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Abstract—This paper deals with a portfolio selection problenwith transaction costs. Maol§], Brennan [4] studied the
based on the possibility theory under the assumption that the retupastfolio selection problem with fixed transaction costs. Yoshi-

of assets are LR-type fuzzy numbers. A possibilistic portfolio modgh 4 115) Fang et al. 16], considered portfolio optimization
with transaction costs is proposed, in which the possibilistic mean ’ '

value of the return is termed measure of investment return, and Wgh changeable transaction costs. Mulvey and Viadimirou

possibilistic variance of the return is termed measure of investmddt/], Dantzig and Infangerlg] incorporated transaction costs
risk. Due to considering transaction costs, the existing traditionaito the multi-period portfolio selection model. However,
optimization algorithms usually fail to find the optimal solutionportfolio selection problem with realistic constraints, such
efficiently and heuristic algorithms can be the best method.TherefOé% transaction costs, minimum transaction lots, cardinality
a particle swarm optimization is designed to solve the corresponding trai tc. b ' | i ' .
optimization problem. At last, a numerical example is given gonstrains, eic, .e.comes a. CPmP ex non !near pr‘?gram,m'”g
illustrate our proposed effective means and approachesl pr0b|em and trad|t|ona| Opt|m|zat|0n a|gor|tth fa” to f|nd
- . . . the optimal solution efficiently, while heuristic algorithms
Keywords—Possibility theory, portfolio selection, transaction be the best thod. Theref h |
costs, particle swarm optimization. can be the best method. Therefore, many researchers solve
the corresponding optimization problems by using heuristic
algorithms. For example, Chang et al9] used heuristics
. . o ) algorithms based upon genetic algorithms, tabu search and
In 1952, Markowitz ] published his pioneering work gimyiated annealing for cardinality constrained mean-variance
which laid the foundation of modern portfolio analysis. Theyodel. Ferrindez and Gmez P0] used heuristics algorithms
basic assumption for using Markowitz's mean-variance modglseq upon neural network for the standard Markowitz mean-
is that the situation of assets in the future can be correc{iyyiance model which includes cardinality and bounding con-
reflected by asset data in the past, that is to say, the meaiginis. Crama and Schyng1] applied SA to a portfolio
variances and covariances in future are similar to those in th&\plem with cardinality constraints, turnover and trading
past. However, since the security market is so complex apdrictions, etc. Lin and Liu22 used genetic algorithms
the occurrence of new security is so quick, in many Casgs solve portfolio problem with minimum transaction lots.
security returns cannot be accurately predicated by historiegdieimani et al. 23] proposed an improved GA to solve
data. In this case, fuzzy set theory proposed by Za@pin[ portfolio selection model with minimum transaction lots,
1965, has become a helpful tool in integrating the experig;rginality constraints and market capitalization. Chen and
knowledge and investors’ subjective opinions into a portfollghang p4] proposed an improved PSO algorithm for the
selection problem. Since then, researchers began to emplgissible portfolio selection problem with transaction costs.
fgzzy set theory to solve many_probl_ems |ncIu_d|ng f'nanc'%lnagnostopoulos and Mamaniaq applied NSGA-II, PESA
risk management. Watada][ Inuiguchi and Tanino4], and 554 SPEA2 to find an approximation of the best possible trade

Wang and Zhu §] discussed portfolio selection using fuzzysffs petween return, risk and the number of securities included
decision theory. Tanaka and Gu@},[[7] proposed two kinds i, the portfolio.

of portfolio selection models based on fuzzy probabilities
and exponential possibility distributions, respectively. Carlsson
and Fullér B] introduced the notions of lower and upper
possibilistic mean values of a fuzzy number, then proposed, this paper, we will discuss the portfolio selection prob-
a possibilistic approach to selecting portfolios with highef{ s with transaction costs based on possibilistic theory,
utility score in ]. Chen [L0] discussed the portfolio selectiongng gesign an effective heuristic algorithm-particle swarm
problem for bounded assets based on weighted possibiligfigimization to solve the corresponding optimization problem.
means and variances. Zhang et an.][d|scuss§d the portfolllo The organization of this paper is as follows. In Section 2,
selection problem for bounded assets with the maximugme properties as in probability theory based on the Carlsson
possibilistic mean-variance utility. and Fulléers’ notations are discussed. Then, we will present a
Transaction cost is one of the main concerns for portfoligyssipilistic portfolio model with transaction costs in section
manager. Arnott and Wagnet7] found that ignoring transac- 3. The outline procedure of the particle swarm optimization
tion costs would result in an inefficient portfolio. Recently, &,ethod for our proposed model is designed in Section 4. A
number of researchers investigated portfolio selection problgfmerical example is given to illustrate our proposed effective
W. Chen, C.Y. Yao, Y. Qiu are with the School of Information, Capitall'€anS and approaches in Section 5. Some concluding remarks
University of Economics and Business, Beijing, 100070, P.R. China. are given in Section 6.

I. INTRODUCTION
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II. POSSIBILISTIC MEAN AND POSSIBILISTIC VARIA\I\/I(().‘,ll:Es’ Noaiﬁdzon

Let us introduce some definitions, which we need in the 1 /!
following section. Cov(A,B) = 5/0 Yl(a2(v) = a1(7))(b2(7) — b1 ()] d,

In 2001, Carlsson and Fullé8][defined the notations of the respectivel
lower and upper possibilistic mean values and variancé a$ P Y- . . .
The following conclusions are given i8]

Lemma 2:Let A and B be two fuzzy numbers. Then

Var(AA + uB) = A?Var(A) + p*Var(B) + 2|\u|Cov (A, B).

1 1
M.(4) = Jo ai(V)POS[A <a(ldy _ 2/ v (),
Jo Pos[A < ay(v)]dy 0
fOl as(7)Pos[A > ay(v)]dy 1 Theorem 3 obviously holds by Lemma 2.
= T = 2/ yaz(y)dy- Theorem 3:Let Ay, As, ..., A, ben fuzzy numbers, and
Jo Pos[A = az(7)ldy 0 let A1, A2, ..., A, ben real numbers. Then
Then the following lemma can directly be proved using the n n
definition of interval-valued possibilistic mean. var(z A4y = Z A Var(A;)+2 Z [XiX;|Cov(A;, Aj).
i=1

i=1 i<j=1

M*(A)

Lemma 1:Let Ay, Ao, ..., A, ben fuzzy numbers, and let

A is a real number. Then
Il1. POSSIBILISTIC PORTFOLIO SELECION MODEL WITH

TRANSACTION COSTS

=1 =1

We consider a portfolio selection problem with risky
assets. Let; for assetj is a random variable with expected

M*(Z A;) = ZM*(Al), returnr; = E(7;),j = 1,...,n, and letz; is the proportion
i=1 i=1 of capital to be invested in assgtIn order to describe con-
. veniently, we sek = (x1,22,...,2n), T = (F1,72,...,7n)/,
M*()\Ai):{ i%**((il)) :; izg’ r = (r1,re,...,m,), ande = (1,1,...,1)’. Then the
! ’ expected return and variance associated with the portfolio
N N AME(AY) if A >0, x = (z1,22,...,2,) are, respectively, given by
M*(A4;) = { ML(A)  ifA<0.

E(r) =r'x, D(r) = x'vx
The following theorem obviously holds by Lemma 1.
Theorem 1:Let Ay, Ao, ..., A, ben fuzzy numbers, and

let A\g, A1, Aa, ..., A, ben + 1 real numbers. Then

wherev = (0;j)nxn is the covariance matrix of expected
returns.

Transaction cost is an important factor for an investor to
take into consideration in portfolio selection. In this study,
we consider portfolio selection problem with transaction costs.
We assume the transaction costs i&ashaped function of
differences between a new portfolo= (z1, zo,...,z,) and
the existing portfolioxe = (29,29,...,22). That's to say,
for risky asseti the transaction costs; = k;|x; — m?\, the
total transaction costs 5., ¢; = > ., ki|z; — 20| So, the
expected return without the transaction costs is:

n
r'x — Z Eilz; — a9).
i=1

Mo(No+ Y Nidi) = Ao+ Y [N M. (sgn(Xi)As),

i=1 i=1

and

M*(No+ Y AidAi) = Xo+ D [N M (sgn(Xi)Ai),
i=1 i=1
where sgn(x) is sign function of € R.
Carlsson and Fullérg] also defined the crisp possibilistic
mean value of A as

M) = [l + aslpay = LA

2 . For a new investor, it can be taken th&t=0,i = 1,2,...,n.
The following theorem can easily be obtained from Theorem Therefore, following the idea of the mean-variance model,
1. portfolio selection problem with transaction costs can be
Theorem 2:Let A, As, ..., A, ben fuzzy numbers, and formulated as
let Mg, A1, A2, ..., A, ben 41 real numbers. Then min  x'vx
MMy + )\1Az =X+ )\7M Az . s.t. I‘/X— k‘l €Ty —l’? > Uy
(o;)o;() ;I =y 1)
Let A with [A]” = [a1(7),as(7)] and B with [B]Y = ex=1,
[b1(7), b2(7)](y € [0,1]) be two fuzzy numbers. Carlsson and x > 0.

Fullér [8] also introduced possibilistic variance and covariance

of fuzzy numbers as In order to apply the model (1) in practical investment

problem, we need to estimateandv = (0;;)nxn. It means
that all the expected returns, variances, covariances of risky

1t )
Var(A) = 5/0 v(az(y) —a1(v)) dy assets can be accurately estimated by an investor. But, it is
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well-known that the returns of risky assets are |n a ?1 2311

uncertain economic environment and vary from time to t|me,

the future states of returns and risks of risky assets cannot be )

predicted accurately. Fuzzy number is a powerful tool used to Frp = VL () 2dy,
describe an uncertain environment with vagueness and ambi- 0

guity. In many important cases, it might be easier to estimate ! _ 5
the possibility distributions of rates of return on risky assets, RR = /0 YRT () dy,
rather than the corresponding probability distributions. Based

1
on these facts, we discuss the portfolio selection problem under Frr = / VR_l(V)L_l(V)d%
0

the assumption that the returns of assets are LR-type fuzzy
numbers.

Let 7, = (aj,b;,a;,53;)(=1,...,n) ben LR-type fuzzy
numbersy; can be described W|th the following membership

function:
L(%=)  if aj — oy <u<ay,
F-(u): 1 If ajgugbj, n
: R(*54) if b < u<b;+ 0, M(¥'x) = M) Tiw)
0 otherwise. i=1
where L, R:[0,1}-[0,1] with L(0)=R(0)=1 and L(1)=R(1)=0 _ - aj +o; E B
are non-increasing, continuous mappings. If L and R are g[ o5BL + G5 Erl
strictly decreasing functions then we can easily compute the
~-level sets ofr;. That is,
7] = [a; — ;L7 (%), b; + B;R™*(7)], By Theorem 3, the possibilistic variance of the return

for all v € [0.1], j=1,...,n
Using the definitions of the lower and upper possibilistic
mean, and crisp possibilistic mean of fuzzy numbers, we easily

associated with the portfolizy, zo, .. .,

x,) is given by

1
obtain ) VCLT(I' X aFLL Z OAZ]J’Z] + FRR Zﬂlfl
M) =2 [ (0 - L7 ()dy = a - 2a,E, .
P + gFRL[izl(ﬂi% + aif))ziw)]
M) =2 [ 2ty + AR )y = by + 25, B g
0
b +Y (b — a;)(BiER + a; Ep)x?
M(7;) = LT a;Er + B;ER, Z
where ) + Y (bi—@)(BiEr + a;EL)zix;
EL = / YL (y)dy, lf]j,l
0
1 + *[Z(bi —a;)x;]?
_ ~1 4°4
Er = / YR (v)dy- iz
0 n n
1 1
Furthermore, using the definitions of the possibilistic vari- = §FLL[Z aizi)® + §FRR[Z Bi]?
ance and covariance of fuzzy numbers, we easily obtain i=1 i=
I _ _ s s
Var(7;) = 5/ Vb + B R () — (aj — a; L1 (7)), + FRL[Z(azwz)][Zl(ﬁzxz)]
0 i=
1 n
= 5 (B3 FrR + 2058 Fr + afFrL) Z(b wl[> (BiEr + i Br)x;)
1 i=1
+ (0 = a;)(5;Br + a;Br) + (b —aj)?, 1o

+ 1[2@ — a;)zi]?

1
Cov(rinmy) = 5 [ AR (0) =il () + b —ai =
< [BiR™H(7) = a; L7 (7) + bj — a;)dy

Analogous to Markowitz’'s mean-variance methodology for

x,) IS given by

By Theorem 2, the possibilistic means of the return associ-
ated with the portfolio(zy, zo, . . .,

- §w’ﬂjFRR + (il + a5 0i) Fre the portfolio selection problem, the possibilistic mean value
+a;a; Frp + (by — aj)(BiEr + i EL) correspond to the return, while the possibilistic variance cor-

1 respond to the risk. From this point of view, the portfolio
Z(bi a;)(b; — a;)selection model with transaction costs (1) can be formulated

+ (b — ai) x (B;ER + o EL)] +
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as Vol:5, Nog gt%opotentlal solution called particles is also assigned a
1 n 1 n randomized velocity. Each particle in PSO flies in the hy-
min §FLL[Z iz + §FRR[Z Bixi]? perspace with a velocity which is dynamically adjusted its
i=1 i=1 position according to their own and their neighboring-particles
" n experience, moving toward two points: the best position so far
+ Fre [Z(O‘imi)][z(ﬂimi)] by itself called Pbest and by its neighbor called Gbest at every
oo — iteration. The particle swarm optimization concept consists of,
. , , , at each time step, changing the velocity each particle toward
* [;(bl al)x’][;(ﬁzER +aibL)e] its Pbest and Gbest.
1 Suppose that the search space Iis dimensional, then
+ E[Z(bi —a;)z;]? the ith particle of the swarm can be represented byDa
i=1 dimensional vectorX; = (z;1,2,...,2;p). The particle
"y + b; velocity can be represented by anotligrdimensional vector
Z[ : — ;B + B ERlz; Zk 2y — 2| > p, v, = (vi1, iz, - - . ,v;p)". The best previously visited position
Z, 1 of the ith particle is denoted a®;, = (pi1,pi2,...,PiD)
ex =1, Defining g as the index of the best particle in the swarm,
x > 0. and let the superscripts denote the iteration number, then the
(2) position of a particle and its velocity are updated by the
Especially, if7;,7 = 1,,...,n are symmetric LR-type following equations -
fuzzy numbers, that's to say; = b;, andL™" = R, then o = woly + eirf (ply — afy) + ok (F, — 2k, (B)
E; = ER, Fr, = Frr = Fgrr. Therefore, the possibilistic
mean-variance model (2) can be described as xffl =2k + ’Uk+1, (6)
min %FLL[Z(%JF&)%P whered = 1,2,...,D, ¢ = 1,2,...,N, and N is the size

of swarm;w is called inertia weighte;, ¢, are two positive

=1
constants, called cognitive and social parameter respectively;

n . b
s.t. Z[% + (i — a)ErL)x Zk: |zi — 2| >, ry, ro are random numbers, uniformly distributed[in1]; and

i=1 k=1,2,... determines the iteration number.
ex =1,
x > 0. B. Particle Swarm Optimization for Portfolio Selection Prob-
(3) lem
Furthermore, model (3) is equivalent to the following pro- Next, a modified PSO algorithm is designed to solve
gramming problem: portfolio selection problem with transaction costs, which is
V3 " difficult to solve with the existing traditional algorithms due
in Y2,/ ) N to its nonconcavity and special structure. We design a PSO
min 9 Frp Z(al + ﬂz)xz y p g

algorithm from the three aspects.
" g b Firstly, a dynamic inertia weight by stages is designed
st Y [Zo—L 4+ (B — )EL]x Zk: |zi — 29| > 1, according to the following equation:

4 2

i=1 \_L

e'x =1, W =Wy — 57aat ¥ (Wp — we),
x > 0. | N

(4) wherew, is the initial inertia weightaw, is the final inertia
weight, Max is the maximum iterationk is the current
IV. PARTICLE SWARM OPTIMIZATION iteration, N is the constant, which means how many stages

In this section, a modified PSO algorithm is designed @€ divided byMaz, |z] is the greatest integer less than or

solve proposed portfolio selection problem with transactlo(ﬁqual to X.
costs. This method ensure that can take a larger value at the

begin of searching, that’s to say, particle swarms can search
) o in a bigger space, which increase the diversities of solution
A. Standard Particle Swarm Optimization spaces. Moreovenry can take a smaller value at the end of
Particle Swarm Optimization (PSO) was first introduced bsearching, that's to say, particle swarms can search in a smaller
Kennedy and Eberhar2@] in 1995. PSO has many advantagespace, which increase the accuracy of solution spaces.
over other heuristic techniques such that it can be implementedecondly, in order to avoid rapid converging to local op-
in a few lines of computer code, it requires only primitivédimization, we design a random divergence method. When
mathematical operators, and it has great capability of escappayticles update positions, every particle changes velocity
local optima. PSO conducts search using a population ofdaection with a smaller probability and fly oppositely. If the
random solutions, corresponding to individual. In additiorparticle position is beyond the boundary value, we set position
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value be boundary value. The random divergence Mglk?oé\'%ﬁe illz 0.01,7i = 1,2,...,5. Applying the proposed PSO

be described as follows: algorithm and LINGO software, respectively, to solve model
Setp,, = ¢ (5), we obtain the following results listed in Tables 1-6.
for each particle ) )
Vid = WUig + 171 (pid — Tia) + Car2(Pgd — Tia); Table 1: Investment Proportion with, = 0.02
if(pym < rand(0,1)) 1 2 3 Z 5 risk
Tid = Tid — Vid, ~PSO 0.0000 0.0000 0.0000 0.0000 1.0000 0.0707
else LINGO 0.0000 0.0000 0.0000 0.0000 1.0000 0.0707
end ﬁid = Tid + Vid; Table 2: Investment Proportion with: = 0.05
if (x;q>rangR) x4 =rangR,; 1 2 3 4 5 risk 38
; _ . PSO  0.000I 0.0000 0.0007 0.I049 0.8942 0.0738:
end 'f‘;r("”d <rangl) = wiq =rangL; LINGO 0.0000 0.0000 0.0000 0.0864 0.9136 0.07324
where rangR is upper boundaryof, rangL is lower boundary Table 3: Investment Proportion wit = 0.10
of 4.

At last, that how to deal with constraints is very important—ps-o—o—é'grl—ogcxyGS—oggogl—(4);5g33—507rozol%K0884i

so many methods were proposed. Koziel and MichaewiceINGO 0.0000 0.0580 0.0000 0.4460 0.4960 0.08678

[27] grouped them into four categories: methods based on

preserving feasibility of solutions; methods based on penalty Table 4: Investment Proportion with, = 0.15

functions; methods that make a clear distinction between T 7 3 .S 5 TSk

feasible and infeasible solutions; and other hybrid methods. " PSO  0.0053 0.1778 0.0143 0.7694 0.0332 0.1036
Exact penalty functions can be subdivided into two maint/NGO 0.0000 0.3846 0.0000 0.3846 0.2308 0.1019

classes: nondifferentiable exact penalty functions and continu-

ously differentiable exact penalty functions. Nondifferentiable

exact penalty functions were introduced for the first time b 1 2 3 4 5 risk 196

Zangwﬂl [25]. Continuously differentiable exgct penalty'func LINGO 0.0000 0.8333 0.0000 0.1667 0.0000 0.ii87

tions were introduced by Fletchezq] for equality constrained

optimization problems. In this paper, nondifferentiable exact

penalty functions 30] is introduced for handling constraints.

Table 5: Investment Proportion witly = 0.20

Table 6: Investment Proportion witly = 0.24

s basic form is as follows: —PSO—T,0000 00000 0,000 0,000 00000 01500
LINGO 0.9850 0.0150 0.0000 0.0000 0.0000 0.1496
p(z, -|-(5{2:|cZ x)| + Z |min(0, ¢;(z))|}
i=J+1 Tables 1-6 exhibit the numerical results computed by PSO
whered is penalty factor. and LINGO software respectively. According to the experi-
mental results, we conclude that for proposed portfolio se-
V. NUMERICAL EXAMPLE lection problem the PSO algorithm is an efficient method

In order to illustrate our proposed effective means arlg obtain the optimal solution since the results obtained by

approaches, we consider a real portfolio selection examplet\ﬁﬁ0 different methods are approximately equal, that's to say,

[4]. In this example, 5 bonds whose return rates are restrlctfé) the same possibilistic return the possibilistic risks are

by the following type of possibility distributions with a cente@PProximately equal. However, there is a small difference in
ciyand a sprea?duip P Y the obtained portfolios in both methods. For example, in the

) case ofy = 0.05,0.15, LINGO has three bonds while PSO
(g —c) ) (7) has five bonds, which means that the results of PSO tend to
w; take more distributive investment than those of LINGO.
The parameters;’s and w;’s are defined as
c1 =0.25,¢c0 =0.22,¢c3 = 0.2,¢c4 = 0.15, c5 = 0.05,
w1 = 0.0225, wy = 0.015, w3z = 0.015, w4 = 0.01, w5 = 0.005.
Using the possibilistic portfolio selection model with trans- In this paper, we have proposed possibilistic portfolio model

o, (q) = exp(—

VI. CONCLUSIONS

action costs (4) in this example, it follows that = b, = with transaction costs under the assumption that the returns of
ci,o; = B; = Jw;,t = 1,2,...,5, and L = R. Based on assets are LR-type fuzzy numbers, in which the possibilistic
possibility distribution (8), we can obtaif,;, = Frr = i. mean value of the return is termed measure of investment

Moreover, the following parameters for proposed PSO algeeturn, and the possibilistic variance of the return is termed
rithm are set: the size of the population is 100, the initiaheasure of investment risk. We have designed a particle swarm
inertia weightw, is 0.75 , the final inertia weight, is 0.2, optimization to solve corresponding optimization problem
the maximum iteratiomV/ ax is 2000,N = 10,6 = 50. because traditional algorithms can not solve this problem
Suppose that existing portfolio is xg = efficiently. Results of numerical experiments show that our
(0.03,0.00,0.06,0.00,0.05), and the transaction costsproposed means and approaches are effective.
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