
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3864

 
 

Abstract—Over the years, many implementations have been 
proposed for solving IA networks. These implementations are 
concerned with finding a solution efficiently. The primary goal of 
our implementation is simplicity and ease of use.  

We present an IA network implementation based on finite domain 
non-binary CSPs, and constraint logic programming. The 
implementation has a GUI which permits the drawing of arbitrary IA 
networks. We then show how the implementation can be extended to 
find all the solutions to an IA network. One application of finding all 
the solutions, is solving probabilistic IA networks.  

 
Keywords—Constraint logic programming, CSP, logic, temporal 

reasoning.  
 

I. INTRODUCTION 
LLEN [1] defines a temporal reasoning approach based 
on intervals and the 13 possible binary relations between 

them. The relations are before (b), meets (m), overlaps (o), 
during (d), starts (s), finishes (f), and equals (=).  Each relation 
has an inverse. The inverse symbol for b is bi and similarly for 
the others: mi, oi, di, si, and fi. The inverse of equals is equals. 
A relation between two intervals is restricted to a disjunction 
of the basic relations, which is represented as a set. For 
example, (A m B) V (A o B) is written as A {m,o} B. The 
relation between two intervals is allowed to be any subset of I 
= {b,bi,m,mi,o,oi,d,di,s,si,f,fi,=} including I itself. 

An IA (interval algebra) network is a graph where each 
node represents an interval. Directed edges in the network are 
labeled with subsets of I. By convention, edges labeled with I 
are not shown. An IA network is consistent (or satisfiable) if 
each interval in the network can be mapped to a real interval 
such that all the constraints on the edges hold (i.e., one 
disjunct on each edge is true).  

 
 

 
 
 

   A. Trudel is with the Jodrey School of Computer Science, Acadia 
University, Wolfville, Nova Scotia, B4P 2R6, Canada (e-mail: 
Andre.Trudel@acadiau.ca). 

   H. Zhang is with the Jodrey School of Computer Science, Acadia 
University, Wolfville, Nova Scotia, B4P 2R6, Canada (e-mail: 
Haiyi.Zhang@acadiau.ca).  

Van Beek has written efficient C code to solve IA 
networks. His complete package includes approximately 7500 
lines of code. The algorithms are described in [6]. To use the 
code, one must be an expert C programmer, and have a deep 
understanding of the algorithms. The implementation’s 
emphasis is on efficiency, not on user friendliness. 

Van Beek’s algorithms have been implemented in the 
constraint logic programming language Eclipse 
(http://www.icparc.ic.ac.uk/eclipse/) by Fruhwirth [2]. 
Another Eclipse implementation [3], uses a meta constraint 
solving approach. The edges in the IA network are the 
variables. The domain of each variable is a set of subsets of I. 
The domains, although finite, can grow large if they include 
all the subsets of I. The meta qualitative constraint solver 
requires code for the operations of intersection and 
composition, and meta-heuristic rules. Note that both [2; 3] 
also handle quantitative constraints which are not dealt with in 
this paper.  

The implementations mentioned above are non-trivial. The 
user must be an expert in the implementation language and 
software. The average user is not capable of making even 
simple extensions or modifications. We present an 
implementation which is probably not as efficient as the ones 
previously mentioned. Our goal is user friendliness and ease 
of use. The user draws an IA network, and then clicks a button 
for a solution. The target audience is researchers that need to 
quickly verify or generate a few solutions, and students 
entering the temporal area.  

 
II.  THEORETICAL UNDERPINNING 

We adopt Tsang’s [5] binary CSP definition. A binary CSP 
of n variables x1,…,xn has a domain Di of possible values 
associated with each variable xi. Each Di is finite, and it may 
not necessarily be the case that all the domains are equal. A 
binary constraint, Rij, between variables xi and xj is a subset 
of the Cartesian product of their domains. Each Rij is finite. 
We also require that (a,b) ∈ Rij if and only if (b,a) ∈ Rji. 

An IA network is a binary CSP with infinite domains. The 
intervals are the variables. The domain of each variable is the 
set of pairs of reals of the form (x,y) where x<y. The 
constraint between two variables i and j is the label on the 
edge (i,j) in the IA network. 

Finding a Solution, all Solutions, or the Most 
Probable Solution to a Temporal Interval 

Algebra Network  
                                                         André Trudel, and Haiyi Zhang 

A 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3865

  

During the past two decades, research on IA networks and 
finite domain CSPs has progressed relatively independently. 
The reason is that algorithms specifically designed for finite 
domains are usually not applicable to infinite domains. It was 
not widely known that IA networks are indeed finite domain 
CSPs. For example, van Beek and Manchak [6] write that 
“two of their heuristics cannot be applied in our context as the 
heuristics assume a constraint satisfaction problem with finite 
domains, whereas IA networks are examples of constraint 
satisfaction problems with infinite domains”.  

Recently, Thornton et al. [4] show how to convert an IA 
network into an equivalent non-binary CSP with finite integer 
domains. They observe that the relative positions of the 
interval endpoints in an IA network can be used to determine 
consistency. For example, X=(10,15) and Y=(100.5,110) is a 
solution to X{b}Y. This solution imposes the ordering X- < 
X+ < Y- < Y+ on the endpoints where X= (X-,X+) and 
similarly for Y. A simpler solution is to number the endpoints 
from left to right which results in X=(1,2) and Y=(3,4).  

An IA network with two intervals is consistent if and only 
if each interval can be mapped to a pair of integers (a, b) 
where a<b, and a,b∈{1,2,3,4} such that the constraint on the 
edge holds. Note that it might be the case that endpoints from 
different intervals get mapped to the same integer (e.g., as in 
the case of X {=}Y). Thornton et al. [4] generalize the integer 
mapping to:  

Theorem 1: Each interval in an IA network with n 
intervals can be mapped to a real interval such that all the 
constraints on the edges hold if and only if each interval in the 
IA network can be mapped to an interval with integer end-
points in the range 1…2n such that all the constraints on the 
edges hold.  

Based on theorem 1, Thornton et al. [4] convert an IA 
network to a non-binary CSP with finite domains. Each 
endpoint becomes a variable with domain {1,…,2n}. A label 
on an edge from X to Y in the IA network imposes a 
constraint on some or all of the variables X-, X+, Y-, and Y+. 
For example, X {d} Y generates the constraint (Y- < X-) & 
(X+ < Y+) which is non-binary since the constraint involves 4 
variables. They then apply local search techniques on the non-
binary CSP.  

We use the finite domain transformation described above. 
But instead of local search, we use Eclipse and constraint 
logic programming techniques to solve the IA network. 

 
III.  SYSTEM OVERVIEW 

An overview of our implementation’s components is given 
in figure 1. The user interacts with the implementation via the 
graphical user interface (GUI). The GUI, built using jGraph 
(http://www.jgraph.com/), has 2 windows. The user enters a 
graph in the top window. There are buttons for drawing nodes 
and edges. The nodes represent intervals and are each 
numbered 1, 2, etc. Allen’s interval relationships are entered 
on the edges separated by commas. There are no restrictions 
on the size or shape of the graph. When the user clicks on the 
button to request a solution, the solution is drawn in the GUI’s 
bottom window. The graph is re-drawn as entered by the user. 
Each edge will be assigned a unique label. The entire graph is 

consistent. If not consistent, a warning message is displayed 
instead.  

 

 

Fig. 1 Implementation 

 
IV.  EXECUTION FLOW 

After the user has entered a graph and requested a solution, 
control is given to the Java program in figure 1. The program 
first reads in a constraint logic program template. The 
template is updated with information from the particular graph 
to solve. The completed logic program is then passed on to 
Eclipse. Eclipse will solve the graph and then pass the 
solution to the Java program. The java program will then 
display the solution in the GUI.  

The CLP template file contains constraint code for Allen’s 
relations. The relations are implemented by placing 
restrictions on the endpoints. For example, interval (XL,XR) 
is before (YL,YR) if and only if XR < YL. In Eclipse, we 
write: b(XL,XR,YL,YR,1) :- XR < YL. The “1” in the last 
parameter of b is a numeric representation of b and is used to 
keep track of the relationships on the edges. The relations are 
numbered from 1 to 13. The after relationship bi is 
implemented in terms of before: bi(XL,XR,YL,YR,2) :- 
b(YL,YR,XL,XR,1). The other relations are similarly 
implemented. The CLP template file also contains clauses to 
enforce that the left endpoint of each interval precedes its right 
endpoint. 

The Java program copies the contents of the CLP template 
file to the CLP code file. Graph specific code is then added to 
the file. Assume we are given an IA network with n intervals 
(nodes) numbered from 1 to n. The left and right endpoints of 
the i’th interval are labeled Li and Ri respectively. The set of 
endpoints is represented in Eclipse as: EndPoints = [L1,R1,  
L2,R2,…,Ln,Rn]. For example, if n=4 we have: EndPoints = [ 
L1,R1,  L2,R2,  L3,R3,  L4,R4 ]. 

The range of each interval endpoint must be explicitly 
specified and is between 1 and 2n. In Eclipse, this is written in 
the following format: EndPoints :: 1..2n. For example, if n=4 
we write: EndPoints :: 1..8. 

The edges are also numbered. For example, if there are 5 
edges: Edges = [E1, E2, E3, E4, E5]. 

Every edge constraint is a disjunction of relationships. We 
represent the disjunction directly. For example, let the 
constraint on edge E1 between intervals 1 and 2 be meets or 
overlaps (i.e., {m,o}). This constraint is represented in Eclipse 

GUI

Java Program 

CLP Template 

CLP Code Eclipse  



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3866

  

as: (  m(L1,R1, L2,Y2,E1);   o(L1,R1, L2,Y2,E1)  ). Singleton 
labels are represented directly. For example if instead we have 
{m} we write: m(L1,R1, L2,Y2,E1). 

The problem’s constraints have now all been specified and 
we request Eclipse to generate a solution with the query: 
finda_solution(Edges). If a solution is found, Edges will be 
bound to a list of integers. Each integer represents an Allen 
relation for an edge. 
 

V.  ONE SOLUTION 
Figure 2 is a screenshot of the GUI. The top window 

contains the IA network entered by the user. The solution is 
shown in the bottom window. The CLP code file generated for 
this example is shown in figure 3. Note that it is typical that 
only 1 page of Eclipse code is generated to solve the IA 
network. 
 

VI.  ALL SOLUTIONS 
Consider the simple IA network in figure 4. Assume we are 

only interested in solutions that assign a single label to the 
edges shown. For example, we don’t care about the temporal 
relationship between the two bottom nodes. Every label can 
appear in a solution for a total of 8 solutions. The 
straightforward approach for finding all these solutions is to 
first find one solution, and then backtrack to find the others. 
But, we must be careful what we backtrack over: 

Labels: Traditional IA network software assumes that each 
pair of nodes has an edge between them. If an edge is not 
explicitly shown, it is assumed to have a label of I. If we 
backtrack over the labels in the network, we must consider 
17,576 possible solutions. Notice the combinatorial explosion 
with a network of only 4 nodes!  

Endpoints: If instead, we use software based on Thornton 
et al’s approach [4], we have a network of 4 nodes and must 
find an assignment of each interval’s endpoints to an integer 
in the range from 1 to 8. Assume we have the label “b” 
between two nodes X and Y. There are 70 different ways that 
the endpoints of X and Y can be assigned to integers in the 
range from 1 to 8 so that X {b} Y holds. For example, one 
assignment is X = (1,2) and Y = (5,8). For meets, there are 56 
different assignments for the endpoints. Therefore, to find all 
possible solutions in figure 4 by backtracking over the 
possible endpoint assignments, we must consider over 60 
billion possibilities (i.e., 703 x 563).  

Note that in the above, the worst case number of 
possibilities to backtrack over is given. Clever algorithms and 
heuristics can reduce the number of possibilities.  

Another approach is to backtrack over the candidate 
solutions. We first generate a candidate solution which has 
one label on each edge. We check if this is a solution. We then 
generate the next candidate solution and so on. For example, 
for the network in figure 4 we generate and test 8 candidate 
solutions.  This is the approach we adopt and experiment with 
in this paper.  

The code for finding a single solution was left untouched. 
We added code to the “CLP Code” file in figure 3 which first 
generated all the possible solutions. We then apply the 
original code for finding a single solution to each possible 
solution to verify if indeed it is a solution. The set of valid 
solutions are passed back to the “Java Program”. The program 
stores the solutions in a two dimensional array and displays 
the solutions in the GUI one at a time.   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Example 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3867

  

VII.  MOST PROBABLE SOLUTION 
Let us now add probabilities to Allen’s relations on the 

edges. Each relation is assigned a probability, and the 
probabilities on an edge sum to 1. One interpretation for the 
numbers is preference. If there is no edge between two nodes, 
we assume the label is I, and each relation has equal 
probability 1/13.  

A solution to a probabilistic IA network is a consistent 
labeling which maximizes the product of the probabilities 
associated with each label in the solution.  
We use the all solutions feature presented in the previous 
section to solve a probabilistic IA network. We first strip off 
the probabilities, and then generate and store all the solutions. 
For each solution, we compute a value by re-assigning a 
probability to each label in the solution and taking the 
product. The solution with the highest value is the solution to 
the probabilistic network. This extra processing is added to 
the “Java Program” in Figure 1. The Eclipse code was not 
modified. It is trivial to add code to find the least likely, or 
median solution. 
 
VIII. WHAT SIZE NETWORK CAN BE SOLVED IN A REASONABLE 

AMOUNT OF TIME? 
Since finding a single solution to an IA network is an NP 

complete problem, finding all the solutions is not feasible for 
large difficult problem instances. Our implementation is 
targeted at small instances.  

The implementation solves the network in Figure 4 almost 
instantaneously. Some networks of 10 nodes and edges can 
take overnight to find all the solutions.  
 
:-lib(ic). 
:-lib(ic_global). 
:-lib(propia). 
 
b(_,XR,YL,_,1):- XR < YL. 
bi(XL,XR,YL,YR,2):- b(YL,YR,XL,XR,_). 
m(_,XR,YL,_,3):- XR = YL. 
mi(XL,XR,YL,YR,4):- m(YL,YR,XL,XR,_). 
o(XL,XR,YL,YR,5):- XL < YL, XR > YL, XR < YR. 
oi(XL,XR,YL,YR,6):- o(YL,YR,XL,XR,_). 
d(XL,XR,YL,YR,7):- XL > YL, XR < YR. 
di(XL,XR,YL,YR,8):- d(YL,YR,XL,XR,_). 
s(XL,XR,YL,YR,9):- XL = YL, XR <YR. 
si(XL,XR,YL,YR,10):- s(YL,YR,XL,XR,_). 
f(XL,XR,YL,YR,11):- XL > YL, XR = YR. 
fi(XL,XR,YL,YR,12):- f(YL,YR,XL,XR,_). 
eq(XL,XR,YL,YR,13):- XL = YL, XR = YR. 
 
lrConstraint([]). 
lrConstraint([L,R|T]):- L < R,lrConstraint(T). 
 
finda_solution(Edges) :- 
     Edges =[E1,E2,E3,E4,E5,E6,E7,E8], 
     EndPoints= [L1,R1,L2,R2,L3,R3,L5,R5,L4,R4], 
     EndPoints:: 1..10, 
     lrConstraint(EndPoints),      
     (s(L5, R5, L1, R1,E1);b(L5, R5, L1, R1,E1); 
                 d(L5, R5, L1, R1,E1)), 
     (d(L2, R2, L1, R1,E2);bi(L2, R2, L1, R1,E2)), 
     (d(L3, R3, L1, R1,E3);bi(L3, R3, L1, R1,E3)), 

     (d(L4, R4, L1, R1,E4);b(L4, R4, L1, R1,E4)), 
     b(L2, R2, L3, R3,E5), 
     (eq(L3, R3, L4, R4,E6);oi(L3, R3, L4, R4,E6); 
                 d(L3, R3, L4, R4,E6)), 
     (b(L4, R4, L5, R5,E7);bi(L4, R4, L5, R5,E7)), 
     o(L5, R5, L2, R2,E8), 
     labeling(EndPoints). 

Fig. 3 CLP code file for the example 

 

 
Fig. 4 Simple IA network 

 
IX.  FUTURE WORK 

Future work will involve generating large IA networks and 
comparing the efficiency of the following algorithms: 
• our implementation described in this paper, 
• van Beek’s C code, and 
• off the shelf finite domain binary CSP software. 

Before this can be done, we need to add a file I/O feature 
to the GUI (i.e., allow file input and output to store large test 
networks).  

Future work will also involve optimizing the software. One 
enhancement we are investigating, is exploiting the presence 
of “cut edges” or “bridges” in the network. These edges can 
be found in linear time using a DFS based algorithm. Either of 
the labels on the bridge can appear in a solution, and they do 
not influence other labels. If we remove the bridge, we are left 
with two smaller networks that can be solved quickly and their 
solutions combined. 
 

X.  CONCLUSION 
Our implementation is of benefit to non-technical users. 

The user does not need to learn specialized software and 
algorithms. The implementation allows the user to draw any 
IA network and solve it. Emphasis is on ease of use, not 
efficiency. We challenge the reader to find a simpler and more 
direct method for solving qualitative IA networks. 

To our knowledge, this is the first time all the solutions to 
an IA network and probabilistic IA networks have been 
solved. Unfortunately, only small toy problems can be tackled 
with the approach described in this paper.  

 

b,m 

b,m 

b,m 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3868

  

ACKNOWLEDGEMENT 
Research of the first author is supported by an NSERC 

Discovery Grant. We thank Mohammad Masum for coding 
version 0 of the implementation for his senior undergraduate 
project.  

 

REFERENCES   
[1] J.F. Allen. Towards a general model of action and time, Artificial 

Intelligence, 23(2), 1984, p. 123-154. 
[2] T. Fruhwirth. Temporal reasoning with constraint handling rules, 

Technical report ECRC-94-05, European computer-industry research 
centre, Germany, 1994. 

[3]  E. Lamma, M. Milano, and P. Mello. Temporal reasoning in a meta 
constraint logic programming architecture, Third international workshop 
on temporal representation and reasoning (TIME’96), Florida, 1996, p. 
128-135. 

[4]  J. Thornton, M. Beaumont, A. Sattar, and M. Maher. A local search 
approach to modeling and solving interval algebra problems, The journal 
of logic and computation, 4(1), 2004, p. 93-112. 

[5] E. Tsang. Foundations of constraint satisfaction, Academic Press, 1993. 
[6] P. van Beek and D.W. Manchak. The design and experimental analysis 

of algorithms for temporal reasoning, Journal of Artificial Intelligence 
Research, 4, 1996, p. 1-18. 


