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Predicting Protein Interaction Sites Based on a New
Integrated Radial Basis Functional Neural Network
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Abstract—Interactions among proteins are the basis of various
life events. So, it is important to recognize and research protein
interaction sites. A control set that contains 149 protein molecules
were used here. Then 10 features were extracted and 4 sample sets
that contained 9 sliding windows were made according to features.
These 4 sample sets were calculated by Radial Basis Functional neu-
tral networks which were optimized by Particle Swarm Optimization
respectively. Then 4 groups of results were obtained. Finally, these 4
groups of results were integrated by decision fusion (DF) and Genetic
Algorithm based Selected Ensemble (GASEN). A better accuracy was
got by DF and GASEN. So, the integrated methods were proved to
be effective.

Keywords—protein interaction sites, features, sliding windows,
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I. INTRODUCTION

PROTEINS are polymers that are made up of amino acids,
and they are the critical macromolecules in vivo. There

are tens of thousands of different proteins in each organism.
They all have their unique three-dimensional structures and
implement specific functions respectively [1]. But they don’t
function alone. They complete a particular function via their
interactions. Protein interactions control the various processes
of life. For example, metabolism and signal transduction, DNA
synthesis, gene transcription, protein translation, modification
and positioning, cell cycle regulation and so important biolog-
ical processes all need the interactions of proteins [2]. We can
say that structure of cells, tissues and bodies are all related to
proteins, and they participate in each activity in vivo.

If we want to understand the principle of protein inter-
actions, we must make clear that which parts of a protein
participate in protein interactions firstly. So, this leads to the
concept of interaction sites. An interaction site is an amino
acid residue in a chain. If an amino acid residue is involved
in an interaction, then it is defined as an interaction site.
Otherwise, this amino acid residue is defined as an non-
interaction site [3].

Here, we focused on predicting whether an amino acid
residue is an interaction site. With the development of bioin-
formatics, there are many effective methods were introduced to
this research. It is a two-type classification problem to predict
protein interaction sites based on bioinformatics. If an amino
acid residue was an interaction site, it was labeled as ’1’.
Otherwise it was labeled as ’0’ [3]. The main steps of this
work are as follows:
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1) selected an appropriate data set;
2) extracted important features;
3) defined interaction sites;
4) generated sample sets;
5) used predictors to predict interaction sites;
6) determined the evaluation methods;
7) evaluated the results via evaluation methods;
In the above steps, 2 and 5 are critical to this work. Many

authors focused on the two points: Sébastien Fiorucci etal
[4] used electrostatic desolvation profiles as feature. Consuelo
Latorre Fortes-Dias etal [5] used peptide arrays. Mile Sikic
etal [6] listed 17 different features and used random forest to
predict. Man Lan etal [7] adopted SVM to predict, but they
mainly focused on feature generation and representations.

In this paper, we extracted 10 important features and used
Radial Basis Functional (RBF) [8] [9] neutral networks as
the classifiers. We also adopted Bagging and Adaboost [10]
[11] to improve the effect. Finally, decision fusion (DF) [12]
and Genetic Algorithm based Selected Ensemble (GASEN)
[13] were used to integrate the results generated by the single
classifier. A better accuracy was got.

II. MATERIALS AND METHODS

A. Data Set

There are many different data sets can be used to this study.
In our work, we selected a non-redundant control data set that
contains 149 protein molecules (S149), because it is available
and appropriate. It includes 92 hetero-complexes and 57 homo-
complexes. The data set can be available on the SPPIDER web
site (http://spider.cchmc.org) [14].

B. Features

Feature is the first key to predict successfully, because some
important features can improve the accuracy. In this paper, we
extracted 10 different features:

1) sequence profiles (SP) [15] : it represents the relative
frequency of an amino acid type at each position. It can be
generated by multiple sequence alignment.

2) entropy (E) [16] : it is the measurement of sequence
variability at one position. Here, it expressed the order among
elements (amino acid residues).

3) relative entropy (RE) : it is the normalization of entropy.
It is changed between 0 and 100.

4) conservation weight (CW) : it is the measurement of
sequence conservation at one position. It is changed between
0 and 1.

5) complex accessible surface area (CASA) [3] : it expresses
the total solvent exposure in a bound complex. It can be
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calculated by SURFACE, AREAIMOL [17] or PSAIA [6]
[18].

6) sequence variability (SV) : it is on a scale of 0-100 and
can be derived from the NALIGN alignments.

7) back-bone ASA (b-ASA) : it was calculated by PSAIA.
8) side-chain ASA (s-ASA) : it was calculated by PSAIA

too.
9) polar ASA (p-ASA) : it was calculated by PSAIA too.
10) non-polar ASA (n-ASA) : it was calculated by PSAIA

too.
The preceding 6 features can be downloaded from

HSSP (Homology derived Secondary Structure of Proteins)
(ftp://ftp.ebi.ac.uk/pub/databases/hssp/).

C. Definition of Protein Interaction Sites

The reason that we defined the protein interaction sites was
to create sample sets. Usually, there are two methods can be
used to define an interaction site [19] [20] :

1) based on reduction of residue solvent ASA before protein
complex forming and after formed.

2) based on the distance between α carbon atoms of
residues.

Here, we chose the first one. Before protein complex form-
ing, a residue exists in a monomer (a chain). So we call ASA of
it as MASA (monomer ASA). After complex (contain one or
several chains) formed, we call ASA of it as CASA (complex
ASA). The software of PSAIA can be used to calculate MASA
and CASA. Then a residue in the complex was defined as a
surface residue, if MASA / total ASA of a free amino acid ≥
20% [21]. The value of cut-off can also be others (5%, 10%,
16%) [14]. Total ASA of 20 amino acids were calculated by
Huanxiang Zhou [22]. Finally, a residue was defined as an
interaction site in the surface residues, if MASA - CASA ≥
1( Å

2
) [3]. The others were non-interaction sites.

D. Creation of Sample Sets

The sample sets were made up of features. They were the
input of classifiers. We made 4 sample sets according to the
above 10 features:

1) : SP;
2) : 1) + E + RE + CW;
3) : 2) + CASA + SV;
4) : 3) + b-ASA + s-ASA + p-ASA + n-ASA;
Every position of SP contains 20 values. The other features

all include one value. Mile Sikic etal demonstrated that accu-
racy was the best when joined a residue and its 8 neighbor
residues (9 sliding windows). In our previous experiments, we
also demonstrated this. So, here the 4 sets were all made into
9 sliding windows, and they contained 20 * 9, 23 * 9, 25 * 9
and 29 * 9 values in each residue respectively.

E. RBF Neural Network and Integration

Classifier is the second key of this subject, because a good
classifier can improve the accuracy too. In this paper, we
adopted RBF neural network as the classifier. It has many
advantages. First, its structure is simple and it only contains

3 layers. Second, it is a forward network and can calculate an
arbitrary nonlinear mapping. There are many functions can be
used as RBF. Here, we adopted the usual one:

Hi(x) = exp(−‖x− ci‖2/2σ2
i ), i = 1, 2, ..., I; (1)

Hi(x) are the results of the second layer (hidden layer). x are
the input vectors. ci are the centers of the function. σi are the
widths around one center. I represent the number of nodes in
the layer. The results of the third layer can be calculated by:

fj =

I∑

i=1

ωijHi(x), j = 1, 2, ..., J ; (2)

fj are the final results of the entire neural network. ωij are the
weights which contact the second layer and the third layer. J
represent the number of nodes in this layer.

There are some parameters need to be adjusted in a RBF
neural network. Here, we used Particle Swarm Optimization
(PSO) [23] [24] to optimize these parameters. PSO has been
proved to be effective and the implement of it was easy. In
PSO, the most important parts are the update formulas of
velocity and position of each particle. We adopted the original
two formulas:

vin = ω ∗ vin + c1 ∗ r1 ∗ (Pbestin − xin)

+ c2 ∗ r2 ∗ (Gbestn − xin); (3)

xin = xin + vin; (4)

vin and xin are the velocity and position of particle i re-
spectively. They are changed in a n-dimensional space. ω is
an inertia factor and it is non-negative. It is used to adjust the
scope of solution space. c1 and c2 are two learning factors and
they are set as 2 usually. They are used to adjust the maximum
learning step. r1 and r2 are two random decimal fractions and
they are changed between 0 and 1. They can increase the
randomness of search. Pbestin is the best position of particle
i so far and Gbestn is the best position of all particles so far.

In our RBF neural networks, the center and width of the
function needed to be optimized. The weights that linked the
second layer and the third layer needed to be optimized too.
So, these parameters should be included in each particle of
PSO. Above, we had made 4 sample sets, thus we need 4
RBF neutral networks to train them. Every neutral network
generated a result and the 4 groups of results were compared.

Next, we used the methods of constructing combined clas-
sifier to train the 4 sample sets. Here, we adopted bootstrap
aggregation (Bagging) and AdaBoost. They all focus on deal-
ing with the training data set. They have been proved they can
improve the classification accuracy by a lot of experiments.

Finally, we used two integrated methods to integrate the
results of 4 RBF neural networks. Usually, the generalization
ability of an integrated method is better than the corresponding
single classifier and it can also improve performance.

The first integrated method we used is called decision fusion
(DF). It is represented as: R = W * F. They express 3 matrices
respectively. R is the final result of this method. W is weight. F
is the result of 4 RBF neural networks. In the above 4 sample
sets, we added several features in turn. In our opinion, the more
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features the sample set contained, the more it contributed to
the final result. So, the weights were set as 0.1, 0.2, 0.3 and
0.4 in turn and the sum of them was 1. There was only one
node in the third layer of neural network, because our work
is a two-type classification problem. Thus, W was showed as
4*1 and F was showed as 1*4. So, R only contained one value
(final result of each sample).

The second integrated method we used is called Genetic Al-
gorithm based Selected Ensemble (GASEN). It is the extension
of generalized ensemble method (GEM). GEM is calculated
by the following formula:

fGEM =
n∑

i=1

ωifi(x); (5)

ωi is the weight and it is changed between 0 and 1. The sum of
n ωi is 1. In GASEN, the weights were optimized by Genetic
Algorithm. It simultaneously optimized 4 weights each cycle.

III. EXPERIMENTS AND RESULTS

A. Evaluation of The Results

First, we defined the followings:
TP (true positives): it represents the number of interaction

sites that were predicted correctly.
TN (true negatives): it represents the number of non-

interaction sites that were predicted correctly.
FP (false positives): it represents the number of non-

interaction sites that were predicted as interaction sites.
FN (false negatives): it represents the number of interaction

sites that were predicted as non-interaction sites.
N: it represents the number of all sites in a protein molecule.
The following metrics were used to evaluate the prediction

results [3] [14]:
sensitivity of the positive data:

sensitivity+ = TP/(TP + FN); (6)

specificity of the positive data:

specificity+ = TP/(TP + FP ); (7)

specificity of the negative data:

specificity− = TN/(TN + FN); (8)

false alarm rate:

FA−Rate = FP/(FP + TN); (9)

accuracy of prediction:

accuracy = (TP + TN)/N ; (10)

Matthews Correlation Coefficient:

MCC= TP∗TN−FN∗FP√
(TP+FN)(TN+FP )(TP+FP )(TN+FN)

; (11)

MCC often provides a better-balanced evaluation of prediction.
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Fig. 1. The accuracy of RBF neural network and their integration.
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Fig. 2. The accuracy of Bagging.
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Fig. 3. The accuracy of AdaBoost.

B. Experimental Results

In our experiments, we adopted 10 cross-validation. The
149 protein molecules were divided into 10 groups and every
group contained 15 molecules (the last group contained 14
molecules). Each time, one group was selected as test set and
the remaining groups were train set. Thus every method was
carried out 10 times.(see Fig.1-3)

Every time, PSO and GASEN iterated 1000 times to gener-
ate the final result. We chose 10 particles in PSO. In Bagging,
the number of self-sample set was set as 10 and each set
contained 63% data of the original sample set. In AdaBoost,
the number of boosting was set as 10 and we also chose 63%
data of the original sample set in each boosting.

In GASEN, we simultaneously optimized 4 weights every
time and they were changed between 0 and 1. So, one
weight corresponded 14 seats according to the principle of
Genetic Algorithm. Thus, the chromosome in each individual
included 14*4 seats. The size of population was set as 40.
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Fig. 4. Visualization of interaction sites (blue) and non-interaction sites (red:
only one) of 1mvf that we defined in ”Definition of Protein Interaction Sites”.

The probability of cross was set as 0.8 and the probability of
mutation was set as 0.05.

The final experimental results were the average of 10 times.
(see Table 1-3)

In Table 1, accuracy of the 4 sample sets increased in turn
and the other measurements were also generally better than the
former one in turn. This proved that the added features were
useful for predicting. The two integrated methods generated
a better result respectively and GASEN was better than DF.
On the SPPIDER web site, their final results were 72.48% (
version 1 ) and 74.18% ( version 2 ). Our posterior 4 results
were all better than their’s.

In Table 2 and 3, the results were generally better than the
results in Table 1. As mentioned above, Bagging and AdaBoost
focus on dealing with the training data set and constructing
combined classifiers. So they generated better results than a
single classifier and AdaBoost was a little better than Bagging.

In the end, we used two protein molecules to validate our
methods. The PDB ID of them are 1mvf and 1qz8. 1mvf is
related to immune system. It contains 4 chains (A, B, D, E)
and we used the third one. There are 44 amino acid residues
in this chain and we predicted 40 ones by GASEN correctly.
1qz8 is a fragment of SARS corona virus NSP9. It is a new
molecule, so we do not know its type and function currently.
There are two chains (A, B) in this molecule and we used the
first one. The chain contains 111 amino acid residues and we
predicted 96 ones by GASEN correctly. (see Fig.4-7)

IV. CONCLUSION

In this paper, we extracted 10 features and some were new.
The 4 sample sets that we created were also new and unique.
Finally, we demonstrated our new ideas via many different
methods. The next work, we want to use more unique and
critical features to predict protein interaction sites. We also
hope that more and more different and new methods about
computational intelligence and biology can be applied to this
subject.
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TABLE I
THE FINAL EXPERIMENTAL RESULTS OF RBF NEURAL NETWORKS AND THEIR INTEGRATION

methods sensitivity+ specificity+ specificity− FA-Rate accuracy MCC
Sample Set 1 0.933791 0.801388 0.902411 0.539768 0.657926 0.475746
Sample Set 2 0.941524 0.841441 0.890134 0.425145 0.677865 0.587108
Sample Set 3 0.943806 0.962823 0.919847 0.148154 0.752054 0.824262
Sample Set 4 0.952763 0.951528 0.926355 0.185355 0.773842 0.791662

DF 0.979063 0.965711 0.968608 0.231678 0.774042 0.752559
GASEN 0.963019 0.967333 0.942339 0.18466 0.803705 0.807351

TABLE II
THE FINAL EXPERIMENTAL RESULTS OF BAGGING

methods sensitivity+ specificity+ specificity− FA-Rate accuracy MCC
Sample Set 1 0.965628 0.885068 0.962815 0.2936 0.79528 0.716172
Sample Set 2 0.946969 0.858953 0.950921 0.278801 0.752263 0.694826
Sample Set 3 0.967892 0.951217 0.963004 0.143537 0.857789 0.828646
Sample Set 4 0.975817 0.940382 0.969728 0.173779 0.851574 0.814278

TABLE III
THE FINAL EXPERIMENTAL RESULTS OF ADABOOST

methods sensitivity+ specificity+ specificity− FA-Rate accuracy MCC
Sample Set 1 0.963229 0.870216 0.936981 0.330586 0.79362 0.709378
Sample Set 2 0.968067 0.893375 0.956177 0.345422 0.788548 0.718661
Sample Set 3 0.974602 0.965497 0.970935 0.116172 0.888569 0.894188
Sample Set 4 0.965665 0.975666 0.953477 0.096172 0.866188 0.892111
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