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Abstract—The aim of the current study is to develop a numerical 

tool that is capable of achieving an optimum shape and design of 

hyperbolic cooling towers based on coupling a non-linear finite 

element model developed in-house and a genetic algorithm 
optimization technique. The objective function is set to be the 

minimum weight of the tower. The geometric modeling of the tower 

is represented by means of B-spline curves. The finite element 

method is applied to model the elastic buckling behaviour of a tower 
subjected to wind pressure and dead load. The study is divided into 

two main parts. The first part investigates the optimum shape of the 

tower corresponding to minimum weight assuming constant 
thickness. The study is extended in the second part by introducing the 

shell thickness as one of the design variables in order to achieve an 

optimum shape and design. Design, functionality and practicality 
constraints are applied. 

 

Keywords—B-splines, Cooling towers, Finite element, Genetic 

algorithm, Optimization 

I. INTRODUCTION 

ANY investigations related to the subject of optimal 

design of shell structures have been performed 

previously while assuming that the shell surface has a fixed 

geometry. The thickness of the shell is considered as the 

independent design variable in such cases. Few studies have 

considered an important class of optimization problems in 

which the geometry defining the surface of the shells is treated 

as an independent design variable. This category of problems 

is called “Structural Shape Optimization”, and it usually 

requires an interaction between three different schemes. The 

first scheme is employed to define the geometry of the surface 

using a certain set of independent variables. The second 

scheme is a tool used to predict the structural response, which 

is usually done numerically. The third scheme is an 

appropriate optimization algorithm that can determine the 

optimum solution in an effective and reliable way. A number 

of techniques were used by various researchers to solve shape 

optimization structural problems. Many researchers, such as 

Zienkiewicz and Campbell [1], and Ramakrishnan and 

Francavilla [2], used the nodal coordinates of the discrete 

finite element model as the design variables that define the 

geometry of the surface. The drawback of this approach is that 

it involves a large number of design variables and often leads 

to edged shapes. In order to overcome the edged shape 

problem, a large number of constraints must be added, which 
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leads to difficulties in applying this approach. Yang et al. [3], 

and Chang and Choi [4] used mesh parameterization methods 

to define geometric and numerical models in order to 

overcome the problems of the previous method. In this 

approach, a set of key points “master nodes” are used to define 

the geometry of the surface. Parametric mappings are then 

employed to map this geometric model to the finite element 

mesh. As such, the shape design variables are considered as a 

set of parameters that defines the position of the master nodes. 

However, this approach is difficult because the user has to 

define the model in terms of these master nodes rather than the 

dimensions, which is not an easy task especially when dealing 

with complex shapes.Several shapes have been used in the 

past for the structural shell of cooling towers. Cylindrical 

towers have been constructed, and many European towers 

have been composed of a frustum of a cone surmounted by a 

section of a torus, with another conical section at the top. 

These types have been superseded by the hyperbolic towers, 

which are relatively easy to analyze and exhibits primarily 

membrane stresses under design loads, as stated by Gould and 

Lee [5]. A study that was conducted by Pieczara [6] 

represented the surface of the cooling tower based on two 

hyperbola curves that intersect at the tower throat, where the 

objective function is set to minimize the thickness of the tower 

shell. The main objective of the current study is to develop an 

innovative technique to predict the optimum shape and 

optimum structural design of cooling towers. The study is 

divided into two main parts. In the first part, shape 

optimization of the tower, with shell rings radii taken as 

design variables, is formulated taking into account various 

constraints such as strength requirements, buckling capacity, 

practicality of construction, and functionality of the structure. 

The objective function is set to be the optimum shape 

corresponding to minimum weight (volume of shell material) 

under equivalent wind pressure and dead load. The study is 

extended in the second part by introducing the shell thickness 

as an extra design variable in order to predict an optimum 

shape and the corresponding optimum thickness. The 

proposed numerical tool involves a combination between three 

numerical schemes. These are the B-spline curves, which are 

adapted to generate the finite element mesh, finite element 

modeling (FEM) to study the response of the tower under the 

effect of design loads, and Real Coded Genetic Algorithm 

(RCGA) optimization technique. A detailed description of 

these three techniques is provided in next sections.  

II. DESCRIPTION OF THE GEOMETRY OF THE TOWER 

For purposes of comparison, a real tower is considered in 

the current study as the “reference design” tower. The total 

height of the tower is 108.2 m. As shown in Fig. 1, the tower 

has a base, throat and top radii of 39.3 m, 25.1 m and 27.4 m, 
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respectively, with the throat located 76.8 m above the base. It 

has a constant shell-wall thickness of 190.5 mm. 

 
Fig. 1 Geometry of the real tower considered in the current study 

 

Detailed description of the geometry of the tower is 

presented in Table I. This table shows the radius and location 

of each of the eleven rings distributed along the tower height. 

The tower is constructed of reinforced concrete having a 

compression strength of 30 MPa, tensile strength of 1.81 MPa, 

unit weight of 24 kN/m3, Poisson’s ratio of 0.3 and elastic 

modulus of 25 GPa. The total height of the tower, h, and the 

radius of its base, r1, are generally governed by thermal design 

considerations. As such, these two parameters are assumed to 

be fixed in all the optimization analyses carried in this study. 

In addition, the inner volume of the tower is usually selected 

in order to achieve a certain cooling capacity. This condition is 

applied in the numerical model through imposing a 

functionality constraint as will be discussed later.  

 
TABLE I 

GEOMETRY OF COOLING TOWER UNDER CONSIDERATION  

 
As shown in Fig. 1, a typical meridional shape of a 

hyperbolic cooling tower shell consists of lower and upper 

hyperbola branches, which meet at the throat. The curvature of 

the meridian varies along the tower height, with a maximum 

value at the throat. As pointed out by Kratzig and Zerna [7], 

the shape of the meridian affects the magnitude and 

distribution of the membrane stresses, the load level at which 

crack initiates, and the structural safety against instability. It 

should be mentioned that the shape of the meridian is 

explicitly controlled by the slope angle, βs shown in Fig. 1. 

 

III. DESIGN LOADS 

Hyperbolic cooling towers are subjected to different types 

of loading. Most commonly are dead load and wind loads, 

which are considered in the current study as the design loads. 

Wind loading is extremely important in the design of cooling 

towers for several reasons. The overturning moment as well as 

the localized bending moment resulting from wind loading 

lead to tension stresses, which can exceed the compression 

stresses resulting from the structure own weight. The amount 

of reinforcement needed in the shell is controlled by the net 

difference between the tension and compression stresses. The 

distribution of wind pressure varies along both the vertical (y) 

and circumferential (θ) directions of the shell surface. In the 

current study, the external wind pressure ( )θ,yw  is defined 

using the following equation provided by ASCE [8]: 

 

( ) ( ) ( ) FDp GyqCyw ⋅⋅= θθ,                 (1) 

Where Cp(θ): Coefficient for circumferential distribution of 

wind pressure as provided by Niemann [9]. Its variation with 

the circumferential angle (θ) is shown in Fig. 2. In this figure, 

θ=0˚ corresponds to the wind direction.  

( )yqD : Design wind pressure profile above the ground level 

for a return period of 50 years. 

 
 

Fig. 2 Distribution of mean pressure coefficient Cp(θ) defined by 

Niemann [9] 

 

In the current study, the profile for the case of flat and open 

country is used, since it represents the most critical case. Such 

a profile is provided by Niemann [9] and is given in Fig. 3. 
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Fig. 3 Design wind load profile defined by Niemann [9] 

 

FG : Gust factor that takes into account the additional wind 

effects due to turbulence.  

Based on the ASCE-7-98 [10] and assuming a damping ratio 

of 1%, a value of FG = 1.70 can be used. However, in view of 

the boundary layer wind tunnel pressure data reported by 

Vickery et al. [11], and analyses conducted by El Ansary [12], 

a gust factor FG = 2.08 is recommended to be used in the 

current investigation.  

In this investigation, the design of the cooling tower is 

assumed to be governed by the limit state of serviceability. As 

such, the load combination applied in this study is assumed to 

be wind pressure and dead load with a load factor of 1.0.   

IV. DESCRIPTION OF THE NUMERICAL MODEL 

As mentioned above, the proposed numerical model 

involves a combination between the three following numerical 

schemes: B-spline curves, finite element modeling (FEM), and 

real coded genetic algorithm (RCGA) optimization technique. 

This section provides a brief description of these three 

numerical schemes, as they are employed in the proposed 

numerical tool. The interaction between various components 

of the model and the sequence of the algorithm are described 

in details in the next section. 

A. Geometric Modeling of the Tower 

A surface of revolution is generated by the rotation of a 

general form curve around an axis, as shown in Fig. 4. This 

general curve is known as the generatrix. Surfaces of 

revolution can be described mathematically in their most 

general form using Non-Uniform Rational B-splines 

(NURBS), where the generatrix can be a general (NURBS) 

curve given by the following equation: 

( ) ( )∑
=

⋅=
m

j

jqj PvRv

0

,C                      (2) 

where, ( )vC  is any point on the curve corresponding to the 

independent variable [ ]1,0∈v , jP is the set of control points 

approximating the curve with a number of ( )1+m  and ( )vR qj,  

is the j-th rational B-spline function of a specific degree q 

given by the following equation: 
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where, qiN , is the continuous B-spline function, and w is a 

vector of weights whose elements range from zero to one. The 

B-spline function is defined on a vector V, known as the knot 

vector. Such a vector divides the domain of the independent 

variable v into sub-regions. More details and description of 

NURBS are given by Piegl and Tiller [13]. In the current 

study, the generatrix curve ( )vC  of the cooling tower is 

defined assuming the following parameters: q = 2 and m = 10. 

This curve is rotated around the y-axis and along a circular 

curve ( )uG , as shown in Fig. 4. Such a circular curve is 

represented by (NURBS) with the following parameters: 
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As shown in this figure, the 9 control points take the form of a 

square, which is known as the control polygon. Both curves 

are combined together into one NURBS surface equation as 

follows: 

 

( ) ( )∑∑
= =

⋅=
8

0

,

0

,,2, ,,

i

ji

m

j

qji PvuRvuS                (4) 

The surface control points jiP , are generated by revolving 

the generatrix control points along the path of the circle’s 

control points. A mesh of points creating the surface can be 

formed by substituting the proper values for the independent 

parameters u and v.   

 
Fig. 4 B-spline curve representing surface of revolution 

B. Finite Element Formulation 

A consistent sub parametric triangular shell element that 

was developed by Koziey and Mirza [14] and extended by El 

Damaty et al. [15] to include the geometric nonlinear effects is 

used to develop the numerical model of the tower. One of the 

main advantages of this element is being free from the shear 

locking phenomenon observed in isoparametric shell elements 
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commonly used in many commercial software. This element 

has 13 nodes, as shown in Fig. 5, where the degrees of 

freedom of the element include displacements u, v and w 

along the global x, y and z coordinates, respectively and 

rotational degrees of freedom α, β, φ and ψ acting at the corner 

and mid-side nodes, where rotations α and φ are about the 

local y' axis and rotations β and ψ are about the local x' axis, 

where the local axes y' and x' are located in a plane tangent to 

the surface. Rotations α and β are constant through the depth 

of the element, while rotations φ and ψ vary quadratically. 

Thus, α and β provide a linear variation of displacements u, v 

and w along the thickness representing bending deformations, 

while φ and ψ lead to a cubic variation of displacements u, v 

and w, simulating transverse shear deformations. More details 

about the formulation of this element can be found by Koziey 

and Mirza [14]. 

 

 
 

Fig. 5 Consistent shell element coordinate systems and degrees of 

freedom 

 

1. Finite element mesh and assumptions 

A 3-D FEM of the full scale tower is developed using 480 

elements, with 24 elements along the horizontal directions and 

20 elements along the vertical direction. The following 

assumptions are used, while developing the numerical model 

of the cooling tower: 

 

• The base of the tower is assumed to have a simply 

supported boundary condition. 

• Linear elastic behavior of the material is assumed in 

all analyses. This is justified by the fact that the design 

of such reinforced concrete structures is controlled by 

a no-cracking condition.  

C. Optimization Technique 

Two different techniques are available in the literature for 

solving general nonlinear optimization problems. These are 

the direct search and global search techniques. Direct search 

techniques are local optimization methods as they start the 

search with a guess solution, while the global search 

techniques are global optimizers. In the current study, the 

search space is expected to be complex and may contain 

several local minima due to the intersection of the constraints 

with the objective function. As such, a global optimization 

method is needed to avoid being trapped in local minimum 

and to reach a global optimum solution. The global 

optimization technique used in this study is the real coded 

genetic algorithm (RCGA), in which design variables are 

encoded as real numbers. This algorithm is used due to its 

great versatility, ease of implementation, and its ability to find 

out the global optimum solution. A complete description of 

genetic algorithm techniques is given by Goldberg [16] and 

Davis [17] among other available references. In order to apply 

(RCGA) to the optimization problem in hand, some 

parameters in the model should be defined. These parameters 

are: design variables, design constraints and genetic operators. 

These parameters are described in the following subsections. 

1. Design variables 

The x, y and z coordinates of the B-spline control points 

together with the shell thickness are the design variables 

considered in the study. The x, y and z coordinates specify the 

location of each control point jiP , , as shown in Fig. 4. Each 

control polygon is assumed to have a predefined height 

corresponding to the location of each ring in the full scale 

tower, as shown in Table I. As such, the number of design 

variables, which specify the location of the control points, is 

reduced to only the x and z coordinates. Such a reduction is 

due to the fact that all control points forming a specific control 

polygon have the same y-coordinate. It should be mentioned 

that the values of x and z coordinates of the control points 

forming a specific control polygon are directly controlled by 

the assumed radius of the ring corresponding to this polygon. 

The location of the control points in each level is explicitly 

represented by the radius of the ring located in such a level. 

The assumed lower and upper bounds of all design variables 

(rings radii and shell thickness) are shown in Table II. The 

lower bound of the shell thickness is assumed based on design 

and practicality requirements to provide sufficient cover for 

the reinforcement, as stated by Gould and Kratzig [18]. 

2. Design constraints 

Three different sets of constraints are considered in the 

analyses. They are classified as (a) structural design, (b) 

practical requirements, and (c) functionality constraints.  

 

 
TABLE II 

GEOMETRY OF COOLING TOWER UNDER CONSIDERATION 
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The structural design constraints are: 

• The thickness of the tower should be sufficient such that 

the structure can sustain the design loads without losing 

its stability by elastic buckling. 

• The maximum circumferential and meridional 

compressive stresses acting on the shell should be less 

than the allowable stresses due to sustained load. 

• The maximum circumferential and meridional tensile 

stresses acting on the shell should be less than the 

maximum allowable tensile strength. This condition is 

imposed to prevent shell cracking under the effect of wind 

loads. 

 

The constraints related to practicality requirements are: 

 

• At any point along the height, the slope of the shell 

surface βs, shown in Fig. 1, should not exceed a certain 

value, which is governed by the maximum slope that can 

practically be adopted in the form-work system.  Based on 

practicality and experience, a maximum value for βs, 

should not exceed 20˚, as stated by Busch et al. [19]. 

 

The constraints related to functionality are: 

 

• The inner volume (V) of the tower is assigned to have a 

specific capacity, which is controlled by the cooling 

capacity requirements. To apply this equality constraint, 

the inner volume of the tower is evaluated based on 

approximating the surface of the tower to a number of 

conical frustum shapes corresponding to the number of 

rings along the height of the tower. Based on this 

approximation, the inner volume of the tower is evaluated 

according to the following equation: 

 

( ) ( )∑
=

+++ +⋅+⋅−=
m

i

iiiiii rrrrhh

1

2
11

2
1V                 (5) 

Where ( )1+m is the number of rings along the height of the 

tower, and 1r is the radius of the base ring, which has a fixed 

specified value. The number of design variables is reduced by 

expressing the radius of the top ring of the last conical frustum 

1+mr  in terms of both the radius of the previous ring mr and 

the inner volume of such frustum. As such, by assigning a 

specific cooling capacity to Eq. (5), the equality constraint 

forces the optimum solution to exactly achieve such required 

capacity.  

To apply the first two sets of constraints, the infeasible 

solutions are penalized by applying suitable penalty functions. 

The stationary penalty functions, which use a fixed penalty 

value throughout the minimization process, are used to apply 

the elastic buckling constraint. The nonstationary penalty 

functions, where the penalty values are dynamically modified, 

are applied to both the tensile strength and the practicality 

constraints. Generally, a penalized function can be defined by 

the following equation: 

 

( ) ( ) ( )∑
=

⋅+=
n

k

kjikjijip PPfPf

1

,,, δφ               (6) 

where 
( )
( )
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=
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k

int,0

int,1

δ
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n is the number of constraints, jiP , are the design variables, 

( )jiPf ,  is the unpenalized objective function, ( )jip Pf ,  is the 

penalized objective function, and ( )jik P ,φ  is a suitable 

constant imposed for violation of constraint k. This constant 

ensures that the summation terms in the above equation have 

the same order of magnitude so that the search is not 

dominated by one of the constraint functions. The values of 

these constants are obtained by running a Monte Carlo 

simulation of the independent values prior to the optimization 

step and obtaining the value of the objective and constraint 

functions corresponding to each simulation. In the current 

study, the value of the constant 1φ is assumed to be equal to 

610  in case of fixed penalty values; while for case of 

dynamically modified penalty values the parameter ( )jik P ,φ  is 

defined according to the following relations: 

 

( ) ( )LtjiP σσφ −= 6
,2 10                     (7) 

where tσ is the maximum tensile stresses acting on the tower 

shell and Lσ is the allowable tensile strength. 

 

( ) ( )LsjiP ββφ −= 6
,3 10                    (8) 

Where sβ is the maximum slope of the tower shell and Lβ is 

the maximum slope that can practically be adopted in the 

form-work. 

 

3. Genetic operators 

The genetic algorithm technique involves the application of 

selection, crossover and mutation operators. This technique 

starts first by a random selection of a specific number of 

towers having different geometry and different thickness. The 

number of the randomly chosen towers is usually specified by 

the user. Such set of randomly chosen towers is known as the 

initial population. This step is followed by applying crossover 

and mutation operators to selected pairs of towers in the 

population in order to generate new towers having geometrical 

configuration and thickness, which lead to a reduction in own 

weight. These new generations “towers” replace the worst 

ranked ones. Details of such operators are given by 

Michalewicz and Fogel [20]. In the current investigation, the 

following operators are applied on each population with a size 

of 100 candidates “towers” according to the following 

configuration: 

• 5 instances undergo uniform mutation. 

• 5 instances undergo boundary mutation. 

• 5 instances undergo non-uniform mutations. 

• 3 instances undergo arithmetic crossover. 

• 2 instances undergo uniform crossover. 

• 5 instances undergo heuristic crossover. 
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V. FINITE ELEMENT GENETIC ALGORITHM AND B-SPLINE 

COMBINED TECHNIQUE 

The numerical solution, which involves interaction between 

the B-spline function, the finite element model, and the Real 

Coded Genetic Algorithm (RCGA), progresses by conducting 

the following steps: 

1.  The design variables, which are the x and z-coordinates of 

the B-spline control points ( )jiP ,  and the thickness ( )t  of 

the shell wall, are randomly selected by the (RCGA) 

technique between the lower and the upper bounds of each 

design variable. Based on this random selection, a number 

of towers with different shape configurations and different 

shell wall thickness are created to form the initial 

population. 

2.  For each tower in the initial population, a three dimensional 

finite element model is developed based on the assumed 

geometry and shell wall thickness of this specific tower. 

3.  The finite element analysis is conducted to predict the 

structural response of the towers under the effect of design 

loads. The objective function ( )jiPf , , which is set as the 

own weight of the tower, is then calculated.  

4.  Based on the results of the previous step, the feasibility of 

each tower is checked by applying the design, practicality 

and functionality constraints. In case of violating any of 

these constraints, the result of this specific tower is excluded 

by applying one or the entire penalty functions mentioned 

earlier. The chosen penalty function is added to the value of 

the objective function. 

5.  The initial population is sorted in an ascending order based 

on the value of the objective function, such that the first 

ranked candidate “tower” has the shape and the shell 

thickness that lead to lighter weight. 

6.  A new population of towers is generated by applying the 

(RCGA) cross over and mutation operators. These operators 

are applied on the high ranked towers evaluated in the 

previous step. They direct the search towards the global 

optimum solution. 

7.  The previous population is replaced with the newer one, 

which contains new candidates “towers” with better fitness. 

8.  Steps 3 to 7 are repeated for a certain number of 

generations until a global optimum solution is reached. In 

the current study, these steps are repeated for 40 generations 

to reach the optimum solution. 

All previous steps are summarized in the flow chart shown in 

Fig. 6. 

 
Fig. 6 Flow chart for optimum shape and design of cooling towers 

VI. NUMERICAL RESULTS 

Two analyses are conducted to illustrate the developed 

numerical tool. In the first, the design variables are restricted 

only to the x and z-coordinates of the control points, which 

specify the shape of the tower. The shell wall thickness is 

assumed to have the same thickness as the reference tower. In 

the second, the shell thickness ( )t  is added to the design 

variables in order to assess the effect of thickness variation on 

the shape and on the change of moments and forces acting on 

the shell wall. By introducing all design variables into the 

analysis, a reduction in the tower own weight is anticipated. 

A. Results of Analysis 1-Optimum shape of Tower 

The geometry of the reference tower, which is given in 

Table I, is plotted in Fig. 7. It is noticed that the slope of the 

meridian varies along the tower height with a maximum value 

of 016=sβ .  
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Fig. 7 Tower considered for comparison with thickness mmt 190=  

 

The optimum shape of the tower resulting from this 

optimization analysis is provided in Fig. 8. A minor change in 

the meridian shape with a maximum slope 017=sβ is noticed. 

 
Fig. 8 Optimum shape with thickness mmt 190=  

 

The results show that a very minor difference in geometry is 

noticed between the two cases. In addition, it is noticed that 

the reduction in the tower own weight is negligible.  

A comparison is conducted between the distributions of 

bending moments and meridional forces along the tower 

circumference for both cases. The maximum circumferential 

and meridional moments occur at the throat of the tower, 

while the maximum meridional forces occur at the shell base. 

Figs. 9 and 10 show the comparison between the reference and 

optimum cases for the moments and forces per unit length at 

the throat and the base of the tower, respectively. By 

reviewing these figures, it can be noticed that the optimum 

shape leads to a reduction in circumferential and meridional 

moments up to 26% and 25%, respectively. A minor reduction 

of 7.7% is noticed in case of meridional forces per meter 

acting at the shell base. This change in moments and forces is 

related to the change in the curvature of the shell surface. 

Finally, a general conclusion is drawn from this section that by 

assuming constant thickness mmt 190= , the shape of the 

reference tower can be considered as an optimum or close to 

optimum. 

a)  

 
b)

 

 
 

Fig. 9 Comparison between reference and optimum tower for case of 

moments 

a) Circumferential moment    b) Meridional 

Moment 

 

 
 

Fig. 10 Comparison between reference and optimum tower for case 

of forces 
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B. Results of Analysis 2-Optimum shape and thickness of 

Tower 

Both the shape and the shell thickness are optimized in this 

analysis. Fig. 11 shows the optimum shape of the tower 

resulting from the analysis. The maximum value of the angle 

of inclination of the shell wall, reported in this analysis is
05.19=sβ . Details of the optimum geometry of the shell as 

well as the optimum shell thickness are provided in Table III.  

 
 

Fig. 11 Optimum shape with thickness mmt 165=  

 
TABLE III 

OPTIMUM SHAPE AND THICKNESS OF TOWER 

 
 

Compared to the reference design, the results shown in the 

table indicate that the optimum solution involves a small 

change in the geometry. Meanwhile, a more significant change 

in the shell thickness from190 mm to 165 mm is obtained. The 

combined reduction in the geometry and thickness of the shell 

reduces the own weight of the shell by 12.8%. It can be 

noticed that compared to the reference design, the radius of the 

throat of the tower is reduced by 1.2% while the radius of the 

top ring is increased by 6.4%. 

Comparisons between the optimum solution and the 

reference tower are conducted in terms of bending moments 

and axial force distributions and are given in Figs. 12 and 13, 

respectively. It is noticed from these figures that reductions of 

40% and 22% are achieved in the circumferential and 

meridional moments, respectively. A similar reduction of 25% 

is achieved in the maximum meridional forces acting at the 

tower base. 

a)  

 
b)

 

 
 

Fig. 12 Comparison between reference and optimum tower for case 

of moments 

a) Circumferential moment    b) Meridional 

Moment 

 

 
 

Fig. 13 Comparison between reference and optimum tower for case 

of forces 
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Design Variable Original tower Optimum design Difference (%) 

� (�) 0.19 0.165 13.16% 

�1(�) 39.3 39.3 0.00% 

�2(�) 37.9 37.7 0.53% 

�3(�) 35.8 36.2 1.12% 

�4(�) 32.5 32.1 1.23% 

�5(�) 29.6 29.3 1.01% 

�6(�) 27.4 27.7 1.09% 

�7(�) 25.8 24.9 3.49% 

��ℎ���� (�) 25.1 24.8 1.20% 

�8(�) 25.4 25.9 1.97% 

�9(�) 26.5 27.2 2.64% 

���� (�) 27.4 29.3 6.39% 

�(��) 107.87×103 94.06×103 12.8% 
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VII. PARAMETRIC STUDY 

This section focuses on studying the effect of changing the 

constraint related to practicality requirements on the 

optimization results. The analysis is conducted by increasing 

the limit of the maximum slope Lβ that can practically be 

adopted in the form-work. The slope Lβ is assigned a value of  

030 in the current analysis. Based on the new assigned value 

of this constraint, another optimum shape and optimum 

thickness are predicted. The optimum shape of the tower 

resulting from this analysis is provided in Fig. 14. 

 

 
Fig. 14 Optimum shape of tower in case of 030=Lβ  

 

It is noticed from this figure that the slope of the meridian 

varies along the tower height, with a maximum slope of
06.23=

s
β . In addition, it is noticed that the optimum shape 

of the tower differs from the hyperbolic shape. A comparison 

between the geometry of the reference tower and the optimum 

shape is presented in Table IV.  
TABLE IV 

OPTIMUM SHAPE AND THICKNESS OF TOWER IN CASE OF 
030=Lβ  

 
This comparison shows that a reduction in the own weight 

of the tower of 15.5% is achieved, compared to the reference 

tower. The results of this analysis show that the increase in the 

maximum slope of the shell surface sβ , from 19.5˚ to 23.6˚, 

leads to more reduction in the tower own weight. 

VIII. SUMMARY AND CONCLUSIONS 

A numerical tool that combines finite element analysis, 

geometric modeling with B-spline function, and real coded 

genetic algorithm (RCGA) is developed in this study. This 

numerical tool is used to predict the optimum shape of 

hyperbolic cooling towers. One of the main advantages of 

using the (RCGA) method is that it does not require guessing 

of a starting point to reach an optimum solution. In addition, 

the main advantages of using the B-spline function is that it 

provides greater flexibility in selecting the tower shape 

compared with the polynomial function. Two optimization 

analyses are conducted in the study for a cooling tower. The 

first involves optimizing the shape of the tower while 

assuming a fixed value for the shell thickness. In the second 

analysis both the shape and the thickness of the shell are 

optimized. The results are compared with a reference design 

for the tower that was previously conducted using typical 

analysis and design methods. 

 

The following conclusions can be drawn from the first 

analysis: 

1. By excluding the shell thickness from the set of design 

variables, the shape of the reference tower, which is 

hyperbolic, can be considered as an optimum or close 

to optimum. 

2. Compared with the reference designed tower, the 

optimum shape of the tower leads to a reduction in 

circumferential and meridional moments up to 26% and 

25%, respectively. 

3. A minor reduction of 7.7% is noticed in case of 

meridional forces per unit length acting at the shell base. 

 

The following conclusions are drawn from the second 

analysis: 

1.  The optimum shape and optimum shell thickness 

obtained from the proposed technique lead to about 

12.8% reduction in the tower own weight compared to 

the reference designed tower. The shell thickness is 

reduced from 190 mm to 165 mm. 

2.  Reductions of 40% and 22% are achieved in the 

maximum circumferential and meridional moments, 

respectively. Similarly, a reduction of 25% is obtained in 

the maximum axial stresses acting at the base. 

 

The following conclusions are drawn from the parametric 

study: 

1.  By increasing the maximum slope Lβ that can 

practically be adopted in the form-work to 0
6.23 , 

optimum shape and optimum thickness that lead to a 

reduction of 15.5% in the own weight of the tower can 

be achieved, compared to the reference tower.  
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