass” sub-matrix L1L1, L2L1, L1L2 
and L2L2 in a similar manner. As noted before, the separable 
product of one-dimensional “repeated row” algorithms leads 
to a 4:1  

Data expansion, restricting the utility of this approach to 
applications such as denoising by thresholding, for which 
critical sampling is irrelevant The separable product of the 
approximation-based preprocessing methods described in 
Section C yields a critically sampled representation, 
potentially useful for both denoising and data compression. 

 
                        (a)                                             (b) 

Fig. 3 Image subband structure for first level of 
decomposition.(a)Filtering along Horizontal direction.(b)Filtering 

along Vertical direction 
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E. Implementation of Multiwavelets to Image Processing 
The wavelet and multiwavelet transformations are directly 

applicable only to one dimensional signal. But images are two 
dimensional signals, so we must find a way to process them 
with a 1-D transform. The two main categories of methods for 
doing this are separable and non-separable algorithms. 
Separable methods simply work on each dimension in series. 
The typical approach is to process each of the rows in order 
and then process each column of the result [10]. Non-
separable methods, such as the factored scalar wavelet method 
work in both dimensions at the same time. While non-
separable methods can offer benefits over separable methods, 
such as a savings in computation, they are generally more 
difficult to implement. 

F. Preprocessing for Multiwavelets 
Aside from decomposition concerns, there is another issue 

to be addressed when multiwavelets are used in the transform 
process. Multiwavelet filter banks require a vector-valued 
input signal. There are a number of ways to produce such a 
signal from 2D image data. Perhaps the most obvious method 
is to use adjacent rows and columns of the image data. 
However, this approach does not work well for general 
multiwavelets and leads to reconstruction artifacts in the low 
pass data after coefficient quantization. This problem can be 
avoided by constructing “constrained” multiwavelets, which 
possess certain key properties. Unfortunately, the extra 
constraints are somewhat restrictive; image compression test 
show that constrained multiwavelets do not perform as well as 
some other multifilter. 

Another approach is to first split each row or column into 
two half-length signals, and then use these two half signals as 
the channel inputs into the multifilter. A naïve approach is to 
simply take the odd samples for one signal and the even 
samples for the second signal. This approach does not work 
well because it destroys the assumed characteristics of the 
input signal. This generally presumed that image data will be 
locally well-approximated by low-order polynomials, usually 
constant, linear, or quadratic. The high pass filters are 
designed to give a uniformly zero output when the input has 
this form. Taking alternating data points as the filter inputs 
alters the character of the input signal; hence the filter output 
will no longer be forced to zero, reducing compression 
performance. But there is way around this problem: one may 
first prefilter the two half-length signals before passing them 
into multifilter [12], [14]. 

The prefilter step adjusts the input signal properties so that 
one scalar signal is split in to two half-length signals in such a 
way that the orders of approximation built into the multifilter 
are utilized. The prefiltering is generally performed by taking 
the two signals as a 2 X N matrix (where the original 1-D 
signal has length 2N) and then left-multiplying by one or more 
2 X 2 prefilter matrices. 

 

G. Symmetric Signal Extension 
 In practice all signals have finite length, so we must devise 

techniques for filtering such signals at their boundaries. There 
are two common methods for filtering at the boundary that 
preserve critical sampling. The first is circular periodization 
(periodic wrap) of the data. This method introduces 
discontinuities at the boundaries; however, it can be used with 
almost any filter bank. The second approach is symmetric 
extension of the data. It has been shown that symmetric 
extension is the best way to handle signal boundaries. 
Symmetric extension preserves signal continuity, but can be 
implemented only with linear-phase (symmetric and/or 
antisymmetric) filter banks. Symmetric extension is useful for 
image compression applications.  

H. Iteration of Decomposition 
 Since multiwavelets decomposition produce two low pass 

subbands and two high pass subbands in each dimension, the 
organization and statistics of multiwavelets subbands differ 
from the scalar wavelet case. The closer examination of the 
differences suggests a method for improving the performance 
of the multiwavelets in the image compression applications. 
During a single level of decomposition using a scalar wavelet 
transform, the 2-D image data is replaced with four blocks 
corresponding to the subbands representing either low pass or 
high pass in both dimensions. The Multiwavelets 
decomposition subbands are shown in Fig.4. The 
multiwavelets used here have two channels, so there will be 
two sets of scaling coefficients and two sets of multiwavelets 
coefficients. Since the multiple iterations over the low pass 
data are desired, the scaling coefficients for the two channels 
are stored together. Likewise, the wavelet coefficients for the 
two channels are also stored together. For example, the 
subband labeled L1H2 corresponds to data from the second 
channel high pass filter in the horizontal direction and the first 
channel low pass filter in the vertical direction. In practice, 
more than one level of decomposition is performed on the 
image. Successive decompositions are performed on the low 
pass coefficients from the previous stage to further reduce the 
number of low pass coefficients. 

 

 
Fig. 4 Multiwavelet decomposition subband structure for 1-level 

decomposition 
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Fig. 5 Multiwavelet decomposition subband structure for 2-level 

decomposition 

 
Since the low pass coefficients contain most of the original 

signal energy, this iteration process yields better energy 
compaction. After a certain number of iterations, the benefit 
gained in energy compaction becomes rather negligible 
compared to the extra computational effort. Usually five levels 
of decomposition are used in current wavelet-based 
compression schemes. Experiments indicate that three levels 
are sufficient for multiwavelets with gains in the PSNR 
diminishing rapidly with decomposition depth increasing 
above 3. A single level of decomposition with a symmetric- 
anti symmetric multiwavelets is roughly equivalent to two 
levels of wavelet decomposition. Thus a 3-level multiwavelet 
decomposition effectively corresponds to 6-level scalar 
wavelet decomposition. Since tests indicate that the 
improvement from depth 5 to depth 6 for scalar wavelets is 
negligible. A 3-level multiwavelet decomposition can be 
considered comparable to 5-level scalar wavelet 
decomposition. 

Scalar wavelet transforms give a single quarter-sized low 
pass subband from the original larger subband. In previous 
multiwavelets literature a multi-level decompositions are 
performed in the same way. The multiwavelet decompositions 
iterate on the low pass coefficients from the previous 
decompositions, as shown in Fig. 5 In the case of scalar 
wavelets, the low pass quarter image is a single subband. But 
when the multiwavelet transform is used, the quarter image of 
low pass coefficients is actually a 2x2 block of subbands (the 
L1L1, L1L2, L2L1 and L2L2 subbands in Fig). Due to the 
nature of the preprocessing and symmetric extension method, 
data in these different subbands becomes inter mixed during 
iteration of the multiwavelets transform. The inter mixing of 
the multiwavelet low pass subbands leads to suboptimal 
results 

 

V. MODIFIED SPIHT ALGORITHM FOR CODING OF 
MULTIWAVELET COEFFICIENTS 

 
For evaluating the effectiveness of the Multiwavelet transform for 

coding images or videos at low bit rates, an effective quantization 
and embedded coding of coefficients [15],[16] has been realized.  

An embedded coding is applied to transformed image in order to 
take the advantage of the decorrelation properties of its coefficients. 
Some of the embedded coding schemes are Embedded image coding 
using zero trees of Wavelet coefficients (EZW), and SPIHT. 

The SPIHT coder[16] is a powerful image compression algorithm 
that produces an embedded bit stream from which the best 
reconstructed images can be obtained at various bit rates. This 
algorithm improves the perceptual quality of the image at all the bit 
rates. The Modified SPIHT algorithm for Multiwavelet differs from 
the ordinary SPIHT[16] algorithm by the way in which the subsets 
are partitioned and significant information is conveyed which is 
shown in Fig. 6.  

A tree structure, called spatial orientation tree, defines the 
spatial relationship on the hierarchical pyramid. Fig. 6 shows 
how spatial orientation tree is defined for Multiwavelet 
coefficients. 

The following sets of coordinates are used to present the new 
coding method: 

O (i, j):  Set of coordinates of all offspring of node (i, j) 
D (i, j):  set of coordinates of all descendants of node (i, j) 
H (i, j):  set of coordinates of all spatial orientation tree roots 

(nodes in the highest pyramid level)  
L (i, j):  D(i, j) – O(i, j) (all descendents except the offspring) 

A. Modified SPIHT Algorithm 
 
All the steps of the modified SPIHT coding algorithm are same 

except the initialization process. 
The modified SPIHT algorithm can be summarized as follows: 
Initialization: 

,2 ( , )log (max ){ }i ji j Cn ⎢ ⎥
⎢ ⎥⎣ ⎦

=   

• Set the LSP as empty list  
Add the coordinates of H in which the scanning order of subbands as 
shown in Fig.6, to the LIP and only those with descendents also to 
the LIS, as type A entries in the same order. For example the order of 
scanning of subbands is L1L1, L2L1, L1L2, L2L2, H1L1, H2L1, H1L2, 
H2L2, L1H1, L2H1, L1H2, L2H2, H1H1, H2H1, H1H2 and H2H2. 
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Fig. 6 Scanning and quantization order of subimages of 

Multiwavelet decomposition  
 

Sorting Pass: 
1) For each entry (i,j) in the LIP do: 
1.  Output Sn (i ,j )  
2. If Sn (i ,j )=1, then move (i,j) to the LSP and output the sign 

of Ci,j 
2) For each entry (i,j) in the LIS do: 
3. If the entry is of type A then 
4. Output Sn (D(i ,j )) 
5. If Sn (i ,j )=1 then for each (k,l)∈O(i,j) do: 
6. Output Sn(k,l) 
7. If Sn(k,l) =1 then add (k,l) to the LSP and output the sign of  

Ck,l 
8. If Sn(k,l) =0 then add (k,l) to the end of LIP 
9. If Li,j ≠ φ  then move (i, j) to the end of the LIS as entry of 

type B, and go to step 2) b); otherwise remove entry from the LIS. 
10. If the entry is of type B then 
11. Output Sn(L(i, j)) 
12. If Sn(L(i,j))=1 then 
13. add each (k,l)∈O(i,j) to the end of the LIS as entry of type A 
14. remove (i,j)  from the LIS 
Refinement Pass:  
For each entry (i, j) in the LSP except those included in the last 

sorting pass (i.e. with the same n), output the nth most significant bit 
of |Ci,j|. 

Quantization Step Update: 
Decrement the value of n by 1 and go to sorting pass if n is 

not less than 0. 

VI. RESULTS AND DISCUSSIONS 
An Fingerprint Image called Fingerprint A of Size(256 X 

256) is subjected to wavelet (Haar) and Multiwavelet 
decomposition. The original Fingerprint Image taken for the 
Experimental purpose is shown the Fig. 7.The Multiwavelet 
filters used in this work were “GHM” pair of multifilters, 
Chui-Lian orthogonal multifilter “Cl”, orthogonal 
symmetric/antisymmetric multifilter “Sa4” , Cardinal 3-
balanced orthogonal multifilter “Cardbal3”and Cardinal 2-
balanced orthogonal multifilter “Cardbal2” The Table-I shows 
the results of the Comparison of PSNR values under the 

decomposition levels  2,3,4.Using HAAR wavelet. Table II to 
Table-VI shows the Comparison of PSNR values under 
decomposition levels 2,3,4 using the Multiwavelets 
“Cardbal3”, “GHM”,“CL”,“SA4”,“Cardbal2” for the 
experimented Fingerprint A. 

 

 

 

 

 
 

Fig. 7 Original Fingerprint Image (Fingerprint-A) taken 
 
 Whenever the decomposition Levels gradually increases 

the PSNR values are also increasing.  Fig. 8 shows that an 
increase in the PSNR values for the increase in the 
decomposition levels for wavelets. Fig.9 and Fig.10 show the 
varying values of PSNR for multiwavelets “Cardbal3” and 
“cardbal2”.Here the Cardinal-3 balanced Orthogonal 
multifilter bank and Cardinal-2 balanced Orthogonal 
multifilter bank performs better than  

 
TABLE I 

COMPARISON OF PSNR VALUES FOR FINGERPRINT-A UNDER 3 LEVELS OF 
“HAAR” DECOMPOSITION 

“Haar” Wavelet Decomposition 

Rate(bpp) PSNR(dB) 
Level=2 

PSNR(dB) 
Level=3 

PSNR(dB) 
Level=4 CR 

0.2 14.0503 14.2049 17.3762 40.0006 

0.4 14.0503 17.1153 19.8823 20.0003 

0.6 14.2724 19.3412 21.4418 13.3335 

0.8 14.2724 20.93 22.9169 10.0002 

1 16.7379 22.5299 24.1252 8.0000 

 
the other Multifilters because of the  orthogonal Balance 
property which is not available in other Multifilters. Fig. 11 to 
Fig. 13 show that the Comparison of PSNR values for the 3 
decomposition levels for wavelets and Multiwavelets.The 
Multiwavelets performs better than wavelets is due to the 
simple reason that the higher amount of energy is concentrated 
in the lower resolution level, which is decomposed well by the 
Multifilters than scalar filters.  
 
The higher amount of scaling and wavelet function available 
in multifilters, provide the very good decomposition. The 
performance of the “Cardbal3” and “cardbal2” Multiwavelets 
are comparatively better than that of wavelets as the 
decomposition level gradually varies from 2 to 4. The increase 
in the PSNR value is approximately 4 to 6dB at the rates from 
0.2bpp to 1bpp when levels of decomposition go higher. 
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TABLE II 
COMPARISON OF PSNR VALUES FOR FINGERPRINT-A UNDER 3 LEVELS OF 

“CARDBAL3” MULTIWAVELET DECOMPOSITION 
“Cardbal3” Multiwavelet Decomposition 

Rate(bpp) PSNR(dB) 
Level=2 

PSNR(dB) 
Level=3 

PSNR(dB) 
Level=4 CR 

0.2 7.3867 18.4262 19.9256 40.0006 

0.4 17.6141 21.8699 22.4219 20.0003 
0.6 21.2487 23.7500 24.1448 13.3335 
0.8 23.1553 25.0798 25.4708 10.0002 

1 24.5344 26.2481 26.7384 8.0000 
 

TABLE III 
COMPARISON OF PSNR VALUES FOR FINGERPRINT-A UNDER 3 LEVELS OF 

“GHM” MULTIWAVELET DECOMPOSITION 
“GHM” Multiwavelet Decomposition 

Rate(bpp) PSNR(dB) 
Level=2 

PSNR(dB) 
Level=3 

PSNR(dB) 
Level=4 CR 

0.2 8.7547 13.2227 13.6557 40.0006 
0.4 13.0103 14.3884 14.6279 20.0003 
0.6 13.9619 15.6219 16.2783 13.3335 
0.8 15.2830 16.9059 17.8272 10.0002 
1 16.4488 19.0170 19.7649 8.0000 

 
TABLE IV 

COMPARISON OF PSNR VALUES FOR FINGERPRINT-A UNDER 3 LEVELS OF 
“CL” MULTIWAVELET DECOMPOSITION 

“CL” Multiwavelet Decomposition 

Rate(bpp) PSNR(dB) 
Level=2 

PSNR(dB) 
Level=3 

PSNR(dB) 
Level=4 CR 

0.2 3.3492 3.7769 4.2210 40.0006 
0.4 3.6523 5.9839 6.7295 20.0003 
0.6 5.6922 9.4599 10.0471 13.3335 
0.8 9.2316 11.2157 11.7057 10.0002 
1 11.0643 13.4223 14.1535 8.0000 

 
When the decomposition levels are more than 2 there is a 
consistent increase in the PSNR values independent of the 
Rates. Irrespective of the decomposition levels the “cardbal2” 
performs better than “Cardbal3”.  Fig 14 to Fig 16 shows the 
rate distortion curves. It is found from these Figures that there 
is very good increase in the value of PSNR for any given 
compression ratios for Muliwavelet decomposition than that  
of wavelet decomposition. This shows that the user may get 
extra quality at the same compression ratio which is a great 
achievement because of the Multiresolution concept of using  
multiple wavelets rather than a single wavelet. The boon of 
Multiwavelets is especially from the multi amount of scaling 
function and wavelet function, where ordinary wavelet 
contains only one scaling and wavelet function. 

 
 
 
 
 
 
 
 
 
 

 

TABLE V 
COMPARISON OF PSNR VALUES FOR FINGERPRINT-A UNDER 3 LEVELS OF 

“SA4” MULTIWAVELET DECOMPOSITION 
“SA4” Multiwavelet Decomposition 

Rate(bpp) PSNR(dB) 
Level=2 

PSNR(dB) 
Level=3 

PSNR(dB) 
Level=4 CR 

0.2 3.3458 3.7304 4.2177 40.0006 
0.4 3.5764 6.3199 7.1895 20.0003 
0.6 6.0214 14.1892 14.5110 13.3335 
0.8 12.6285 15.9900 16.6078 10.0002 
1 15.1551 17.6224 17.9244 8.0000 

 
TABLE VI 

COMPARISON OF PSNR VALUES FOR FINGERPRINT-A UNDER 3 LEVELS OF 
“CARDBAL2” MULTIWAVELET DECOMPOSITION 

“Cardbal2” Multiwavelet Decomposition 

Rate(bpp) PSNR(dB) 
Level=2 

PSNR(dB) 
Level=3 

PSNR(dB) 
Level=4 CR 

0.2 7.4079 18.5808 20.2169 40.0006 
0.4 17.7664 22.1345 22.675 20.0003 
0.6 21.4868 24.0108 24.4407 13.3335 

0.8 23.4823 25.3215 25.6864 10.0002 

1 24.7721 26.4522 26.9804 8.0000 

 

 
 

Fig. 8 Comparison of PSNR values for 3 levels of decomposition 
using “HAAR” wavelet for Fingerprint-A 

 
Since the Fingerprint contains mostly high frequency content 
i.e., edges and repeated oscillatory patterns, multiwavelet 
decomposes the signal in a better way by using its different 
multifilters and provides good quality even at the lower rates. 
This is evident from the PSNR values available in the tables 
under different decomposition levels.  
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Fig. 9 Comparison of PSNR values for 3 levels of decomposition 
using “Cardbal3”Multiwavelet for Fingerprint-A 

 
 

 
 

Fig. 10 Comparison of PSNR values for 3 levels of decomposition 
using “Cardbal2”Multiwavelet for Fingerprint-A 

 

  
Fig. 11 Comparison of PSNR values for wavelet and Multiwavelet 

decomposition under level=3 for Fingerprint-A 
 

  
 

Fig. 12 Comparison of PSNR values for wavelet and Multiwavelet 
decomposition under level=3 for Fingerprint-A 

 

  
 

Fig. 13 Comparison of PSNR values for wavelet and Multiwavelet 
decomposition under level=4 for Fingerprint-A 

 

 
Fig. 14 Rate distortion curves for wavelet and Multiwavelet 

decomposition under level=2 for Fingerprint-A 
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Fig. 15 Rate distortion curves for  wavelet and Multiwavelet 
decomposition under level=3 for Fingerprint-A 

 

  
 

Fig. 16 Rate distortion curves for wavelet and Multiwavelet 
decomposition under level=4 for Fingerprint-A 

 
 
 
 
 
 
 
 
 
                       (a)                                         (b) 

Fig. 17 Reconstructed Fingerprint-A. (a)using “HAAR” wavelet 
with decomposition level=3 and 

Rate=1bpp,PSNR=22.592dB,CR=8.(b)using “HAAR” wavelet with 
decomposition level=4 and rate=1bpp,PSNR=24.12dB,CR=8 

  
The Fig.17 shows the Reconstructed Fingerprint-A using 

HAAR wavelet for the constant Rate with different levels of 
decomposition. Here it shows that when the decomposition 
level increases the quality increases which is shown by the 

increased value in the PSNR. 
 
 
 
 
 
 
 
 
     
                          (a)                                              (b) 

Fig. 18 Reconstructed Fingerprint-A. (a)using “Cardbal3” 
Multiwavelet with decomposition level=3 and 

Rate=0.6bpp,PSNR=23.75dB,CR=13.33.(b)using “cardbal3” 
Multiwavelet with decomposition level=4 and 

Rate=0.6bpp,PSNR=24.14dB,CR=13.33 
 
Fig 18 shows the reconstructed Fingerprint-A using 
“cardbal3” Multiwavlet. Here the fig shows that we are 
getting the same quality of the image as that of using wavlet 
but with a lower rate that is the advantage of Multiwavelets.   

VII. CONCLUSION 
The performance of Multiwavelets in general depends on 

the Image characteristics. For the Images with mostly low-
frequency content, (Ordinary still images) scalar wavelets 
generally give better performance. However multiwavelets 
appear to excel at preserving high frequency content. In 
particular, multiwavelets better capture the sharp edges and 
geometric patterns that occur in images. As Fingerprints are 
normally high frequency patterns Multiwavelets provide better 
PSNR even at the higher values Compression Ratio. Cardinal 
3 balance multiwavelets and Cardinal 2 balance multiwavelets 
shows very good performance since they have very balanced 
orthogonal properties which are essential for signal processing 
applications. 
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