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Abstract—This paper deals with a portfolio selection problem
based on the possibility theory under the assumption that the returns
of assets are LR-type fuzzy numbers. A possibilistic portfolio model
with transaction costs is proposed, in which the possibilistic mean
value of the return is termed measure of investment return, and the
possibilistic variance of the return is termed measure of investment
risk. Due to considering transaction costs, the existing traditional
optimization algorithms usually fail to find the optimal solution
efficiently and heuristic algorithms can be the best method. Therefore,
a particle swarm optimization is designed to solve the corresponding
optimization problem. At last, a numerical example is given to
illustrate our proposed effective means and approaches.

Keywords—Possibility theory, portfolio selection, transaction
costs, particle swarm optimization.

I. I NTRODUCTION

In 1952, Markowitz [1] published his pioneering work
which laid the foundation of modern portfolio analysis. The
basic assumption for using Markowitz’s mean-variance model
is that the situation of assets in the future can be correctly
reflected by asset data in the past, that is to say, the means,
variances and covariances in future are similar to those in the
past. However, since the security market is so complex and
the occurrence of new security is so quick, in many cases
security returns cannot be accurately predicated by historical
data. In this case, fuzzy set theory proposed by Zadeh [2] in
1965, has become a helpful tool in integrating the experts’
knowledge and investors’ subjective opinions into a portfolio
selection problem. Since then, researchers began to employ
fuzzy set theory to solve many problems including financial
risk management. Watada [3], Inuiguchi and Tanino [4], and
Wang and Zhu [5] discussed portfolio selection using fuzzy
decision theory. Tanaka and Guo [6], [7] proposed two kinds
of portfolio selection models based on fuzzy probabilities
and exponential possibility distributions, respectively. Carlsson
and Fullér [8] introduced the notions of lower and upper
possibilistic mean values of a fuzzy number, then proposed
a possibilistic approach to selecting portfolios with highest
utility score in [9]. Chen [10] discussed the portfolio selection
problem for bounded assets based on weighted possibilistic
means and variances. Zhang et al. [11] discussed the portfolio
selection problem for bounded assets with the maximum
possibilistic mean-variance utility.

Transaction cost is one of the main concerns for portfolio
manager. Arnott and Wagner [12] found that ignoring transac-
tion costs would result in an inefficient portfolio. Recently, a
number of researchers investigated portfolio selection problem
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with transaction costs. Mao [13], Brennan [14] studied the
portfolio selection problem with fixed transaction costs. Yoshi-
moto [15], Fang et al. [16], considered portfolio optimization
with changeable transaction costs. Mulvey and Vladimirou
[17], Dantzig and Infanger [18] incorporated transaction costs
into the multi-period portfolio selection model. However,
portfolio selection problem with realistic constraints, such
as transaction costs, minimum transaction lots, cardinality
constrains, etc, becomes a complex nonlinear programming
problem and traditional optimization algorithms fail to find
the optimal solution efficiently, while heuristic algorithms
can be the best method. Therefore, many researchers solve
the corresponding optimization problems by using heuristic
algorithms. For example, Chang et al. [19] used heuristics
algorithms based upon genetic algorithms, tabu search and
simulated annealing for cardinality constrained mean-variance
model. Ferńandez and Ǵomez [20] used heuristics algorithms
based upon neural network for the standard Markowitz mean-
variance model which includes cardinality and bounding con-
straints. Crama and Schyns [21] applied SA to a portfolio
problem with cardinality constraints, turnover and trading
restrictions, etc. Lin and Liu [22] used genetic algorithms
to solve portfolio problem with minimum transaction lots.
Soleimani et al. [23] proposed an improved GA to solve
portfolio selection model with minimum transaction lots,
cardinality constraints and market capitalization. Chen and
Zhang [24] proposed an improved PSO algorithm for the
admissible portfolio selection problem with transaction costs.
Anagnostopoulos and Mamanis [25] applied NSGA-II, PESA
and SPEA2 to find an approximation of the best possible trade
offs between return, risk and the number of securities included
in the portfolio.

In this paper, we will discuss the portfolio selection prob-
lems with transaction costs based on possibilistic theory,
and design an effective heuristic algorithm-particle swarm
optimization to solve the corresponding optimization problem.
The organization of this paper is as follows. In Section 2,
some properties as in probability theory based on the Carlsson
and Fullérs’ notations are discussed. Then, we will present a
possibilistic portfolio model with transaction costs in section
3. The outline procedure of the particle swarm optimization
method for our proposed model is designed in Section 4. A
numerical example is given to illustrate our proposed effective
means and approaches in Section 5. Some concluding remarks
are given in Section 6.
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II. POSSIBILISTIC MEAN AND POSSIBILISTIC VARIANCE

Let us introduce some definitions, which we need in the
following section.

In 2001, Carlsson and Fullér [8] defined the notations of the
lower and upper possibilistic mean values and variance ofA as

M∗(A) =

∫ 1

0
a1(γ)Pos[A ≤ a1(γ)]dγ∫ 1

0
Pos[A ≤ a1(γ)]dγ

= 2
∫ 1

0

γa1(γ)dγ,

M∗(A) =

∫ 1

0
a2(γ)Pos[A ≥ a2(γ)]dγ∫ 1

0
Pos[A ≥ a2(γ)]dγ

= 2
∫ 1

0

γa2(γ)dγ.

Then the following lemma can directly be proved using the
definition of interval-valued possibilistic mean.

Lemma 1:Let A1, A2, . . . , An ben fuzzy numbers, and let
λ is a real number. Then

M∗(
n∑

i=1

Ai) =
n∑

i=1

M∗(Ai),

M∗(
n∑

i=1

Ai) =
n∑

i=1

M∗(Ai),

M∗(λAi) =
{

λM∗(Ai) if λ ≥ 0,
λM∗(Ai) if λ < 0,

M∗(λAi) =
{

λM∗(Ai) if λ ≥ 0,
λM∗(Ai) if λ < 0.

The following theorem obviously holds by Lemma 1.
Theorem 1:Let A1, A2, . . . , An be n fuzzy numbers, and

let λ0, λ1, λ2, . . . , λn be n + 1 real numbers. Then

M∗(λ0 +
n∑

i=1

λiAi) = λ0 +
n∑

i=1

|λi|M∗(sgn(λi)Ai),

and

M∗(λ0 +
n∑

i=1

λiAi) = λ0 +
n∑

i=1

|λi|M∗(sgn(λi)Ai),

where sgn(x) is sign function ofx ∈ R.
Carlsson and Fullér [8] also defined the crisp possibilistic

mean value of A as

M(A) =
∫ 1

0

γ(a1(γ) + a2(γ))dγ =
M∗(A) + M∗(A)

2
.

The following theorem can easily be obtained from Theorem
1.

Theorem 2:Let A1, A2, . . . , An be n fuzzy numbers, and
let λ0, λ1, λ2, . . . , λn be n + 1 real numbers. Then

M(λ0 +
n∑

i=1

λiAi) = λ0 +
n∑

i=1

λiM(Ai).

Let A with [A]γ = [a1(γ), a2(γ)] and B with [B]γ =
[b1(γ), b2(γ)](γ ∈ [0, 1]) be two fuzzy numbers. Carlsson and
Fullér [8] also introduced possibilistic variance and covariance
of fuzzy numbers as

Var(A) =
1
2

∫ 1

0

γ(a2(γ)− a1(γ))2dγ

and

Cov(A,B) =
1
2

∫ 1

0

γ[(a2(γ)− a1(γ))(b2(γ)− b1(γ))]dγ,

respectively.
The following conclusions are given in [8].
Lemma 2:Let A andB be two fuzzy numbers. Then

Var(λA + µB) = λ2Var(A) + µ2Var(B) + 2|λµ|Cov(A,B).

Theorem 3 obviously holds by Lemma 2.
Theorem 3:Let A1, A2, . . . , An be n fuzzy numbers, and

let λ1, λ2, . . . , λn be n real numbers. Then

Var(
n∑

i=1

λiAi) =
n∑

i=1

λ2
i Var(Ai)+2

n∑

i<j=1

|λiλj |Cov(Ai, Aj).

III. POSSIBILISTIC PORTFOLIO SELECION MODEL WITH

TRANSACTION COSTS

We consider a portfolio selection problem withn risky
assets. Letrj for assetj is a random variable with expected
return rj = E(rj), j = 1, . . . , n, and letxj is the proportion
of capital to be invested in assetj. In order to describe con-
veniently, we setx = (x1, x2, . . . , xn)′, r = (r1, r2, . . . , rn)′,
r = (r1, r2, . . . , rn)′, and e = (1, 1, . . . , 1)′. Then the
expected return and variance associated with the portfolio
x = (x1, x2, . . . , xn)′ are, respectively, given by

E(r) = r′x, D(r) = x′vx

where v = (σij)n×n is the covariance matrix of expected
returns.

Transaction cost is an important factor for an investor to
take into consideration in portfolio selection. In this study,
we consider portfolio selection problem with transaction costs.
We assume the transaction costs is aV-shaped function of
differences between a new portfoliox = (x1, x2, . . . , xn) and
the existing portfoliox0 = (x0

1, x
0
2, . . . , x

0
n). That’s to say,

for risky asseti the transaction costsci = ki|xi − x0
i |, the

total transaction costs is
∑n

i=1 ci =
∑n

i=1 ki|xi−x0
i |. So, the

expected return without the transaction costs is:

r′x−
n∑

i=1

ki|xi − x0
i |.

For a new investor, it can be taken thatx0
i = 0, i = 1, 2, . . . , n.

Therefore, following the idea of the mean-variance model,
portfolio selection problem with transaction costs can be
formulated as

min x′vx

s.t. r′x−
n∑

i=1

ki|xi − x0
i | ≥ µ,

e′x = 1,

x ≥ 0.

(1)

In order to apply the model (1) in practical investment
problem, we need to estimater andv = (σij)n×n. It means
that all the expected returns, variances, covariances of risky
assets can be accurately estimated by an investor. But, it is
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well-known that the returns of risky assets are in a fuzzy
uncertain economic environment and vary from time to time,
the future states of returns and risks of risky assets cannot be
predicted accurately. Fuzzy number is a powerful tool used to
describe an uncertain environment with vagueness and ambi-
guity. In many important cases, it might be easier to estimate
the possibility distributions of rates of return on risky assets,
rather than the corresponding probability distributions. Based
on these facts, we discuss the portfolio selection problem under
the assumption that the returns of assets are LR-type fuzzy
numbers.

Let rj = (aj , bj , αj , βj)(j=1,. . . ,n) ben LR-type fuzzy
numbers,rj can be described with the following membership
function:

rj(u) =





L(aj−u
α ) if aj − αj ≤ u ≤ aj ,

1 if aj ≤ u ≤ bj ,

R(u−bj

β ) if bj ≤ u ≤ bj + βj ,
0 otherwise.

where L, R:[0,1]→[0,1] with L(0)=R(0)=1 and L(1)=R(1)=0
are non-increasing, continuous mappings. If L and R are
strictly decreasing functions then we can easily compute the
γ-level sets ofrj . That is,

[rj ]γ = [aj − αjL
−1(γ), bj + βjR

−1(γ)],

for all γ ∈ [0.1], j=1,. . . ,n.
Using the definitions of the lower and upper possibilistic

mean, and crisp possibilistic mean of fuzzy numbers, we easily
obtain

M∗(rj) = 2
∫ 1

0

γ(aj − αjL
−1(γ))dγ = aj − 2αjEL,

M∗(rj) = 2
∫ 1

0

γ(bj + βjR
−1(γ))dγ = bj + 2βjER,

M(rj) =
aj + bj

2
− αjEL + βjER,

where

EL =
∫ 1

0

γL−1(γ)dγ,

ER =
∫ 1

0

γR−1(γ)dγ.

Furthermore, using the definitions of the possibilistic vari-
ance and covariance of fuzzy numbers, we easily obtain

Var(rj) =
1
2

∫ 1

0

γ[bj + βjR
−1(γ)− (aj − αjL

−1(γ))]2dγ,

=
1
2
(β2

j FRR + 2αjβjFRL + α2
jFLL)

+ (bj − aj)(βjER + αjEL) +
1
4
(bj − aj)2,

Cov(ri, rj) =
1
2

∫ 1

0

γ[βiR
−1(γ)− αiL

−1(γ) + bi − ai]

× [βjR
−1(γ)− αjL

−1(γ) + bj − aj ]dγ

=
1
2
[βiβjFRR + (αiβj + αjβi)FRL

+ αiαjFLL + (bj − aj)(βiER + αiEL)

+ (bi − ai)× (βjER + αjEL)] +
1
4
(bi − ai)(bj − aj),

where

FLL =
∫ 1

0

γ(L−1(γ))2dγ,

FRR =
∫ 1

0

γ(R−1(γ))2dγ,

FRL =
∫ 1

0

γR−1(γ)L−1(γ)dγ.

By Theorem 2, the possibilistic means of the return associ-
ated with the portfolio(x1, x2, . . . , xn) is given by

M(r′x) = M(
n∑

i=1

rixi)

=
n∑

i=1

[
aj + bj

2
− αjEL + βjER]xi.

By Theorem 3, the possibilistic variance of the return
associated with the portfolio(x1, x2, . . . , xn) is given by

V ar(r′x) =
1
2
FLL[

n∑

i=1

αixi]2 +
1
2
FRR[

n∑

i=1

βixi]2

+
1
2
FRL[

n∑

i,j=1

(βiαj + αiβj)xixj ]

+
n∑

i=1

(bi − ai)(βiER + αiEL)x2
i

+
n∑

i 6=j=1

(bi − ai)(βjER + αjEL)xixj

+
1
4
[

n∑

i=1

(bi − ai)xi]2

=
1
2
FLL[

n∑

i=1

αixi]2 +
1
2
FRR[

n∑

i=1

βixi]2

+ FRL[
n∑

i=1

(αixi)][
n∑

i=1

(βixi)]

+ [
n∑

i=1

(bi − ai)xi][
n∑

i=1

(βiER + αiEL)xi]

+
1
4
[

n∑

i=1

(bi − ai)xi]2

Analogous to Markowitz’s mean-variance methodology for
the portfolio selection problem, the possibilistic mean value
correspond to the return, while the possibilistic variance cor-
respond to the risk. From this point of view, the portfolio
selection model with transaction costs (1) can be formulated



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:5, No:5, 2011

562

as

min
1
2
FLL[

n∑

i=1

αixi]2 +
1
2
FRR[

n∑

i=1

βixi]2

+ FRL[
n∑

i=1

(αixi)][
n∑

i=1

(βixi)]

+ [
n∑

i=1

(bi − ai)xi][
n∑

i=1

(βiER + αiEL)xi]

+
1
4
[

n∑

i=1

(bi − ai)xi]2

s.t.
n∑

i=1

[
aj + bj

2
− αjEL + βjER]xi −

n∑

i=1

ki|xi − x0
i | ≥ µ,

e′x = 1,

x ≥ 0.
(2)

Especially, if rj , j = 1, , . . . , n are symmetric LR-type
fuzzy numbers, that’s to say,aj = bj , andL−1 = R−1, then
EL = ER, FLL = FRR = FRL. Therefore, the possibilistic
mean-variance model (2) can be described as

min
1
2
FLL[

n∑

i=1

(αi + βi)xi]2

s.t.
n∑

i=1

[
aj + bj

2
+ (βi − αi)EL]xi −

n∑

i=1

ki|xi − x0
i | ≥ µ,

e′x = 1,

x ≥ 0.
(3)

Furthermore, model (3) is equivalent to the following pro-
gramming problem:

min
√

2
2

√
FLL

n∑

i=1

(αi + βi)xi

s.t.
n∑

i=1

[
aj + bj

2
+ (βi − αi)EL]xi −

n∑

i=1

ki|xi − x0
i | ≥ µ,

e′x = 1,

x ≥ 0.
(4)

IV. PARTICLE SWARM OPTIMIZATION

In this section, a modified PSO algorithm is designed to
solve proposed portfolio selection problem with transaction
costs.

A. Standard Particle Swarm Optimization

Particle Swarm Optimization (PSO) was first introduced by
Kennedy and Eberhart [26] in 1995. PSO has many advantages
over other heuristic techniques such that it can be implemented
in a few lines of computer code, it requires only primitive
mathematical operators, and it has great capability of escaping
local optima. PSO conducts search using a population of a
random solutions, corresponding to individual. In addition,

each potential solution called particles is also assigned a
randomized velocity. Each particle in PSO flies in the hy-
perspace with a velocity which is dynamically adjusted its
position according to their own and their neighboring-particles
experience, moving toward two points: the best position so far
by itself called Pbest and by its neighbor called Gbest at every
iteration. The particle swarm optimization concept consists of,
at each time step, changing the velocity each particle toward
its Pbest and Gbest.

Suppose that the search space isD dimensional, then
the ith particle of the swarm can be represented by aD
dimensional vectorXi = (xi1, xi2, . . . , xiD)′. The particle
velocity can be represented by anotherD dimensional vector
Vi = (vi1, vi2, . . . , viD)′. The best previously visited position
of the ith particle is denoted asPi = (pi1, pi2, . . . , piD)′.
Defining g as the index of the best particle in the swarm,
and let the superscripts denote the iteration number, then the
position of a particle and its velocity are updated by the
following equations :

vk+1
id = wvk

id + c1r
k
1 (pk

id − xk
id) + c2r

k
2 (pk

gd − xk
id), (5)

xk+1
id = xk

id + vk+1
id , (6)

where d = 1, 2, . . . , D, i = 1, 2, . . . , N, and N is the size
of swarm;w is called inertia weight:c1, c2 are two positive
constants, called cognitive and social parameter respectively;
r1, r2 are random numbers, uniformly distributed in[0, 1]; and
k = 1, 2, . . . determines the iteration number.

B. Particle Swarm Optimization for Portfolio Selection Prob-
lem

Next, a modified PSO algorithm is designed to solve
portfolio selection problem with transaction costs, which is
difficult to solve with the existing traditional algorithms due
to its nonconcavity and special structure. We design a PSO
algorithm from the three aspects.

Firstly, a dynamic inertia weight by stages is designed
according to the following equation:

w = wb −
b k

N c
bMax

N c ∗ (wb − we),

wherewb is the initial inertia weight,we is the final inertia
weight, Max is the maximum iteration,k is the current
iteration, N is the constant, which means how many stages
are divided byMax, bxc is the greatest integer less than or
equal to x.

This method ensure thatw can take a larger value at the
begin of searching, that’s to say, particle swarms can search
in a bigger space, which increase the diversities of solution
spaces. Moreover,w can take a smaller value at the end of
searching, that’s to say, particle swarms can search in a smaller
space, which increase the accuracy of solution spaces.

Secondly, in order to avoid rapid converging to local op-
timization, we design a random divergence method. When
particles update positions, every particle changes velocity
direction with a smaller probability and fly oppositely. If the
particle position is beyond the boundary value, we set position
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value be boundary value. The random divergence method can
be described as follows:

Setpm = ε
for each particle

vid = wvid + c1r1(pid − xid) + c2r2(pgd − xid);
if(pm < rand(0, 1))

xid = xid − vid;
else

xid = xid + vid;
end if
if (xid > rangR) xid = rangR;
if (xid < rangL) xid = rangL;

end for
where rangR is upper boundary ofxd, rangL is lower boundary
of xd.

At last, that how to deal with constraints is very important,
so many methods were proposed. Koziel and Michaewicz
[27] grouped them into four categories: methods based on
preserving feasibility of solutions; methods based on penalty
functions; methods that make a clear distinction between
feasible and infeasible solutions; and other hybrid methods.

Exact penalty functions can be subdivided into two main
classes: nondifferentiable exact penalty functions and continu-
ously differentiable exact penalty functions. Nondifferentiable
exact penalty functions were introduced for the first time by
Zangwill [28]. Continuously differentiable exact penalty func-
tions were introduced by Fletcher [29] for equality constrained
optimization problems. In this paper, nondifferentiable exact
penalty functions [30] is introduced for handling constraints.
Its basic form is as follows:

p(x, δ) = f(x) + δ{
J∑

i=1

|ci(x)|+
K∑

i=J+1

|min(0, ci(x))|}

whereδ is penalty factor.

V. NUMERICAL EXAMPLE

In order to illustrate our proposed effective means and
approaches, we consider a real portfolio selection example in
[4]. In this example, 5 bonds whose return rates are restricted
by the following type of possibility distributions with a center
ci and a spreadwi:

πCi
(q) = exp(− (q − ci)2

wi
) (7)

The parametersci’s andwi’s are defined as

c1 = 0.25, c2 = 0.22, c3 = 0.2, c4 = 0.15, c5 = 0.05,

w1 = 0.0225, w2 = 0.015, w3 = 0.015, w4 = 0.01, w5 = 0.005.

Using the possibilistic portfolio selection model with trans-
action costs (4) in this example, it follows thatai = bi =
ci, αi = βi =

√
wi, i = 1, 2, . . . , 5, and L = R. Based on

possibility distribution (8), we can obtainFLL = FRR = 1
4 .

Moreover, the following parameters for proposed PSO algo-
rithm are set: the size of the population is 100, the initial
inertia weightwb is 0.75 , the final inertia weightwe is 0.2,
the maximum iterationMax is 2000,N = 10, δ = 50.

Suppose that existing portfolio is x0 =
(0.03, 0.00, 0.06, 0.00, 0.05), and the transaction costs

rate ki = 0.01, i = 1, 2, . . . , 5. Applying the proposed PSO
algorithm and LINGO software, respectively, to solve model
(5), we obtain the following results listed in Tables 1-6.

Table 1: Investment Proportion withµ = 0.02
1 2 3 4 5 risk

PSO 0.0000 0.0000 0.0000 0.0000 1.0000 0.0707
LINGO 0.0000 0.0000 0.0000 0.0000 1.0000 0.0707

Table 2: Investment Proportion withµ = 0.05
1 2 3 4 5 risk

PSO 0.0001 0.0000 0.0007 0.1049 0.8942 0.07383
LINGO 0.0000 0.0000 0.0000 0.0864 0.9136 0.07324

Table 3: Investment Proportion withµ = 0.10
1 2 3 4 5 risk

PSO 0.0011 0.0065 0.0051 0.5833 0.4040 0.08848
LINGO 0.0000 0.0580 0.0000 0.4460 0.4960 0.08678

Table 4: Investment Proportion withµ = 0.15
1 2 3 4 5 risk

PSO 0.0053 0.1778 0.0143 0.7694 0.0332 0.1036
LINGO 0.0000 0.3846 0.0000 0.3846 0.2308 0.1019

Table 5: Investment Proportion withµ = 0.20
1 2 3 4 5 risk

PSO 0.0000 0.9440 0.0000 0.0000 0.056 0.1196
LINGO 0.0000 0.8333 0.0000 0.1667 0.0000 0.1187

Table 6: Investment Proportion withµ = 0.24
1 2 3 4 5 risk

PSO 1.0000 0.0000 0.0000 0.0000 0.0000 0.1500
LINGO 0.9850 0.0150 0.0000 0.0000 0.0000 0.1496

Tables 1-6 exhibit the numerical results computed by PSO
and LINGO software respectively. According to the experi-
mental results, we conclude that for proposed portfolio se-
lection problem the PSO algorithm is an efficient method
to obtain the optimal solution since the results obtained by
two different methods are approximately equal, that’s to say,
for the same possibilistic return the possibilistic risks are
approximately equal. However, there is a small difference in
the obtained portfolios in both methods. For example, in the
case ofµ = 0.05, 0.15, LINGO has three bonds while PSO
has five bonds, which means that the results of PSO tend to
take more distributive investment than those of LINGO.

VI. CONCLUSIONS

In this paper, we have proposed possibilistic portfolio model
with transaction costs under the assumption that the returns of
assets are LR-type fuzzy numbers, in which the possibilistic
mean value of the return is termed measure of investment
return, and the possibilistic variance of the return is termed
measure of investment risk. We have designed a particle swarm
optimization to solve corresponding optimization problem
because traditional algorithms can not solve this problem
efficiently. Results of numerical experiments show that our
proposed means and approaches are effective.
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